Numerical Comparison of Restored Vertebral Body Height after Incomplete Burst Fracture of the Lumbar Spine
Abstract
:1. Introduction
2. Materials and Methods
2.1. Solid Model
2.2. Finite Element Model
2.3. Validation and Boundary Condition
2.4. Index
3. Results
3.1. Results of Validation
3.2. Range of Motions
3.3. Force on the Facet Joint
3.4. Equivalent Stress of the Disk
3.5. Equivalent Stress of the Implant
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ameis, A.; Randhawa, K.; Yu, H.; Côté, P.; Haldeman, S.; Chou, R.; Hurwitz, E.L.; Nordin, M.; Wong, J.J.; Shearer, H.M.; et al. The global spine care initiative: A review of reviews and recommendations for the non-invasive management of acute osteoporotic vertebral compression fracture pain in low- and middle-income communities. Eur. Spine J. Off. Publ. Eur. Spine Soc. Eur. Spinal Deform. Soc. Eur. Sect. Cerv. Spine Res. Soc. 2018, 27, 861–869. [Google Scholar] [CrossRef] [PubMed]
- Borgen, T.T.; Bjørnerem, Å.; Solberg, L.B.; Andreasen, C.; Brunborg, C.; Stenbro, M.B.; Hübschle, L.M.; Froholdt, A.; Figved, W.; Apalset, E.M.; et al. High prevalence of vertebral fractures and low trabecular bone score in patients with fragility fractures: A cross-sectional sub-study of nofract. Bone 2019, 122, 14–21. [Google Scholar] [CrossRef]
- WHO. Assessment of fracture risk and its application to screening for postmenopausal osteoporosis. Report of a who study group. World Health Organ. Tech. Rep. Ser. 1994, 4, 368–381. [Google Scholar]
- Cook, D.J.; Guyatt, G.H.; Adachi, J.D.; Clifton, J.; Griffith, L.E.; Epstein, R.S.; Juniper, E.F. Quality of life issues in women with vertebral fractures due to osteoporosis. Arthritis Rheum. 1993, 36, 750–756. [Google Scholar] [CrossRef]
- Felsenberg, D.; Silman, A.J.; Lunt, M.; Armbrecht, G.; Ismail, A.A.; Finn, J.D.; Cockerill, W.C.; Banzer, D.; Benevolenskaya, L.I.; Bhalla, A.; et al. Incidence of vertebral fracture in europe: Results from the european prospective osteoporosis study (epos). J. Bone Miner. Res. Off. J. Am. Soc. Bone Miner. Res. 2002, 17, 716–724. [Google Scholar]
- Lindsay, R.; Burge, R.T.; Strauss, D.M. One year outcomes and costs following a vertebral fracture. Osteoporos. Int. J. Establ. Result Coop. Eur. Found. Osteoporos. Natl. Osteoporos. Found. USA 2005, 16, 78–85. [Google Scholar] [CrossRef] [PubMed]
- Takata, S.; Yasui, N. Disuse osteoporosis. J. Med. Investig. 2001, 48, 147–156. [Google Scholar]
- Diamond, T.H.; Champion, B.; Clark, W.A. Management of acute osteoporotic vertebral fractures: A nonrandomized trial comparing percutaneous vertebroplasty with conservative therapy. Am. J. Med. 2003, 114, 257–265. [Google Scholar] [CrossRef]
- Pérez-Higueras, A.; Alvarez, L.; Rossi, R.E.; Quiñones, D.; Al-Assir, I. Percutaneous vertebroplasty: Long-term clinical and radiological outcome. Neuroradiology 2002, 44, 950–954. [Google Scholar]
- Galibert, P.; Deramond, H.; Rosat, P.; Le Gars, D. Preliminary note on the treatment of vertebral angioma by percutaneous acrylic vertebroplasty. Neuro-Chir. 1987, 33, 166–168. [Google Scholar]
- Hayashi, T.; Maeda, T.; Masuda, M.; Ueta, T.; Shiba, K. Morphology of the injured posterior wall causing spinal canal encroachment in osteoporotic vertebral fractures. Spine J. Off. J. North Am. Spine Soc. 2016, 16, 946–950. [Google Scholar] [CrossRef]
- Kim, S.I.; Ha, K.Y.; Cho, Y.S.; Kim, K.W.; Oh, I.S. Delayed height loss after kyphoplasty in osteoporotic vertebral fracture with severe collapse: Comparison with vertebroplasty. World Neurosurg. 2018, 119, e580–e588. [Google Scholar] [CrossRef] [PubMed]
- Mooney, J.H.; Amburgy, J.; Self, M.; Agee, B.S.; Schoel, L.; Pritchard, P.R.; Chambers, M.R. Vertebral height restoration following kyphoplasty. J. Spine Surg. 2019, 5, 194–200. [Google Scholar] [CrossRef]
- Rotter, R.; Schmitt, L.; Gierer, P.; Schmitz, K.P.; Noriega, D.; Mittlmeier, T.; Meeder, P.J.; Martin, H. Minimum cement volume required in vertebral body augmentation—A biomechanical study comparing the permanent spinejack device and balloon kyphoplasty in traumatic fracture. Clin. Biomech. 2015, 30, 720–725. [Google Scholar] [CrossRef] [PubMed]
- Sacks, D.; Baxter, B.; Campbell, B.C.V.; Carpenter, J.S.; Cognard, C.; Dippel, D.; Eesa, M.; Fischer, U.; Hausegger, K.; Hirsch, J.A.; et al. Multisociety consensus quality improvement revised consensus statement for endovascular therapy of acute ischemic stroke. Int. J. Stroke Off. J. Int. Stroke Soc. 2018, 13, 612–632. [Google Scholar] [CrossRef] [Green Version]
- Pintar, F.A.; Yoganandan, N.; Myers, T.; Elhagediab, A.; Sances, A., Jr. Biomechanical properties of human lumbar spine ligaments. J. Biomech. 1992, 25, 1351–1356. [Google Scholar] [CrossRef]
- Neumann, P.; Keller, T.S.; Ekström, L.; Hansson, T. Effect of strain rate and bone mineral on the structural properties of the human anterior longitudinal ligament. Spine 1994, 19, 205–211. [Google Scholar] [CrossRef] [PubMed]
- Polikeit, A.; Nolte, L.P.; Ferguson, S.J. The effect of cement augmentation on the load transfer in an osteoporotic functional spinal unit: Finite-element analysis. Spine 2003, 28, 991–996. [Google Scholar] [CrossRef]
- Wang, S.; Wang, L.; Wang, Y.; Du, C.; Zhang, M.; Fan, Y. Biomechanical analysis of combining head-down tilt traction with vibration for different grades of degeneration of the lumbar spine. Med. Eng. Phys. 2017, 39, 83–93. [Google Scholar] [CrossRef]
- Yamamoto, I.; Panjabi, M.M.; Crisco, T.; Oxland, T. Three-dimensional movements of the whole lumbar spine and lumbosacral joint. Spine 1989, 14, 1256–1260. [Google Scholar] [CrossRef]
- Chen, C.S.; Cheng, C.K.; Liu, C.L.; Lo, W.H. Stress analysis of the disc adjacent to interbody fusion in lumbar spine. Med. Eng. Phys. 2001, 23, 483–491. [Google Scholar] [CrossRef]
- Natarajan, R.N.; Andersson, G.B. Lumbar disc degeneration is an equally important risk factor as lumbar fusion for causing adjacent segment disc disease. J. Orthop. Res. Off. Publ. Orthop. Res. Soc. 2017, 35, 123–130. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dreischarf, M.; Zander, T.; Shirazi-Adl, A.; Puttlitz, C.M.; Adam, C.J.; Chen, C.S.; Goel, V.K.; Kiapour, A.; Kim, Y.H.; Labus, K.M.; et al. Comparison of eight published static finite element models of the intact lumbar spine: Predictive power of models improves when combined together. J. Biomech. 2014, 47, 1757–1766. [Google Scholar] [CrossRef] [Green Version]
- Elmasry, S.S.; Asfour, S.S.; Travascio, F. Finite element study to evaluate the biomechanical performance of the spine after augmenting percutaneous pedicle screw fixation with kyphoplasty in the treatment of burst fractures. J. Biomech. Eng. 2018, 140, 061005. [Google Scholar] [CrossRef]
- Schultz, A.B.; Warwick, D.N.; Berkson, M.H.; Nachemson, A.L. Mechanical properties of human lumbar spine motion segments—Part I: Responses in flexion, extension, lateral bending, and torsion. J. Biomech. Eng. 1979, 101, 46–52. [Google Scholar] [CrossRef]
- Panjabi, M.M.; Oxland, T.R.; Yamamoto, I.; Crisco, J.J. Mechanical behavior of the human lumbar and lumbosacral spine as shown by three-dimensional load-displacement curves. J. Bone Jt. Surg. Am. Vol. 1994, 76, 413–424. [Google Scholar] [CrossRef]
- Martín-Valero, R.; Cuesta-Vargas, A.I.; Labajos-Manzanares, M.T. Effectiveness of the physical activity promotion programme on the quality of life and the cardiopulmonary function for inactive people: Randomized controlled trial. BMC Public Health 2013, 13, 127. [Google Scholar] [CrossRef] [Green Version]
- Lee, Y.K.; Jang, S.; Jang, S.; Lee, H.J.; Park, C.; Ha, Y.C.; Kim, D.Y. Mortality after vertebral fracture in korea: Analysis of the national claim registry. Osteoporos. Int. J. Establ. result Coop. Eur. Found. Osteoporos. Natl. Osteoporos. Found. USA 2012, 23, 1859–1865. [Google Scholar] [CrossRef]
- Imai, N.; Endo, N.; Hoshino, T.; Suda, K.; Miyasaka, D.; Ito, T. Mortality after hip fracture with vertebral compression fracture is poor. J. Bone Miner. Metab. 2016, 34, 51–54. [Google Scholar] [CrossRef] [PubMed]
- Jennings, J.W. Vertebral augmentation is more than just pain palliation, it is about improved mortality. Radiology 2020, 295, 104–105. [Google Scholar] [CrossRef] [PubMed]
- Hinde, K.; Maingard, J.; Hirsch, J.A.; Phan, K.; Asadi, H.; Chandra, R.V. Mortality outcomes of vertebral augmentation (vertebroplasty and/or balloon kyphoplasty) for osteoporotic vertebral compression fractures: A systematic review and meta-analysis. Radiology 2020, 295, 96–103. [Google Scholar] [CrossRef] [PubMed]
- Edidin, A.A.; Ong, K.L.; Lau, E.; Kurtz, S.M. Morbidity and mortality after vertebral fractures: Comparison of vertebral augmentation and nonoperative management in the medicare population. Spine 2015, 40, 1228–1241. [Google Scholar] [CrossRef] [PubMed]
- Bellabarba, C.; Fisher, C.; Chapman, J.R.; Dettori, J.R.; Norvell, D.C. Does early fracture fixation of thoracolumbar spine fractures decrease morbidity or mortality? Spine 2010, 35, S138–S145. [Google Scholar] [CrossRef] [PubMed]
- Pachowsky, M.L.; Kleyer, A.; Wegener, L.; Langenbach, A.; Simon, D.; Janka, R.; May, M.; Welsch, G.H. Quantitative t2 mapping shows increased degeneration in adjacent intervertebral discs following kyphoplasty. Cartilage 2020, 11, 152–159. [Google Scholar] [CrossRef] [PubMed]
- Noriega, D.C.; Marcia, S.; Ardura, F.; Lite, I.S.; Marras, M.; Saba, L. Diffusion-weighted mri assessment of adjacent disc degeneration after thoracolumbar vertebral fractures. Cardiovasc. Interv. Radiol. 2016, 39, 1306–1314. [Google Scholar] [CrossRef] [PubMed]
- Noriega, D.; Marcia, S.; Theumann, N.; Blondel, B.; Simon, A.; Hassel, F.; Maestretti, G.; Petit, A.; Weidle, P.A.; Mandly, A.G.; et al. A prospective, international, randomized, noninferiority study comparing an implantable titanium vertebral augmentation device versus balloon kyphoplasty in the reduction of vertebral compression fractures (sakos study). Spine J. Off. J. North. Am. Spine Soc. 2019, 19, 1782–1795. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Noriega, D.C.; Rodrίguez-Monsalve, F.; Ramajo, R.; Sánchez-Lite, I.; Toribio, B.; Ardura, F. Long-term safety and clinical performance of kyphoplasty and spinejack® procedures in the treatment of osteoporotic vertebral compression fractures: A pilot, monocentric, investigator-initiated study. Osteoporos. Int. J. Establ. Result Coop. Eur. Found. Osteoporos. Natl. Osteoporos. Found. USA 2019, 30, 637–645. [Google Scholar] [CrossRef] [PubMed]
- Krüger, A.; Oberkircher, L.; Figiel, J.; Floßdorf, F.; Bolzinger, F.; Noriega, D.C.; Ruchholtz, S. Height restoration of osteoporotic vertebral compression fractures using different intravertebral reduction devices: A cadaveric study. Spine J. Off. J. North Am. Spine Soc. 2015, 15, 1092–1098. [Google Scholar] [CrossRef] [PubMed]
- Michael, A.P.; Weber, M.W.; Delfino, K.R.; Ganapathy, V. Adjacent-segment disease following two-level axial lumbar interbody fusion. J. Neurosurg. Spine 2019, 31, 209–216. [Google Scholar] [CrossRef] [Green Version]
- Ke, W.; Wang, B.; Hua, W.; Lu, S.; Li, X.; Yang, C. Biomechanical evaluation of the sacral slope on the adjacent segment in transforaminal lumbar interbody fusion: A finite element analysis. World Neurosurg. 2020, 133, e84–e88. [Google Scholar] [CrossRef]
- Hashimoto, K.; Aizawa, T.; Kanno, H.; Itoi, E. Adjacent segment degeneration after fusion spinal surgery-a systematic review. Int. Orthop. 2019, 43, 987–993. [Google Scholar] [CrossRef] [PubMed]
- Hilibrand, A.S.; Robbins, M. Adjacent segment degeneration and adjacent segment disease: The consequences of spinal fusion? Spine J. Off. J. North. Am. Spine Soc. 2004, 4, 190S–194S. [Google Scholar] [CrossRef]
- Pan, A.; Hai, Y.; Yang, J.; Zhou, L.; Chen, X.; Guo, H. Adjacent segment degeneration after lumbar spinal fusion compared with motion-preservation procedures: A meta-analysis. Eur. Spine J. Off. Publ. Eur. Spine Soc. Eur. Spinal Deform. Soc. Eur. Sect. Cerv. Spine Res. Soc. 2016, 25, 1522–1532. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.; Liu, Y.; Bao, Z.; Zou, J.; Yang, H. Comparison of adjacent segment degeneration after nonrigid fixation system and posterior lumbar interbody fusion for single-level lumbar disc herniation: A new method of mri analysis of lumbar nucleus pulposus volume. J. Investig. Surg. Off. J. Acad. Surg. Res. 2018, 31, 307–312. [Google Scholar] [CrossRef] [PubMed]
Ligament | Stiffness (N/mm) | Spring Numbers at Each Level |
---|---|---|
Anterior longitudinal | 210 | 1 |
Posterior longitudinal | 20.4 | 1 |
Joint capsule | 33.9 | 6 |
Ligament flavum | 27.2 | 2 |
Interspinous ligament | 11.5 | 1 |
Supraspinous ligament | 23.7 | 1 |
Intertransverse ligament | 50 | 2 |
Annular fiber | 14 | 10 |
Material | Elastic Modulus (MPa) | Poisson’s Ratio |
---|---|---|
Cortical bone | 8040 | 0.3 |
Cancellous bone | 34 | 0.3 |
Posterior element | 2345 | 0.3 |
Nucleus pulposus | 1 | 0.49 |
Ground substance | 3.5 | 0.45 |
Cement | 2600 | 0.3 |
Titanium (posterior instrument and SpineJack) | 110 000 | 0.3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jhong, G.-H.; Chung, Y.-H.; Li, C.-T.; Chen, Y.-N.; Chang, C.-W.; Chang, C.-H. Numerical Comparison of Restored Vertebral Body Height after Incomplete Burst Fracture of the Lumbar Spine. J. Pers. Med. 2022, 12, 253. https://doi.org/10.3390/jpm12020253
Jhong G-H, Chung Y-H, Li C-T, Chen Y-N, Chang C-W, Chang C-H. Numerical Comparison of Restored Vertebral Body Height after Incomplete Burst Fracture of the Lumbar Spine. Journal of Personalized Medicine. 2022; 12(2):253. https://doi.org/10.3390/jpm12020253
Chicago/Turabian StyleJhong, Guan-Heng, Yu-Hsuan Chung, Chun-Ting Li, Yen-Nien Chen, Chih-Wei Chang, and Chih-Han Chang. 2022. "Numerical Comparison of Restored Vertebral Body Height after Incomplete Burst Fracture of the Lumbar Spine" Journal of Personalized Medicine 12, no. 2: 253. https://doi.org/10.3390/jpm12020253
APA StyleJhong, G.-H., Chung, Y.-H., Li, C.-T., Chen, Y.-N., Chang, C.-W., & Chang, C.-H. (2022). Numerical Comparison of Restored Vertebral Body Height after Incomplete Burst Fracture of the Lumbar Spine. Journal of Personalized Medicine, 12(2), 253. https://doi.org/10.3390/jpm12020253