Link between Genotype and Multi-Organ Iron and Complications in Children with Transfusion-Dependent Thalassemia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. MRI
2.3. Biochemical Assays
2.4. Diagnostic Criteria
2.5. Statistical Analysis
3. Results
3.1. Patients’ Characteristics
3.2. Genotype and Clinical Correlates
3.3. Genotype and MRI Findings
3.4. Genotype and Complications
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cao, A.; Galanello, R. Beta-thalassemia. Genet. Med. 2010, 12, 61–76. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thein, S.L. Genetic modifiers of beta-thalassemia. Haematologica 2005, 90, 649–660. [Google Scholar] [PubMed]
- Weatherall, D.J. The inherited diseases of hemoglobin are an emerging global health burden. Blood 2010, 115, 4331–4336. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schrier, S.L. Pathophysiology of thalassemia. Cur.r Opin. Hematol. 2002, 9, 123–126. [Google Scholar] [CrossRef] [PubMed]
- Cappellini, M.D.; Cohen, A.; Porter, J.; Taher, A.; Viprakasit, V. Guidelines for the Management of Transfusion Dependent Thalassaemia (TDT), 3rd ed.; Thalassaemia International Federation: Nicosia, Cyprus, 2014. [Google Scholar]
- Andrews, P.A. Disorders of iron metabolism. N. Engl. J. Med. 2000, 342, 1293; author reply 1294. [Google Scholar] [PubMed]
- Ozment, C.P.; Turi, J.L. Iron overload following red blood cell transfusion and its impact on disease severity. Biochim. Biophys. Acta 2009, 1790, 694–701. [Google Scholar] [CrossRef] [PubMed]
- Hentze, M.W.; Muckenthaler, M.U.; Andrews, N.C. Balancing acts: Molecular control of mammalian iron metabolism. Cell 2004, 117, 285–297. [Google Scholar] [CrossRef] [Green Version]
- Borgna-Pignatti, C.; Rugolotto, S.; De Stefano, P.; Zhao, H.; Cappellini, M.D.; Del Vecchio, G.C.; Romeo, M.A.; Forni, G.L.; Gamberini, M.R.; Ghilardi, R.; et al. Survival and complications in patients with thalassemia major treated with transfusion and deferoxamine. Haematologica 2004, 89, 1187–1193. [Google Scholar] [PubMed]
- Argyropoulou, M.I.; Kiortsis, D.N.; Astrakas, L.; Metafratzi, Z.; Chalissos, N.; Efremidis, S.C. Liver, bone marrow, pancreas and pituitary gland iron overload in young and adult thalassemic patients: A T2 relaxometry study. Eur. Radiol. 2007, 17, 3025–3030. [Google Scholar] [CrossRef] [PubMed]
- Pepe, A.; Meloni, A.; Rossi, G.; Cuccia, L.; D’Ascola, G.D.; Santodirocco, M.; Cianciulli, P.; Caruso, V.; Romeo, M.A.; Filosa, A.; et al. Cardiac and hepatic iron and ejection fraction in thalassemia major: Multicentre prospective comparison of combined deferiprone and deferoxamine therapy against deferiprone or deferoxamine monotherapy. J. Cardiovasc. Magn. Reson. 2013, 15, 1. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Modell, B.; Khan, M.; Darlison, M.; Westwood, M.A.; Ingram, D.; Pennell, D.J. Improved survival of thalassaemia major in the UK and relation to T2* cardiovascular magnetic resonance. J. Cardiovasc. Magn. Reson. 2008, 10, 42. [Google Scholar] [CrossRef] [Green Version]
- Pepe, A.; Pistoia, L.; Gamberini, M.R.; Cuccia, L.; Lisi, R.; Cecinati, V.; Maggio, A.; Sorrentino, F.; Filosa, A.; Rosso, R.; et al. National networking in rare diseases and reduction of cardiac burden in thalassemia major. Eur. Heart J. 2021. [Google Scholar] [CrossRef] [PubMed]
- Al-Akhras, A.; Badr, M.; El-Safy, U.; Kohne, E.; Hassan, T.; Abdelrahman, H.; Mourad, M.; Brintrup, J.; Zakaria, M. Impact of genotype on endocrinal complications in beta-thalassemia patients. Biomed. Rep. 2016, 4, 728–736. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pistoia, L.; Meloni, A.; Salvadori, S.; Spasiano, A.; Lisi, R.; Rosso, R.; Maggio, A.; D’Ascola, D.G.; Cuccia, L.; Mangione, M.; et al. Cardiac involvement by CMR in different genotypic groups of thalassemia major patients. Blood Cells Mol. Dis. 2019, 77, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Hassan, T.H.; Salam, M.M.A.; Zakaria, M.; Shehab, M.; Sarhan, D.T.; Zidan, E.S.H.; El Gerby, K.M. Impact of Genotype of Beta Globin Gene on Hepatic and Myocardial Iron Content in Egyptian Patients with Beta Thalassemia. Indian J. Hematol. Blood Transfus. 2019, 35, 284–291. [Google Scholar] [CrossRef]
- Ramazzotti, A.; Pepe, A.; Positano, V.; Rossi, G.; De Marchi, D.; Brizi, M.G.; Luciani, A.; Midiri, M.; Sallustio, G.; Valeri, G.; et al. Multicenter validation of the magnetic resonance t2* technique for segmental and global quantification of myocardial iron. J. Magn. Reson. Imaging 2009, 30, 62–68. [Google Scholar] [CrossRef]
- Meloni, A.; De Marchi, D.; Pistoia, L.; Grassedonio, E.; Peritore, G.; Preziosi, P.; Restaino, G.; Righi, R.; Riva, A.; Renne, S.; et al. Multicenter validation of the magnetic resonance T2* technique for quantification of pancreatic iron. Eur. Radiol. 2019, 29, 2246–2252. [Google Scholar] [CrossRef] [PubMed]
- Meloni, A.; Ramazzotti, A.; Positano, V.; Salvatori, C.; Mangione, M.; Marcheschi, P.; Favilli, B.; De Marchi, D.; Prato, S.; Pepe, A.; et al. Evaluation of a web-based network for reproducible T2* MRI assessment of iron overload in thalassemia. Int. J. Med. Inf. 2009, 78, 503–512. [Google Scholar] [CrossRef] [PubMed]
- Positano, V.; Salani, B.; Pepe, A.; Santarelli, M.F.; De Marchi, D.; Ramazzotti, A.; Favilli, B.; Cracolici, E.; Midiri, M.; Cianciulli, P.; et al. Improved T2* assessment in liver iron overload by magnetic resonance imaging. Magn. Reson. Imaging 2009, 27, 188–197. [Google Scholar] [CrossRef] [PubMed]
- Restaino, G.; Meloni, A.; Positano, V.; Missere, M.; Rossi, G.; Calandriello, L.; Keilberg, P.; Mattioni, O.; Maggio, A.; Lombardi, M.; et al. Regional and global pancreatic T*(2) MRI for iron overload assessment in a large cohort of healthy subjects: Normal values and correlation with age and gender. Magn. Reson. Med. 2011, 65, 764–769. [Google Scholar] [CrossRef] [PubMed]
- Meloni, A.; Positano, V.; Ruffo, G.B.; Spasiano, A.; D’Ascola, D.G.; Peluso, A.; Keilberg, P.; Restaino, G.; Valeri, G.; Renne, S.; et al. Improvement of heart iron with preserved patterns of iron store by CMR-guided chelation therapy. Eur. Heart J. Cardiovasc. Imaging 2015, 16, 325–334. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meloni, A.; Positano, V.; Pepe, A.; Rossi, G.; Dell’Amico, M.; Salvatori, C.; Keilberg, P.; Filosa, A.; Sallustio, G.; Midiri, M.; et al. Preferential patterns of myocardial iron overload by multislice multiecho T*2 CMR in thalassemia major patients. Magn. Reson. Med. 2010, 64, 211–219. [Google Scholar] [CrossRef] [PubMed]
- Positano, V.; Pepe, A.; Santarelli, M.F.; Scattini, B.; De Marchi, D.; Ramazzotti, A.; Forni, G.; Borgna-Pignatti, C.; Lai, M.E.; Midiri, M.; et al. Standardized T2* map of normal human heart in vivo to correct T2* segmental artefacts. NMR Biomed. 2007, 20, 578–590. [Google Scholar] [CrossRef]
- Meloni, A.; Luciani, A.; Positano, V.; De Marchi, D.; Valeri, G.; Restaino, G.; Cracolici, E.; Caruso, V.; Dell’amico, M.C.; Favilli, B.; et al. Single region of interest versus multislice T2* MRI approach for the quantification of hepatic iron overload. J. Magn. Reson. Imaging 2011, 33, 348–355. [Google Scholar] [CrossRef] [PubMed]
- Meloni, A.; Rienhoff, H.Y., Jr.; Jones, A.; Pepe, A.; Lombardi, M.; Wood, J.C. The use of appropriate calibration curves corrects for systematic differences in liver R2* values measured using different software packages. Br. J. Haematol. 2013, 161, 888–891. [Google Scholar] [CrossRef] [PubMed]
- Wood, J.C.; Enriquez, C.; Ghugre, N.; Tyzka, J.M.; Carson, S.; Nelson, M.D.; Coates, T.D. MRI R2 and R2* mapping accurately estimates hepatic iron concentration in transfusion-dependent thalassemia and sickle cell disease patients. Blood 2005, 106, 1460–1465. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meloni, A.; De Marchi, D.; Positano, V.; Neri, M.G.; Mangione, M.; Keilberg, P.; Lendini, M.; Cirotto, C.; Pepe, A. Accurate estimate of pancreatic T2* values: How to deal with fat infiltration. Abdom. Imaging 2015, 40, 3129–3136. [Google Scholar] [CrossRef] [PubMed]
- Cerqueira, M.D.; Weissman, N.J.; Dilsizian, V.; Jacobs, A.K.; Kaul, S.; Laskey, W.K.; Pennell, D.J.; Rumberger, J.A.; Ryan, T.; Verani, M.S. Standardized myocardial segmentation and nomenclature for tomographic imaging of the heart: A statement for healthcare professionals from the Cardiac Imaging Committee of the Council on Clinical Cardiology of the American Heart Association. Circulation 2002, 105, 539–542. [Google Scholar]
- Meloni, A.; Righi, R.; Missere, M.; Renne, S.; Schicchi, N.; Gamberini, M.R.; Cuccia, L.; Lisi, R.; Spasiano, A.; Roberti, M.G.; et al. Biventricular Reference Values by Body Surface Area, Age, and Gender in a Large Cohort of Well-Treated Thalassemia Major Patients without Heart Damage Using a Multiparametric CMR Approach. J. Magn. Reson. Imaging 2021, 53, 61–70. [Google Scholar] [CrossRef]
- Marsella, M.; Borgna-Pignatti, C.; Meloni, A.; Caldarelli, V.; Dell’Amico, M.C.; Spasiano, A.; Pitrolo, L.; Cracolici, E.; Valeri, G.; Positano, V.; et al. Cardiac iron and cardiac disease in males and females with transfusion-dependent thalassemia major: A T2* magnetic resonance imaging study. Haematologica 2011, 96, 515–520. [Google Scholar] [CrossRef] [Green Version]
- Meloni, A.; Favilli, B.; Positano, V.; Cianciulli, P.; Filosa, A.; Quarta, A.; D’Ascola, D.; Restaino, G.; Lombardi, M.; Pepe, A. Safety of cardiovascular magnetic resonance gadolinium chelates contrast agents in patients with hemoglobinopaties. Haematologica 2009, 94, 1625–1627. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pepe, A.; Meloni, A.; Borsellino, Z.; Cuccia, L.; Borgna-Pignatti, C.; Maggio, A.; Restaino, G.; Gagliardotto, F.; Caruso, V.; Spasiano, A.; et al. Myocardial fibrosis by late gadolinium enhancement cardiac magnetic resonance and hepatitis C virus infection in thalassemia major patients. J. Cardiovasc. Med. 2015, 16, 689–695. [Google Scholar] [CrossRef] [PubMed]
- Miller, S.A.; Dykes, D.D.; Polesky, H.F. A simple salting out procedure for extracting DNA from human nucleated cells. Nucleic Acids Res. 1988, 16, 1215. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Angelucci, E.; Brittenham, G.M.; McLaren, C.E.; Ripalti, M.; Baronciani, D.; Giardini, C.; Galimberti, M.; Polchi, P.; Lucarelli, G. Hepatic iron concentration and total body iron stores in thalassemia major. N. Engl. J. Med. 2000, 343, 327–331. [Google Scholar] [CrossRef] [PubMed]
- Anderson, L.J.; Holden, S.; Davis, B.; Prescott, E.; Charrier, C.C.; Bunce, N.H.; Firmin, D.N.; Wonke, B.; Porter, J.; Walker, J.M.; et al. Cardiovascular T2-star (T2*) magnetic resonance for the early diagnosis of myocardial iron overload. Eur. Heart J. 2001, 22, 2171–2179. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carpenter, J.P.; He, T.; Kirk, P.; Roughton, M.; Anderson, L.J.; de Noronha, S.V.; Sheppard, M.N.; Porter, J.B.; Walker, J.M.; Wood, J.C.; et al. On T2* magnetic resonance and cardiac iron. Circulation 2011, 123, 1519–1528. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Sanctis, V.; Soliman, A.T.; Elsedfy, H.; Yaarubi, S.A.; Skordis, N.; Khater, D.; El Kholy, M.; Stoeva, I.; Fiscina, B.; Angastiniotis, M.; et al. The ICET-A Recommendations for the Diagnosis and Management of Disturbances of Glucose Homeostasis in Thalassemia Major Patients. Mediterr. J. Hematol. Infect. Dis. 2016, 8, e2016058. [Google Scholar] [CrossRef] [Green Version]
- De Sanctis, V.; Soliman, A.T.; Elsedfy, H.; Skordis, N.; Kattamis, C.; Angastiniotis, M.; Karimi, M.; Yassin, M.A.; El Awwa, A.; Stoeva, I.; et al. Growth and endocrine disorders in thalassemia: The international network on endocrine complications in thalassemia (I-CET) position statement and guidelines. Indian J. Endocrinol. Metab. 2013, 17, 8–18. [Google Scholar] [CrossRef]
- De Sanctis, V.; Soliman, A.T.; Canatan, D.; Yassin, M.A.; Daar, S.; Elsedfy, H.; Di Maio, S.; Raiola, G.; Corrons, J.V.; Kattamis, C. Thyroid Disorders in Homozygous beta-Thalassemia: Current Knowledge, Emerging Issues and Open Problems. Mediterr. J. Hematol. Infect. Dis. 2019, 11, e2019029. [Google Scholar] [CrossRef]
- De Sanctis, V.; Soliman, A.; Fiscina, B. Hypoparathyroidism: From diagnosis to treatment. Curr. Opin. Endocrinol. Diabetes Obes. 2012, 19, 435–442. [Google Scholar] [CrossRef] [PubMed]
- Soliman, A.; De Sanctis, V.; Elsedfy, H.; Yassin, M.; Skordis, N.; Karimi, M.; Sobti, P.; Raiola, G.; El Kholy, M. Growth hormone deficiency in adults with thalassemia: An overview and the I-CET recommendations. Georgian Med. News 2013, 222, 79–88. [Google Scholar]
- Jessup, M.; Abraham, W.T.; Casey, D.E.; Feldman, A.M.; Francis, G.S.; Ganiats, T.G.; Konstam, M.A.; Mancini, D.M.; Rahko, P.S.; Silver, M.A.; et al. 2009 focused update: ACCF/AHA Guidelines for the Diagnosis and Management of Heart Failure in Adults: A report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines: Developed in collaboration with the International Society for Heart and Lung Transplantation. Circulation 2009, 119, 1977–2016. [Google Scholar] [PubMed] [Green Version]
- Buxton, A.E.; Calkins, H.; Callans, D.J.; DiMarco, J.P.; Fisher, J.D.; Greene, H.L.; Haines, D.E.; Hayes, D.L.; Heidenreich, P.A.; Miller, J.M.; et al. ACC/AHA/HRS 2006 key data elements and definitions for electrophysiological studies and procedures: A report of the American College of Cardiology/American Heart Association Task Force on Clinical Data Standards (ACC/AHA/HRS Writing Committee to Develop Data Standards on Electrophysiology). Circulation 2006, 114, 2534–2570. [Google Scholar] [PubMed] [Green Version]
- Taher, A.T.; Cappellini, M.D. How I manage medical complications of beta-thalassemia in adults. Blood 2018, 132, 1781–1791. [Google Scholar] [CrossRef] [PubMed]
- Pepe, A.; Meloni, A.; Rossi, G.; Midiri, M.; Missere, M.; Valeri, G.; Sorrentino, F.; D’Ascola, D.G.; Spasiano, A.; Filosa, A.; et al. Prediction of cardiac complications for thalassemia major in the widespread cardiac magnetic resonance era: A prospective multicentre study by a multi-parametric approach. Eur. Heart J. Cardiovasc. Imaging 2018, 19, 299–309. [Google Scholar] [CrossRef] [PubMed]
- Rigoli, L.; Meo, A.; Miceli, M.R.; Alessio, K.; Caruso, R.A.; La Rosa, M.A.; Salpietro, D.C.; Ricca, M.; Barberi, I. Molecular analysis of beta-thalassaemia patients in a high incidence area of southern Italy. Clin. Lab. Haematol. 2001, 23, 373–378. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ricchi, P.; Meloni, A.; Costantini, S.; Spasiano, A.; Cinque, P.; Gargiulo, B.; Pepe, A.; Filosa, A. Red blood cell consumption in a large cohort of patients with thalassaemia: A retrospective analysis of main predictors. Ann. Hematol. 2020, 99, 1209–1215. [Google Scholar] [CrossRef]
- Skordis, N.; Michaelidou, M.; Savva, S.C.; Ioannou, Y.; Rousounides, A.; Kleanthous, M.; Skordos, G.; Christou, S. The impact of genotype on endocrine complications in thalassaemia major. Eur. J. Haematol. 2006, 77, 150–156. [Google Scholar] [CrossRef]
- Noetzli, L.J.; Carson, S.M.; Nord, A.S.; Coates, T.D.; Wood, J.C. Longitudinal analysis of heart and liver iron in thalassemia major. Blood 2008, 112, 2973–2978. [Google Scholar] [CrossRef] [Green Version]
- Taher, A.T.; Viprakasit, V.; Musallam, K.M.; Cappellini, M.D. Treating iron overload in patients with non-transfusion-dependent thalassemia. Am. J. Hematol. 2013, 88, 409–415. [Google Scholar] [CrossRef] [Green Version]
- Vichinsky, E. Iron Overload and Iron Chelation Therapy in Pediatric Patients. Oral. Hist. Rev. 2009, 2, 64. [Google Scholar] [CrossRef]
- Pepe, A.; Pistoia, L.; Gamberini, M.R.; Cuccia, L.; Peluso, A.; Messina, G.; Spasiano, A.; Allo, M.; Bisconte, M.G.; Putti, M.C.; et al. The Close Link of Pancreatic Iron with Glucose Metabolism and with Cardiac Complications in Thalassemia Major: A Large, Multicenter Observational Study. Diabetes Care 2020, 43, 2830–2839. [Google Scholar] [CrossRef] [PubMed]
- Garbowski, M.W.; Evans, P.; Vlachodimitropoulou, E.; Hider, R.; Porter, J.B. Residual erythropoiesis protects against myocardial hemosiderosis in transfusion-dependent thalassemia by lowering labile plasma iron via transient generation of apotransferrin. Haematologica 2017, 102, 1640–1649. [Google Scholar] [CrossRef] [Green Version]
- Ricchi, P.; Ammirabile, M.; Costantini, S.; Spasiano, A.; Di Matola, T.; Verna, R.; Pepe, A.; Cinque, P.; Saporito, C.; Filosa, A.; et al. Soluble form of transferrin receptor as a biomarker of overall morbidity in patients with non-transfusion-dependent thalassaemia: A cross-sectional study. Blood Transfus. 2016, 14, 538–540. [Google Scholar] [PubMed]
- Ricchi, P.; Ammirabile, M.; Spasiano, A.; Costantini, S.; Di Matola, T.; Pepe, A.; Cinque, P.; Pagano, L.; Casale, M.; Filosa, A.; et al. Extramedullary haematopoiesis correlates with genotype and absence of cardiac iron overload in polytransfused adults with thalassaemia. Blood Transfus. 2014, 12 (Suppl. S1), s124–s130. [Google Scholar]
- Ricchi, P.; Meloni, A.; Spasiano, A.; Neri, M.G.; Gamberini, M.R.; Cuccia, L.; Caruso, V.; Gerardi, C.; D’Ascola, D.G.; Rosso, R.; et al. Extramedullary hematopoiesis is associated with lower cardiac iron loading in chronically transfused thalassemia patients. Am. J. Hematol. 2015, 90, 1008–1012. [Google Scholar] [CrossRef]
- 5-Noetzli, L.J.; Mittelman, S.D.; Watanabe, R.M.; Coates, T.D.; Wood, J.C. Pancreatic iron and glucose dysregulation in thalassemia major. Am. J. Hematol. 2012, 87, 155–160. [Google Scholar] [CrossRef]
- Noetzli, L.J.; Papudesi, J.; Coates, T.D.; Wood, J.C. Pancreatic iron loading predicts cardiac iron loading in thalassemia major. Blood 2009, 114, 4021–4026. [Google Scholar] [CrossRef] [Green Version]
- Meloni, A.; Restaino, G.; Missere, M.; De Marchi, D.; Positano, V.; Valeri, G.; Giuseppe D’Ascola, D.; Peluso, A.; Caterina Putti, M.; Lendini, M.; et al. Pancreatic iron overload by T2* MRI in a large cohort of well treated thalassemia major patients: Can it tell us heart iron distribution and function? Am. J. Hematol. 2015, 90, E189–E190. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Salama, K.; Abdelsalam, A.; Eldin, H.S.; Youness, E.; Selim, Y.; Salama, C.; Hassanein, G.; Samir, M.; Zekri, H. The relationships between pancreatic T2* values and pancreatic iron loading with cardiac dysfunctions, hepatic and cardiac iron siderosis among Egyptian children and young adults with beta-thalassaemia major and sickle cell disease: A cross-sectional study. F1000Research 2020, 9, 1108. [Google Scholar] [CrossRef]
- Taher, A.; Elalfy, M.S.; Al Zir, K.; Daar, S.; Al Jefri, A.; Habr, D.; Kriemler-Krahn, U.; El-Ali, A.; Roubert, B.; El-Beshlawy, A. Importance of optimal dosing >/= 30 mg/kg/d during deferasirox treatment: 2.7-yr follow-up from the ESCALATOR study in patients with beta-thalassaemia. Eur. J. Haematol. 2011, 87, 355–365. [Google Scholar] [CrossRef] [PubMed]
- Jensen, C.E.; Tuck, S.M.; Old, J.; Morris, R.W.; Yardumian, A.; De Sanctis, V.; Hoffbrand, A.V.; Wonke, B. Incidence of endocrine complications and clinical disease severity related to genotype analysis and iron overload in patients with beta-thalassaemia. Eur. J. Haematol. 1997, 59, 76–81. [Google Scholar] [CrossRef] [PubMed]
- Toumba, M.; Sergis, A.; Kanaris, C.; Skordis, N. Endocrine complications in patients with Thalassaemia Major. Pediatr. Endocrinol. Rev. 2007, 5, 642–648. [Google Scholar] [PubMed]
- Pepe, A.; Meloni, A.; Rossi, G.; Caruso, V.; Cuccia, L.; Spasiano, A.; Gerardi, C.; Zuccarelli, A.; D’Ascola, D.G.; Grimaldi, S.; et al. Cardiac complications and diabetes in thalassaemia major: A large historical multicentre study. Br. J. Haematol. 2013, 163, 520–527. [Google Scholar] [CrossRef] [PubMed]
- Mahmoud, R.A.; Khodeary, A.; Farhan, M.S. Detection of endocrine disorders in young children with multi-transfused thalassemia major. Ital. J. Pediatr. 2021, 47, 165. [Google Scholar] [CrossRef] [PubMed]
- Bilgin, B.K.; Yozgat, A.K.; Isik, P.; Culha, V.; Kacar, D.; Kara, A.; Ozbek, N.Y.; Yarali, N. The effect of deferasirox on endocrine complications in children with thalassemia. Pediatr. Hematol. Oncol. 2020, 37, 455–464. [Google Scholar] [CrossRef] [PubMed]
- Chern, J.P.; Lin, K.H.; Tsai, W.Y.; Wang, S.C.; Lu, M.Y.; Lin, D.T.; Lin, K.S.; Lo, S.H. Hypogonadotropic hypogonadism and hematologic phenotype in patients with transfusion-dependent beta-thalassemia. J. Pediatr. Hematol. Oncol. 2003, 25, 880–884. [Google Scholar] [CrossRef] [PubMed]
- Pistoia, L.; Meloni, A.; Ricchi, P.; Filosa, A.; Lisi, R.; Maggio, A.; Rosso, R.; Messina, G.; Iacono, N.D.; Cuccia, L.; et al. Genotypic groups as risk factors for cardiac magnetic resonance abnormalities and complications in thalassemia major: A large, multicentre study. Blood Transfus. 2021, 19, 168–176. [Google Scholar] [CrossRef] [PubMed]
Genotype | HGVS Nomenclature | Type | Cases (N) | Frequency (%) |
---|---|---|---|---|
CD39/CD39 | HBB:c.118C > T/HBB:c.118C > T | β0 β0 | 11 | 16.2 |
CD39/IVS-1,110 | HBB:c.118C > T/HBB:c.93-21G > A | β0 β+ | 7 | 10.3 |
IVS-1,110/IVS-1,110 | HBB:c.93-21G > A/HBB:c.93-21G > A | β+ β+ | 6 | 8.8 |
IVS-1,110/IVS-2,745 | HBB:c.93-21G > A/HBB:c.316-106C > G | β+ β+ | 4 | 5.9 |
CD5/CD5 | HBB:c.17_18delCT/HBB:c.17_18delCT | β0 β0 | 3 | 4.4 |
CD39/IVS-1,1 | HBB:c.118C > T/HBB:c.92 + 1G > A | β0 β0 | 3 | 4.4 |
IVS-1,6/IVS-1,110 | HBB:c.92 + 6T > C/HBB:c.93-21G > A | β+ β+ | 3 | 4.4 |
CD39/IVS-1,6 | HBB:c.118C > T/HBB:c.92 + 6T > C | β0 β+ | 3 | 4.4 |
CD6/-87 | HBB:c.20delA/HBB:c.-137C > G | β0 β+ | 2 | 2.9 |
CD39/IVS-2,1 | HBB:c.118C > T/HBB:c.315 + 1G > A | β0 β0 | 2 | 2.9 |
IVS-1,6/IVS-1,6 | HBB:c.92 + 6T > C/HBB:c.92 + 6T > C | β+ β+ | 2 | 2.9 |
IVS-2,1/IVS-1,110 | HBB:c.315 + 1G > A/HBB:c.93-21G > A | β0 β+ | 2 | 2.9 |
Others | β+ β+ β0 β+ β0 β0 | 4 10 6 | 5.9 14.8 8.8 |
β+β+ (N = 19) | β0β+ (N = 24) | β0β0 (N = 25) | p | |
---|---|---|---|---|
Age (years) | 12.45 ± 3.69 | 13.13 ± 3.30 | 10.53 ± 3.65 | 0.071 |
Males/Females | 10/9 | 13/11 | 10/15 | 0.559 |
Age at start of regular transfusion (months) | 20.46 ± 29.78 | 19.74 ± 17.69 | 12.44 ± 11.83 | 0.339 |
Chelation starting age (years) | 4.92 ± 5.62 | 3.41 ± 2.24 | 2.94 ± 0.93 | 0.958 |
Splenectomy, N (%) | 1 (5.3) | 3 (12.5) | 3 (12.0) | 0.696 |
Positive HCV RNA (%) | 0 (0.0) | 0 (0.0) | 1 (4.0) | 0.418 |
Chelation therapy, N (%) | 0.299 | |||
DFO | 2 (10.5) | 0 (0.0) | 0 (0.0) | |
DFP | 4 (21.1) | 3 (12.5) | 2 (8.0) | |
DFX | 12 (63.2) | 18 (75.0) | 21 (84.0) | |
Combined DFO + DFP | 0 (0.0) | 1 (4.2) | 2 (8.0) | |
Sequential DFO/DFP | 0 (0.0) | 1 (4.2) | 0 (0.0) | |
Combined DFP + DFX | 1 (5.3) | 1 (4.2) | 0 (0.0) | |
Compliance, N (%) | 0.905 | |||
optimal | 10 (52.6) | 10 (41.7) | 11 (44.0) | |
good | 8 (42.1) | 12 (50.0) | 11 (44.0) | |
insufficient | 1 (5.3) | 2 (8.3) | 3 (12.0) | |
Pre-transfusion hemoglobin (g/dL) | 9.93 ± 0.46 | 9.52 ± 0.51 | 9.59 ± 0.58 | 0.072 |
Ferritin levels (ng/L) | 1684.14 ± 1276.53 | 1655.56 ± 1518.69 | 1886.17 ± 1805.39 | 0.901 |
β+β+ (N = 19) | β0β+ (N = 24) | β0β0 (N = 25) | p | |
---|---|---|---|---|
MRI LIC (mg/g dw) | 5.39 ± 5.59 | 6.67 ± 10.29 | 9.07 ± 9.19 | 0.140 |
MRI LIC > 3 mg/g dw, N (%) | 12 (63.2) | 13 (54.2) | 18 (72.0) | 0.433 |
Global pancreas T2* (ms) | 24.80 ± 12.95 | 21.60 ± 8.89 | 14.38 ± 10.68 | 0.006 |
Global pancreas T2* < 26 ms, N (%) | 8 (42.1) | 19/23 (82.6) | 22 (88.0) | 0.001 |
Global heart T2* (ms) | 36.93 ± 7.78 | 35.53 ± 9.17 | 29.61 ± 12.35 | 0.042 |
Global heart T2* < 20 ms, N (%) | 1 (5.3) | 2 (8.3) | 4 (16.0) | 0.472 |
Left atrial area (cm2/m2) | 12.54 ± 1.21 | 12.65 ± 1.96 | 13.49 ± 3.97 | 0.881 |
Right atrial area (cm2/m2) | 11.97 ± 2.51 | 11.53 ± 1.29 | 12.29 ± 3.98 | 0.964 |
LV EDVI (mL/m2) | 80.84 ± 12.82 | 80.65 ± 12.89 | 79.87 ± 15.02 | 0.874 |
LV ESVI (mL/m2) | 34.26 ± 11.85 | 31.57 ± 6.85 | 29.23 ± 7.69 | 0.238 |
LV SVI (mL/m2) | 49.05 ± 8.92 | 50.80 ± 9.14 | 49.73 ± 8.22 | 0.899 |
LV mass index (g/m2) | 51.02 ± 13.66 | 52.00 ± 12.95 | 51.23 ± 10.38 | 0.963 |
LV EF (%) | 60.62 ± 6.69 | 61.87 ± 4.39 | 62.99 ± 4.31 | 0.334 |
LV cardiac index (L/min/m2) | 4.35 ± 0.81 | 4.02 ± 1.04 | 4.24 ± 0.75 | 0.484 |
RV EDVI (mL/m2) | 82.41 ± 12.52 | 80.48 ± 15.49 | 76.36 ± 14.23 | 0.390 |
RV ESVI (mL/m2) | 32.98 ± 7.99 | 30.57 ± 6.78 | 27.64 ± 6.28 | 0.062 |
RV SVI (mL/m2) | 49.80 ± 9.89 | 49.78 ± 10.67 | 49.72 ± 8.91 | 0.950 |
RV EF (%) | 60.27 ± 7.83 | 61.35 ± 5.29 | 63.57 ± 3.50 | 0.181 |
Replacement myocardial fibrosis, N (%) | 0/1 (0.0) | 1/5 (20.0) | 0/5 (16.7) | 0.517 |
β+β+ (N = 19) | β0β+ (N = 24) | β0β0 (N = 25) | p | |
---|---|---|---|---|
Liver fibrosis or cirrhosis, N (%) | 0 (0.0) | 0 (0.0) | 0 (0.0) | – |
Diabetes mellitus, N (%) | 0 (0.0) | 0 (0.0) | 0 (0.0) | – |
Hypogonadism, N (%) | 0 (0.0) | 2 (8.3) | 2 (8.0) | 0.438 |
Hypothyroidism, N (%) | 1 (5.3) | 2 (8.3) | 1 (4.0) | 0.805 |
Hypoparathyroidism, N (%) | 0 (0.0) | 2 (8.3) | 1 (4.0) | 0.414 |
GH deficit, N (%) | 1 (5.3) | 1 (4.2) | 2 (8.0) | 0.842 |
At least one endocrinopathy, N (%) | 2 (10.5) | 6 (25.0) | 5 (20.0) | 0.483 |
Heart failure, N (%) | 0 (0.0) | 0 (0.0) | 0 (0.0) | – |
Arrhythmias, N (%) | 0 (0.0) | 0 (0.0) | 1 (4.0) | 0.418 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Meloni, A.; Pistoia, L.; Ricchi, P.; Putti, M.C.; Gamberini, M.R.; Cuccia, L.; Messina, G.; Massei, F.; Facchini, E.; Righi, R.; et al. Link between Genotype and Multi-Organ Iron and Complications in Children with Transfusion-Dependent Thalassemia. J. Pers. Med. 2022, 12, 400. https://doi.org/10.3390/jpm12030400
Meloni A, Pistoia L, Ricchi P, Putti MC, Gamberini MR, Cuccia L, Messina G, Massei F, Facchini E, Righi R, et al. Link between Genotype and Multi-Organ Iron and Complications in Children with Transfusion-Dependent Thalassemia. Journal of Personalized Medicine. 2022; 12(3):400. https://doi.org/10.3390/jpm12030400
Chicago/Turabian StyleMeloni, Antonella, Laura Pistoia, Paolo Ricchi, Maria Caterina Putti, Maria Rita Gamberini, Liana Cuccia, Giuseppe Messina, Francesco Massei, Elena Facchini, Riccardo Righi, and et al. 2022. "Link between Genotype and Multi-Organ Iron and Complications in Children with Transfusion-Dependent Thalassemia" Journal of Personalized Medicine 12, no. 3: 400. https://doi.org/10.3390/jpm12030400
APA StyleMeloni, A., Pistoia, L., Ricchi, P., Putti, M. C., Gamberini, M. R., Cuccia, L., Messina, G., Massei, F., Facchini, E., Righi, R., Renne, S., Peritore, G., Positano, V., & Cademartiri, F. (2022). Link between Genotype and Multi-Organ Iron and Complications in Children with Transfusion-Dependent Thalassemia. Journal of Personalized Medicine, 12(3), 400. https://doi.org/10.3390/jpm12030400