A Fitness-Fatigue Model of Performance in Peripheral Artery Disease: Predicted and Measured Effects of a Pain-Free Exercise Program
Abstract
:1. Introduction
2. Materials and Methods
2.1. Performance Assessment
2.2. Training Program
2.3. Modeling the Performance
2.4. Training Quantification
- Intensity: the ratio between the training speed and the habitual walking speed measured, both quantified in steps/minute
- Density: the ratio between the walking time and the total time elapsed in training, both quantified in minutes
- Volume: the total number of steps performed during each training session
2.5. Definition of the Factors of the Model
2.6. Model Development
2.7. Statistical Analysis
3. Results
3.1. Program Execution and TRIMPs Calculation
3.2. Performance Variation over Time and Model Fitting
3.3. Sex-Based Response of the Model
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Clarke, D.C.; Skiba, P.F. Rationale and Resources for Teaching the Mathematical Modeling of Athletic Training and Performance. Am. J. Physiol. Adv. Physiol. Educ. 2013, 37, 134–152. [Google Scholar] [CrossRef] [PubMed]
- Caspersen, C.J.; Powell, K.E.; Christenson, G.M. Physical Activity, Exercise, and Physical Fitness: Definitions and Distinctions for Health-Related Research. Public Health Rep. 1985, 100, 126–131. [Google Scholar] [CrossRef]
- Lorenz, D.; Morrison, S. Periodisation Strength Physical Therapy. Int. J. Sports Phys. Ther. 2015, 10, 734–747. [Google Scholar] [PubMed]
- Hoover, D.L.; VanWye, W.R.; Judge, L.W. Periodization and Physical Therapy: Bridging the Gap between Training and Rehabilitation. Phys. Ther. Sports 2016, 18, 1–20. [Google Scholar] [CrossRef] [PubMed]
- Banister, E.W.; Calvert, T.W.; Savage, M.V.; Bach, T. A Systems Model of Training for Athletic Performance. Austr. J. Sports Med. 1975, 7, 57–61. [Google Scholar]
- Billat, L.V.; Koralsztein, J.P.; Morton, R.H.; Physiques, A. Time in Human Endurance Models. From Empirical Models to Psysiological Models. Sports Med. 1999, 27, 359–379. [Google Scholar] [CrossRef] [PubMed]
- Morton, R.H. Modeling Training and Overtraining. J. Sports Sci. 1997, 15, 335–340. [Google Scholar] [CrossRef]
- Busso, T.; Thomas, L. Using Mathematical Modeling in Training Planning. Int. J. Sports Physiol. Perform. 2006, 1, 400–405. [Google Scholar] [CrossRef]
- Hellard, P.; Avalos, M.; Lacoste, L.; Barale, F.; Chatard, J.-C.; Millet, G.P. Assessing the Limitations of the Banister Model in Monitoring Training. J. Sports Sci. 2006, 24, 509–520. [Google Scholar] [CrossRef]
- Fitz-Clarke, J.R.; Morton, R.H.; Banister, E.W. Optimizing Athletic Performance by Influence Curves. J. Appl. Physiol. 1991, 71, 1151–1158. [Google Scholar] [CrossRef]
- Morton, R.H. The Critical Power and Related Whole-Body Bioenergetic Models. Eur. J. Appl. Physiol. 2006, 96, 339–354. [Google Scholar] [CrossRef] [PubMed]
- Le Bris, S.; Ledermann, B.; Topin, N.; Messner-Pellenc, P.; Le Gallais, D. A Systems Model of Training for Patients in Phase 2 Cardiac Rehabilitation. Int. J. Cardiol. 2006, 109, 257–263. [Google Scholar] [CrossRef] [PubMed]
- Le Bris, S.; Ledermann, B.; Topin, N.; Messner-Pellenc, P.; Le Gallais, D. High versus Low Training Frequency in Cardiac Rehabilitation Using a Systems Model of Training. Eur. J. Appl. Physiol. 2006, 96, 217–224. [Google Scholar] [CrossRef]
- Le Bris, S.; Ledermann, B.; Candau, R.; Davy, J.M.; Messner-Pellenc, P.; Le Gallais, D. Applying a Systems Model of Training to a Patient with Coronary Artery Disease. Med. Sci. Sports Exerc. 2004, 36, 942–948. [Google Scholar] [CrossRef] [PubMed]
- Gerhard-Herman, M.D.; Gornik, H.L.; Barrett, C.; Barshes, N.R.; Corriere, M.A.; Drachman, D.E.; Fleisher, L.A.; Fowkes, F.G.R.; Hamburg, N.M.; Kinlay, S.; et al. 2016 AHA/ACC Guideline on the Management of Patients with Lower Extremity Peripheral Artery Disease: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. J. Am. Coll. Cardiol. 2017, 69, e71–e126. [Google Scholar] [CrossRef]
- Cavalcante, B.R.; Farah, B.Q.; dos, A.; Barbosa, J.P.; Cucato, G.G.; da Rocha Chehuen, M.; Wolosker, N.; de Moraes Forjaz, C.L.; Ritti-Dias, R.M. Are the Barriers for Physical Activity Practice Equal for All Peripheral Artery Disease Patients? Arch. Phys. Med. Rehabil. 2015, 96, 248–252. [Google Scholar] [CrossRef]
- Oka, R.K.; Szuba, A.; Giacomini, J.C.; Cooke, J.P. Gender Differences in Perception of PAD: A Pilot Study. Vasc. Med. 2003, 8, 89–94. [Google Scholar] [CrossRef] [Green Version]
- Treat-Jacobson, D.; McDermott, M.M.; Bronas, U.G.; Campia, U.; Collins, T.C.; Criqui, M.H.; Gardner, A.W.; Hiatt, W.R.; Regensteiner, J.G.; Rich, K. Optimal Exercise Programs for Patients with Peripheral Artery Disease: A Scientific Statement from the American Heart Association. Circulation 2019, 139, E10–E33. [Google Scholar] [CrossRef]
- McDermott, M.M.; Spring, B.; Berger, J.S.; Treat-Jacobson, D.; Conte, M.S.; Creager, M.A.; Criqui, M.H.; Ferrucci, L.; Gornik, H.L.; Guralnik, J.M.; et al. Effect of a Home-Based Exercise Intervention of Wearable Technology and Telephone Coaching on Walking Performance in Peripheral Artery Disease: The Honor Randomized Clinical Trial. JAMA J. Am. Med. Assoc. 2018, 319, 1665–1676. [Google Scholar] [CrossRef]
- Green, D.J.; Hopman, M.T.E.; Padilla, J.; Laughlin, M.H.; Thijssen, D.H.J. Vascular Adaptation to Exercise in Humans: Role of Hemodynamic Stimuli. Physiol. Rev. 2017, 97, 495–528. [Google Scholar] [CrossRef]
- Hamburg, N.M.; Balady, G.J. Exercise Rehabilitation in Peripheral Artery Disease: Functional Impact and Mechanisms of Benefits. Circulation 2011, 123, 87–97. [Google Scholar] [CrossRef] [Green Version]
- Parmenter, B.J.; Raymond, J.; Singh, M.A.F. The Effect of Exercise on Haemodynamics in Intermittent Claudication—A Systematic Review of Randomized Controlled Trials. Sports Med. 2010, 40, 433–447. [Google Scholar] [CrossRef]
- Hirsch, A.T.; Allison, M.A.; Gomes, A.S.; Corriere, M.A.; Duval, S.; Ershow, A.G.; Hiatt, W.R.; Karas, R.H.; Lovell, M.B.; McDermott, M.M.; et al. A Call to Action: Women and Peripheral Artery Disease: A Scientific Statement from the American Heart Association. Circulation 2012, 125, 1449–1472. [Google Scholar] [CrossRef] [Green Version]
- Manfredini, F.; Malagoni, A.M.; Mascoli, F.; Mandini, S.; Taddia, M.C.; Basaglia, N.; Manfredini, R.; Conconi, F.; Zamboni, P. Training Rather than Walking—The Test in-Train out Program for Home-Based Rehabilitation in Peripheral Arteriopathy. Circ. J. 2008, 72, 946–952. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Malagoni, A.M.; Vagnoni, E.; Felisatti, M.; Mandini, S.; Heidari, M.; Mascoli, F.; Basaglia, N.; Manfredini, R.; Zamboni, P.; Manfredini, F. Evaluation of Patient Compliance, Quality of Life Impact and Cost-Effectiveness of a “Test in-Train out” Exercise-Based Rehabilitation Program for Patients with Intermittent Claudication. Circ. J. 2011, 75, 2128–2134. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Manfredini, F.; Traina, L.; Gasbarro, V.; Straudi, S.; Caruso, L.; Fabbian, F.; Zamboni, P.; Manfredini, R.; Lamberti, N. Structured Pain-Free Exercise Progressively Improves Ankle-Brachial Index and Walking Ability in Patients with Claudication and Compressible Arteries: An Observational Study. Int. Emerg. Med. 2021, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Manfredini, F.; Lamberti, N.; Ficarra, V.; Tsolaki, E.; Straudi, S.; Zamboni, P.; Basaglia, N.; Gasbarro, V. Biomarkers of Muscle Metabolism in Peripheral Artery Disease: A Dynamic NIRS-Assisted Study to Detect Adaptations Following Revascularization and Exercise Training. Diagnostics 2020, 10, 312. [Google Scholar] [CrossRef]
- Lamberti, N.; López-Soto, P.J.; Guerzoni, F.; Napoli, N.; Gasbarro, V.; Zamboni, P.; Tsolaki, E.; Taddia, M.C.; Rodríguez-Borrego, M.A.; Manfredini, R.; et al. Changes in Exercise Capacity and Risk of All-Cause Mortality in Patients with Peripheral Artery Disease: A 10-Year Retrospective Cohort Study. Int. Emerg. Med. 2020, 15, 289–298. [Google Scholar] [CrossRef]
- Montgomery, P.S.; Gardner, A.W. The Clinical Utility of a Six-Minute Walk Test in Peripheral Arterial Occlusive Disease Patients. J. Am. Geriatr. Soc. 1998, 46, 706–711. [Google Scholar] [CrossRef]
- Busso, T.; Quick, C.M.; Berger, D.S.; Noordergraaf, A. Modeling in Physiology. Am. J. Physiol. 2005, 20, 1393–1403. [Google Scholar]
- Malagoni, A.M.; Cavazza, S.; Ferraresi, G.; Grassi, G.; Felisatti, M.; Lamberti, N.; Basaglia, N.; Manfredini, F. Effects of a “Test in-Train out” Walking Program versus Supervised Standard Rehabilitation in Chronic Stroke Patients: A Feasibility and Pilot Randomized Study. Eur. J. Phys. Rehabil. Med. 2016, 52, 279–287. [Google Scholar] [PubMed]
- Manfredini, F.; Mallamaci, F.; D’Arrigo, G.; Baggetta, R.; Bolignano, D.; Torino, C.; Lamberti, N.; Bertoli, S.; Ciurlino, D.; Rocca-Rey, L.; et al. Exercise in Patients on Dialysis: A Multicenter, Randomized Clinical Trial. J. Am. Soc. Nephrol. 2017, 28, 1259–1268. [Google Scholar] [CrossRef] [PubMed]
- Lamberti, N.; Straudi, S.; Donadi, M.; Tanaka, H.; Basaglia, N.; Manfredini, F. Effectiveness of Blood Flow-Restricted Slow Walking on Mobility in Severe Multiple Sclerosis: A Pilot Randomized Trial. Scand. J. Med. Sci. Sports 2020, 30, 1999–2009. [Google Scholar] [CrossRef] [PubMed]
- Malagoni, A.M.; Catizone, L.; Mandini, S.; Soffritti, S.; Manfredini, R.; Boari, B.; Russo, G.; Basaglia, N.; Zamboni, P.; Manfredini, F. Acute and Long-Term Effects of an Exercise Program for Dialysis Patients Prescribed in Hospital and Performed at Home. J. Nephrol. 2008, 21, 871–878. [Google Scholar] [PubMed]
- Manfredini, F.; Malagoni, A.M.; Felisatti, M.; Mandini, S.; Mascoli, F.; Manfredini, R.; Basaglia, N.; Zamboni, P. A Dynamic Objective Evaluation of Peripheral Arterial Disease by Near-Infrared Spectroscopy. Eur. J. Vasc. Endovasc. Surg. 2009, 38, 441–448. [Google Scholar] [CrossRef] [Green Version]
- Manfredini, F.; Lamberti, N.; Malagoni, A.M.; Zambon, C.; Basaglia, N.; Mascoli, F.; Manfredini, R.; Zamboni, P. Reliability of the Vascular Claudication Reporting in Diabetic Patients with Peripheral Arterial Disease: A Study with near-Infrared Spectroscopy. Angiology 2015, 66, 365–374. [Google Scholar] [CrossRef]
- Hayes, P.R.; Quinn, M.D. A Mathematical Model for Quantifying Training. Eur. J. Appl. Physiol. 2009, 106, 839–847. [Google Scholar] [CrossRef]
- Lucía, A.; Hoyos, J.; Pérez, M.; Chicharro, J.L. Heart Rate and Performance Parameters in Elite Cyclists: A Longitudinal Study. Med. Sci. Sports Exerc. 2000, 32, 1777–1782. [Google Scholar] [CrossRef] [Green Version]
- Stagno, K.M.; Thatcher, R.; van Someren, K.A. A Modified TRIMP to Quantify the In-Season Training Load of Team Sport Players. J. Sports Sci. 2007, 25, 629–634. [Google Scholar] [CrossRef]
- Seiler, K.S.; Kjerland, G.Ø. Quantifying Training Intensity Distribution in Elite Endurance Athletes: Is There Evidence for an “Optimal” Distribution? Scand. J. Med. Sci. Sports 2006, 16, 49–56. [Google Scholar] [CrossRef]
- Foster, C.; Florhaug, J.A.; Franklin, J.; Gottschall, L.; Hrovatin, L.A.; Parker, S.; Doleshal, P.; Dodge, C. A New Approach to Monitoring Exercise Training. J. Strength Cond. Res. 2001, 15, 109–115. [Google Scholar]
- McDermott, M.M.; Tian, L.; Criqui, M.H.; Ferrucci, L.; Conte, M.S.; Zhao, L.; Li, L.; Sufit, R.; Polonsky, T.S.; Kibbe, M.R.; et al. Meaningful Change in 6-Minute Walk in People with Peripheral Artery Disease. J. Vasc. Surg. 2021, 73, 267–276.e1. [Google Scholar] [CrossRef] [PubMed]
- Manfredini, F.; Malagoni, A.M.; Mandini, S.; Felisatti, M.; Mascoli, F.; Basaglia, N.; Manfredini, R.; Mikhailidis, D.P.; Zamboni, P. Near-Infrared Spectroscopy Assessment Following Exercise Training in Patients with Intermittent Claudication and in Untrained Healthy Participants. Vasc. Endovasc. Surg. 2012, 46, 315–324. [Google Scholar] [CrossRef] [PubMed]
- Hunter, S.K. Sex Differences and Mechanisms of Task-Specific Muscle Fatigue. Exerc. Sports Sci. Rev. 2009, 37, 113–122. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hunter, S.K. The Relevance of Sex Differences in Performance Fatigability. Med. Sci. Sports Exerc. 2016, 48, 2247–2256. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Collins, T.C.; Suarez-Almazor, M.; Bush, R.L.; Petersen, N.J. Gender and Peripheral Arterial Disease. J. Am. Board Fam. Med. 2006, 19, 132–140. [Google Scholar] [CrossRef] [Green Version]
- Dörenkamp, S.; Mesters, I.; de Bie, R.; Teijink, J.; van Breukelen, G. Patient Characteristics and Comorbidities Influence Walking Distances in Symptomatic Peripheral Arterial Disease: A Large One-Year Physiotherapy Cohort Study. PLoS ONE 2016, 11, e0146828. [Google Scholar] [CrossRef] [Green Version]
- Gommans, L.N.M.; Scheltinga, M.R.M.; van Sambeek, M.R.H.M.; Maas, A.H.E.M.; Bendermacher, B.L.W.; Teijink, J.A.W. Gender Differences Following Supervised Exercise Therapy in Patients with Intermittent Claudication. J. Vasc. Surg. 2015, 62, 681–688. [Google Scholar] [CrossRef]
- Gardner, A.W.; Parker, D.E.; Montgomery, P.S.; Blevins, S.M. Diabetic Women Are Poor Responders to Exercise Rehabilitation in the Treatment of Claudication. J. Vasc. Surg. 2014, 59, 1036–1043. [Google Scholar] [CrossRef] [Green Version]
- Manfredini, R.; Lamberti, N.; Manfredini, F.; Straudi, S.; Fabbian, F.; Rodriguez Borrego, M.A.; Basaglia, N.; Carmona Torres, J.M.; Lopez Soto, P.J. Gender Differences in Outcomes Following a Pain-Free, Home-Based Exercise Program for Claudication. J. Womens Health 2019, 28, 1313–1321. [Google Scholar] [CrossRef] [Green Version]
6MWT | Exercise Program | |||
---|---|---|---|---|
Habitual walking speed recorded 100 steps/min. | Single training session | Walk | 1 min | To be repeated 10 times |
Rest | 1 min | |||
Speed | 60 steps/min | |||
|
PAD Patients n = 100 | |
---|---|
Males, n | 75 |
Age, years | 71 ± 9 |
Risk factors; n | |
Smoking habit | 92 |
Current smokers | 4 |
Hypertension | 81 |
Hyperlipidemia | 67 |
Type 2 diabetes | 43 |
Chronic kidney disease | 11 |
Family history for cardiovascular disease | 35 |
Comorbidities, n | |
Ischemic heart disease | 45 |
Stroke | 15 |
Osteoarticular disorders | 34 |
Pulmonary diseases | 11 |
Neoplastic disesase | 21 |
Charlson Comorbidity Index | 3 ± 2 |
Age-adjusted Charlson Index | 6 ± 2 |
Peripheral vascular disease | |
Rutherford stage 1 | 4 |
Rutherford stage 2 | 79 |
Rutherford stage 3 | 17 |
Revascularizations | 28 |
Disease duration, years | 6 ± 5 |
Bilateral disease | 75 |
Ankle-brachial index more impaired limb | 0.59 ± 0.19 |
Ankle-brachial index less impaired limb | 0.82 ± 0.17 |
Pain-free walking distance (m) | 114 ± 61 |
6-min walking distance (m) | 287 ± 85 |
T0 | T1 | T2 | T3 | T4 | |
---|---|---|---|---|---|
PFWD (m), actual | 114 ± 61 | 136 ± 68 | 178 ± 82 | 207 ± 80 | 235 ± 91 |
PFWD (m), estimated | - | 151 ± 70 | 184 ± 85 | 205 ± 84 | 220 ± 94 |
6MWD (m), actual | 287 ± 85 | 290 ± 83 | 316 ± 90 | 315 ± 88 | 320 ± 97 |
6MWD (m), estimated | - | 286 ± 82 | 306 ± 82 | 325 ± 86 | 330 ± 91 |
PWFD (m) | 6MWD (m) | |
---|---|---|
p (0) | 114 ± 61 | 287 ± 85 |
k1 (a.u.) | 0.03 ± 0.06 | 0.02 ± 0.03 |
k2 (a.u.) | 0.03 ± 0.06 | 0.03 ± 0.03 |
τ1 (days) | 45 ± 13 | 37 ± 11 |
τ2 (days) | 25 ± 10 | 26 ± 9 |
PWFD (m) | 6MWD (m) | |||
---|---|---|---|---|
Men | Women | Men | Women | |
k1 (a.u.) | 0.03 ± 0.05 | 0.03 ± 0.06 | 0.02 ± 0.03 | 0.02 ± 0.03 |
k2 (a.u.) | 0.03 ± 0.06 | 0.03 ± 0.05 | 0.03 ± 0.03 | 0.03 ± 0.04 |
τ1 (days) | 45 ± 12 | 44 ± 11 | 36 ± 12 | 38 ± 13 |
τ2 (days) | 24 ± 10 | 27 ± 9 | 25 ± 10 | 26 ± 9 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lamberti, N.; Piva, G.; Businaro, F.; Caruso, L.; Crepaldi, A.; Lòpez-Soto, P.J.; Manfredini, F. A Fitness-Fatigue Model of Performance in Peripheral Artery Disease: Predicted and Measured Effects of a Pain-Free Exercise Program. J. Pers. Med. 2022, 12, 397. https://doi.org/10.3390/jpm12030397
Lamberti N, Piva G, Businaro F, Caruso L, Crepaldi A, Lòpez-Soto PJ, Manfredini F. A Fitness-Fatigue Model of Performance in Peripheral Artery Disease: Predicted and Measured Effects of a Pain-Free Exercise Program. Journal of Personalized Medicine. 2022; 12(3):397. https://doi.org/10.3390/jpm12030397
Chicago/Turabian StyleLamberti, Nicola, Giovanni Piva, Federico Businaro, Lorenzo Caruso, Anna Crepaldi, Pablo Jesùs Lòpez-Soto, and Fabio Manfredini. 2022. "A Fitness-Fatigue Model of Performance in Peripheral Artery Disease: Predicted and Measured Effects of a Pain-Free Exercise Program" Journal of Personalized Medicine 12, no. 3: 397. https://doi.org/10.3390/jpm12030397
APA StyleLamberti, N., Piva, G., Businaro, F., Caruso, L., Crepaldi, A., Lòpez-Soto, P. J., & Manfredini, F. (2022). A Fitness-Fatigue Model of Performance in Peripheral Artery Disease: Predicted and Measured Effects of a Pain-Free Exercise Program. Journal of Personalized Medicine, 12(3), 397. https://doi.org/10.3390/jpm12030397