Correlation of Genetic Variants and the Incidence, Prevalence and Mortality Rates of Acute Lymphoblastic Leukemia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Variant Selection and Genetic Data Collection
2.2. Frequency Information on Analyzed Variants
2.3. Epidemiological Data Collection
2.4. Statistical Analysis and Plots
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Malard, F.; Mohty, M. Acute Lymphoblastic Leukaemia. Lancet 2020, 395, 1146–1162. [Google Scholar] [CrossRef]
- Ferlay, J.; Colombet, M.; Soerjomataram, I.; Mathers, C.; Parkin, D.M.; Piñeros, M.; Znaor, A.; Bray, F. Estimating the Global Cancer Incidence and Mortality in 2018: GLOBOCAN Sources and Methods. Int. J. Cancer 2019, 144, 1941–1953. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Institute for Health Metrics and Evaluation (IHME). GBD Compare. University of Washington: Seattle, WA, USA, 2015. Available online: http://vizhub.healthdata.org/gbd-compare (accessed on 15 June 2021).
- Li, S.Y.; Ye, J.Y.; Liang, E.Y.; Zhou, L.X.; Yang, M. Association between MTHFR C677T Polymorphism and Risk of Acute Lymphoblastic Leukemia: A Meta-Analysis Based on 51 Case-Control Studies. Med. Sci. Monit. 2015, 21, 740–748. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gharbi, H.; Ben Hassine, I.; Soltani, I.; Safra, I.; Ouerhani, S.; Bel Haj Othmen, H.; Teber, M.; Farah, A.; Amouri, H.; Toumi, N.H.; et al. Association of Genetic Variation in IKZF1, ARID5B, CDKN2A, and CEBPE with the Risk of Acute Lymphoblastic Leukemia in Tunisian Children and Their Contribution to Racial Differences in Leukemia Incidence. Pediatr. Hematol. Oncol. 2016, 33, 157–167. [Google Scholar] [CrossRef]
- Han, S.; Lee, K.M.; Park, S.K.; Lee, J.E.; Ahn, H.S.; Shin, H.Y.; Kang, H.J.; Koo, H.H.; Seo, J.J.; Choi, J.E.; et al. Genome-Wide Association Study of Childhood Acute Lymphoblastic Leukemia in Korea. Leuk. Res. 2010, 34, 1271–1274. [Google Scholar] [CrossRef]
- Hsu, L.I.; Briggs, F.; Shao, X.; Metayer, C.; Wiemels, J.L.; Chokkalingam, A.P.; Barcellos, L.F. Pathway Analysis of Genome-Wide Association Study in Childhood Leukemia among Hispanics. Cancer Epidemiol. Biomark. Prev. 2016, 25, 815–822. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vijayakrishnan, J.; Studd, J.; Broderick, P.; Kinnersley, B.; Holroyd, A.; Law, P.J.; Kumar, R.; Allan, J.M.; Harrison, C.J.; Moorman, A.V.; et al. Genome-Wide Association Study Identifies Susceptibility Loci for B-Cell Childhood Acute Lymphoblastic Leukemia. Nat. Commun. 2018, 9, 1340. [Google Scholar] [CrossRef] [PubMed]
- Pui, C.H.; Nichols, K.E.; Yang, J.J. Somatic and Germline Genomics in Paediatric Acute Lymphoblastic Leukaemia. Nat. Rev. Clin. Oncol. 2019, 16, 227–240. [Google Scholar] [CrossRef]
- Quiroz, E.; Aldoss, I.; Pullarkat, V.; Rego, E.; Marcucci, G.; Douer, D. The Emerging Story of Acute Lymphoblastic Leukemia among the Latin American Population—Biological and Clinical Implications. Blood Rev. 2019, 33, 98–105. [Google Scholar] [CrossRef]
- De Carvalho, D.C.; Wanderley, A.V.; dos Santos, A.M.R.; Moreira, F.C.; de Sá, R.B.A.; Fernandes, M.R.; Modesto, A.A.C.; de Souza, T.P.; Cohen-Paes, A.; Leitão, L.P.C.; et al. Characterization of Pharmacogenetic Markers Related to Acute Lymphoblastic Leukemia Toxicity in Amazonian Native Americans Population. Sci. Rep. 2020, 10, 10292. [Google Scholar] [CrossRef]
- Chuah, B.; Goh, B.C.; Lee, S.C.; Soong, R.; Lau, F.; Mulay, M.; Dinolfo, M.; Lim, S.E.; Soo, R.; Furuie, T.; et al. Comparison of the Pharmacokinetics and Pharmacodynamics of S-1 between Caucasian and East Asian Patients. Cancer Sci. 2011, 102, 478–483. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.L.; Hung, C.C.; Chen, J.S.; Lin, K.H.; Jou, S.T.; Hsiao, C.C.; Sheen, J.M.; Cheng, C.N.; Wu, K.H.; Lin, S.R.; et al. IKZF1 Deletions Predict a Poor Prognosis in Children with B-Cell Progenitor Acute Lymphoblastic Leukemia: A Multicenter Analysis in Taiwan. Cancer Sci. 2011, 102, 1874–1881. [Google Scholar] [CrossRef] [PubMed]
- Yamada, Y.; Sakuma, J.; Takeuchi, I.; Yasukochi, Y.; Kato, K.; Oguri, M.; Fujimaki, T.; Horibe, H.; Muramatsu, M.; Sawabe, M.; et al. Identification of Six Polymorphisms as Novel Susceptibility Loci for Ischemic or Hemorrhagic Stroke by Exome-Wide Association Studies. Int. J. Mol. Med. 2017, 39, 1477–1491. [Google Scholar] [CrossRef] [Green Version]
- Gu, J.; Li, T.; Zhao, L.; Liang, X.; Fu, X.; Wang, J.; Shang, Z.; Huang, W.; Zhou, J. Identification of Significant Pathways Induced by PAX5 Haploinsufficiency Based on Protein-Protein Interaction Networks and Cluster Analysis in Raji Cell Line. BioMed Res. Int. 2017, 2017, 5326370. [Google Scholar] [CrossRef] [PubMed]
- Smeenk, L.; Fischer, M.; Jurado, S.; Jaritz, M.; Azaryan, A.; Werner, B.; Roth, M.; Zuber, J.; Stanulla, M.; Boer, M.L.; et al. Molecular Role of the PAX 5- ETV 6 Oncoprotein in Promoting B-cell Acute Lymphoblastic Leukemia. EMBO J. 2017, 36, 718–735. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Isidro-Hernández, M.; Mayado, A.; Casado-García, A.; Martínez-Cano, J.; Palmi, C.; Fazio, G.; Orfao, A.; Ribera, J.; Ribera, J.M.; Zamora, L.; et al. Inhibition of Inflammatory Signaling in Pax5 Mutant Cells Mitigates B-Cell Leukemogenesis. Sci. Rep. 2020, 10, 19189. [Google Scholar] [CrossRef]
- Nicholson, L.; Evans, C.A.; Matheson, E.; Minto, L.; Keilty, C.; Sanichar, M.; Case, M.; Schwab, C.; Williamson, D.; Rainer, J.; et al. Quantitative Proteomic Analysis Reveals Maturation as a Mechanism Underlying Glucocorticoid Resistance in B Lineage ALL and Re-Sensitization by JNK Inhibition. Br. J. Haematol. 2015, 171, 595–605. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rangel, L.; Lospitao, E.; Ruiz-Sáenz, A.; Alonso, M.A.; Correas, I. Alternative Polyadenylation in a Family of Paralogous EPB41 Genes Generates Protein 4.1 Diversity. RNA Biol. 2017, 14, 236–244. [Google Scholar] [CrossRef] [Green Version]
- Parra, M.; Gee, S.; Chan, N.; Ryaboy, D.; Dubchak, I.; Mohandas, N.; Gascard, P.D.; Conboy, J.G. Differential Domain Evolution and Complex RNA Processing in a Family of Paralogous EPB41 (Protein 4.1) Genes Facilitate Expression of Diverse Tissue-Specific Isoforms. Genomics 2004, 84, 637–646. [Google Scholar] [CrossRef]
- Nida, S.; Javid, B.; Akbar, M.; Idrees, S.; Adil, W.; Ahmad, G.B. Gene Variants of CYP1A1 and CYP2D6 and the Risk of Childhood Acute Lymphoblastic Leukaemia; Outcome of a Case Control Study from Kashmir, India. Mol. Biol. Res. Commun. 2017, 6, 77–84. [Google Scholar] [CrossRef]
- Brisson, G.D.; Alves, L.R.; Pombo-De-Oliveira, M.S. Genetic Susceptibility in Childhood Acute Leukaemias: A Systematic Review. Ecancermedicalscience 2015, 9, 539. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lu, J.; Zhao, Q.; Zhai, Y.J.; He, H.R.; Yang, L.H.; Gao, F.; Zhou, R.S.; Zheng, J.; Ma, X.C. Genetic Polymorphisms of CYP1A1 and Risk of Leukemia: A Meta-Analysis. Onco. Targets. Ther. 2015, 8, 2883–2902. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liang, J.; Fan, J.; Wang, M.; Niu, Z.; Zhang, Z.; Yuan, L.; Tai, Y.; Chen, Z.; Song, S.; Wang, X.; et al. CDKN2A Inhibits Formation of Homotypic Cell-in-Cell Structures. Oncogenesis 2018, 7, 50. [Google Scholar] [CrossRef] [PubMed]
- Zhao, R.; Choi, B.Y.; Lee, M.H.; Bode, A.M.; Dong, Z. Implications of Genetic and Epigenetic Alterations of CDKN2A (P16INK4a) in Cancer. EBioMedicine 2016, 8, 30–39. [Google Scholar] [CrossRef] [Green Version]
- Walsh, K.M.; De Smith, A.J.; Hansen, H.M.; Smirnov, I.V.; Gonseth, S.; Endicott, A.A.; Xiao, J.; Rice, T.; Fu, C.H.; McCoy, L.S.; et al. A Heritable Missense Polymorphism in CDKN2A Confers Strong Risk of Childhood Acute Lymphoblastic Leukemia and Is Preferentially Selected during Clonal Evolution. Cancer Res. 2015, 75, 4884–4894. [Google Scholar] [CrossRef] [Green Version]
- Zhou, X.; Liao, F.; Zhang, J.; Qin, Y.; Xu, H.; Ding, Z.; Zhang, Y.; Zhang, F. Association of the Independent Polymorphisms in CDKN2A with Susceptibility of Acute Lymphoblastic Leukemia. Biosci. Rep. 2018, 38, BSR20180331. [Google Scholar] [CrossRef]
Position | Gene | Variant ID | Location | Impact Predicted by SNPeff | Variable |
---|---|---|---|---|---|
9: 37020625 | PAX5 | rs2297105 | Intronic | Modifier | Incidence and prevalence |
6: 130863630 | EPB41L2 | rs915172 | Splice site region | Low | Incidence |
15: 74720644 | CYP1A1 | rs1048943 | Non-synonymous coding | Moderate | Mortality |
9: 21968160 | CDKN2A | rs3088440 | 3′-UTR | Modifier | Mortality |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fernandes, M.R.; Souza Vinagre, L.W.M.; Rodrigues, J.C.G.; Wanderley, A.V.; Fernandes, S.M.; Gellen, L.P.A.; Alcântara, A.L.d.; Sousa, B.B.d.; Burbano, R.M.R.; Assumpção, P.P.d.; et al. Correlation of Genetic Variants and the Incidence, Prevalence and Mortality Rates of Acute Lymphoblastic Leukemia. J. Pers. Med. 2022, 12, 370. https://doi.org/10.3390/jpm12030370
Fernandes MR, Souza Vinagre LWM, Rodrigues JCG, Wanderley AV, Fernandes SM, Gellen LPA, Alcântara ALd, Sousa BBd, Burbano RMR, Assumpção PPd, et al. Correlation of Genetic Variants and the Incidence, Prevalence and Mortality Rates of Acute Lymphoblastic Leukemia. Journal of Personalized Medicine. 2022; 12(3):370. https://doi.org/10.3390/jpm12030370
Chicago/Turabian StyleFernandes, Marianne Rodrigues, Lui Wallacy Morikawa Souza Vinagre, Juliana Carla Gomes Rodrigues, Alayde Vieira Wanderley, Sweny Marinho Fernandes, Laura Patrícia Albarello Gellen, Angélica Leite de Alcântara, Beatriz Brilhante de Sousa, Rommel Mario Rodríguez Burbano, Paulo Pimentel de Assumpção, and et al. 2022. "Correlation of Genetic Variants and the Incidence, Prevalence and Mortality Rates of Acute Lymphoblastic Leukemia" Journal of Personalized Medicine 12, no. 3: 370. https://doi.org/10.3390/jpm12030370
APA StyleFernandes, M. R., Souza Vinagre, L. W. M., Rodrigues, J. C. G., Wanderley, A. V., Fernandes, S. M., Gellen, L. P. A., Alcântara, A. L. d., Sousa, B. B. d., Burbano, R. M. R., Assumpção, P. P. d., Santos, S. E. B. d., & Santos, N. P. C. d. (2022). Correlation of Genetic Variants and the Incidence, Prevalence and Mortality Rates of Acute Lymphoblastic Leukemia. Journal of Personalized Medicine, 12(3), 370. https://doi.org/10.3390/jpm12030370