Endoglin and Other Angiogenesis Markers in Recurrent Varicose Veins
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patients
2.2. Groups
- Primary VV (non-recurrent varicose veins): patients with trunk varices and saphenofemoral insufficiency. Undergoing surgery for the first time through crossectomy and stripping of the GSV.
- RVV: patients with recurrence at saphenofemoral level. In all cases, the GSV had been previously removed by crossectomy + stripping. The patients again undergo surgery with preoperative echography data suggestive of neo-junction and insufficiency of this level (previous saphenofemoral junction).
2.3. Study Variables
- (a)
- Data recording log.
- (b)
- Samples of venous walls:
- (b-1)
- Proximal vein (saphenofemoral junction). The following genes have been identified: endoglin (Eng), vascular endothelial growth factor (VEGF-A), VEGF receptors (VEGFR1 or FLT1 and VEGFR2 or FLK), HIF-1A (hypoxia inducible factor).
- (b-2)
- Distal vein (ankle). A fragment of a GSV (Non-recurrent VV group) and varicose vena other than the GSV (RVV group). The following genes have been identified: Eng, VEGF-A, and HIF-1A.
- (c)
- Blood samples. An analysis has been conducted of the following soluble molecules in patient plasma: soluble endoglin (sEng), VEGF-A, and soluble VEGF receptors (sFLT1 and sFLK).
2.4. Sample Collection, Processing and Storage
2.5. Analysis of Tissue Samples
- RNA was extracted from the tissue obtained during surgery through the use of the NucleoSpin® RNA ((Macherey-Nagel, Düren, Germany) commercial kit. The first step involved grinding the previously frozen tissue, taking 20 mg in weight and lysing it with the RA1 reagent supplemented with 1% β-mercaptoethanol using Kimble™ Kontes™ Pellet Pestle™ microcentrifuge tubes. Once the sample has been lysed, the manufacturer’s instructions are followed. The RNA obtained is quantified using a NanoDrop® ND-1000 spectrophotometer (Marshall Scientific), and stored at −80 °C.
- Obtaining cDNA: the analysis of the gene expression requires using DNA as a reaction substratum, whereby the RNA needs to be converted into DNA via retro or reverse transcription. Viral reverse transcriptase, discovered in 1970, synthesises cDNA from RNA by diluting 250 ng of RNA in each sample with ultrapure water to a final volume of 16 μL. This is followed by the addition of 4 μL of iScriptTM Reverse Transcription Supermix (Bio-Rad, Hercules, CA, USA) 5X and incubation in a MyCyclerTM (Bio-Rad, Hercules, CA, USA) thermal cycler at 25 °C for five minutes, followed by 30 min at 42 °C, and five final minutes at 85 °C. The cDNA obtained is stored at −20 °C.
- Quantitative PCR, qPCR or PCR in real time: the PCR is prepared with a final volume of 20 μL:1 μL of cDNA, 10 μL of Supermix iQTM SYBR® Green (Bio-Rad, Hercules, CA, USA), 0.4 μL of each primer at a concentration of 20 mM, and 8.2 μL of ultrapure water. The reaction is undertaken in an iQTM 5 thermal cycler, where it follows a protocol for its incubation at 95 °C for five minutes, followed by 40 thirty-second cycles at 95 °C, 30 s at the optimum annealing temperature, and 30 s at 72 °C. The camera attached to the thermal cycler takes an image of the sample at the end of each cycle, detecting the fluorescent signal, which will be increasingly stronger in step with the higher amount of PCR product.
2.6. Analysis of Blood Samples
2.7. Statistical Analysis
2.8. Ethical Responsibilities
3. Results
3.1. Expression of Markers on the Venous Wall
3.1.1. Proximal Venous Samples (Saphenofemoral Junction)
3.1.2. Distal Venous Samples
3.2. Serum Determinations of Soluble Molecules
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Lozano, F.S.; Masegosa, A.; Alvarez, J.; Marinello, J.; DETECT-2006 Group. Occurrence and management of chronic venous disease in primary health care in Spain. A comparison of DETECT-2006 with DETECT-2000. Int. Angiol. 2009, 28, 62–67. [Google Scholar]
- Kanwar, A.; Hansrani, M.; Lees, T.; Stansby, G. Trends in varicose vein therapy in England: Radical changes in the last decade. Ann. R. Coll. Surg. Engl. 2010, 92, 341–346. [Google Scholar] [CrossRef] [Green Version]
- Lozano, F.S.; Marinello, J.; Moreno, R.M.; Aguilar, M.D.; López-Quintana, A.; González-Porras, J.R.; Gime´nez-Gaibar, A.; Alguacil, R.; Cairols, M.A.; Marco-Luque, M.A.; et al. Monitoring the practice of vascular surgery: Findings from a national registry (1996–2011). World J. Surg. 2014, 38, 241–251. [Google Scholar] [CrossRef]
- Lozano, F.S.; Marinello, J.; Carrasco, E.; González-Porras, J.R.; Escudero, J.R.; Sánchez Nevarez, I.; Díaz Sánchez, S. Venous leg ulcer in the context of chronic venous disease. Phlebology 2014, 29, 220–226. [Google Scholar] [CrossRef]
- Lozano, F.S.; Sánchez, I.; González-Porras, J.R.; Marinello, J.; Escudero, J.R.; Díaz Sánchez, S.; Carrasco, E. Quality of life in patients with chronic venous disease: Influence of the socio-demographical and clinical factors. Int. Angiol. 2013, 32, 433–441. [Google Scholar]
- Lozano, F.S.; Asensi, E. Reclamaciones médico-legales y cirugía de varices. Peritaje de un cirujano vascular durante 25 años. Angiologia 2016, 68, 292–297. [Google Scholar] [CrossRef]
- Kostas, T.; Ioannou, C.V.; Touloupakis, E.; Daskalaki, E.; Giannoukas, A.D.; Tsetis, D.; Katsamouris, A.N. Recurrent varicose veins after surgery: A new appraisal of a common and complex problem in vascular surgery. Eur. J. Vasc. Endovasc. Surg. 2004, 27, 275–282. [Google Scholar] [CrossRef] [Green Version]
- van Rij, A.M.; Jones, G.T.; Hill, G.B.; Jiang, P. Neovascularization and recurrent varicose veins: More histologic and ultrasound evidence. J. Vasc. Surg. 2004, 40, 296–302. [Google Scholar] [CrossRef] [Green Version]
- Brake, M.; Lim, C.S.; Shepherd, A.C.; Shalhoub, J.; Davies, A.H. Pathogenesis and etiology of recurrent varicose veins. J. Vasc. Surg. 2013, 57, 860–868. [Google Scholar] [CrossRef] [Green Version]
- Reich-Schupke, S.; Mumme, A.; Altmeyer, P.; Stuecker, M. Decorin expression with stump recurrence and neovascularization after varicose vein surgery -a pilot study. Dermatol. Surg. 2011, 37, 480–485. [Google Scholar] [CrossRef]
- Perrin, M.R.; Labropoulos, N.; Leon, J.L. Presentation of the patient with recurrent varices after surgery (REVAS). J. Vasc. Surg. 2006, 43, 327–334. [Google Scholar] [CrossRef]
- Eleno, N.; López-Novoa, J.M.; Lozano, F. Endoglin: A marker of neoplasias or rather of neo-angiogenesis? Lett. Editor Head Neck 2010, 32, 971. [Google Scholar] [CrossRef]
- Rass, K.; Frings, N.; Glowacki, P.; Gräber, S.; Tilgen, W.; Vogt, T. Same site recurrence is more frequent after endovenous laser ablation compared with high ligation and stripping of the great saphenous vein: 5 year results of a randomized clinical trial (RELACS study). Eur. J. Vasc. Endovasc. Surg. 2015, 50, 648–656. [Google Scholar] [CrossRef] [Green Version]
- O’Donnell, T.F.; Balk, E.M.; Dermody, M.; Tangney, E.; Iafrati, M.D. Recurrence of varicose veins after endovenous ablation of the great saphenous vein in randomized trials. J. Vasc. Surg. Venous. Lymphat. Disord. 2016, 4, 97–105. [Google Scholar] [CrossRef]
- Farah, M.H.; Nayfeh, T.; Urtecho, M.; Hasan, B.; Amin, M.; Sen, I.; Wang, Z.; Prokop, L.J.; Lawrence, P.F.; Gloviczki, P.; et al. A systematic review supporting the Society for Vascular Surgery, the American Venous Forum, and the American Vein and Lymphatic Society guidelines on the management of varicose veins. J. Vasc. Surg. Venous. Lymphat. Disord. 2021. [Google Scholar] [CrossRef]
- White, A.M.; Price, B.A.; Davies, C.E.; Nemchand, J.L.; Whiteley, M.S. Quantification of groin neovascular tissue with three-dimensional ultrasound before and after endovenous laser ablation using the hedgehog technique. J. Vasc. Surg. Venous. Lymphat. Disord. 2021, 9, 785–786. [Google Scholar] [CrossRef]
- Ehrler, M.; Heim, D.; Mouton, W.G. Histopathology of neovascularization observed during saphenofemoral re-do high ligation. EJVES Vasc. Forum 2021, 52, 17–19. [Google Scholar] [CrossRef]
- Lim, C.S.; Kiriakidis, S.; Sandison, A.; Paleolog, E.M.; Davies, A.H. Hypoxia-inducible factor pathway and diseases of the vascular wall. J. Vasc. Surg. 2013, 58, 219–230. [Google Scholar] [CrossRef] [Green Version]
- Ollauri-Ibáñez, C.; López-Novoa, J.M.; Pericacho, M. Endoglin-based biological therapy in the treatment of angiogenesis-dependent pathologies. Expert Opin. Biol. Ther. 2017, 17, 1053–1063. [Google Scholar] [CrossRef]
- Ligi, D.; Croce, L.; Mosti, G.; Raffetto, J.D.; Mannello, F. Chronic venous insufficiency: Transforming growth factor-β isoforms and soluble endoglin concentration in different states of wound healing. Int. J. Mol. Sci. 2017, 18, 2206. [Google Scholar] [CrossRef] [Green Version]
- De Maeseneer, M.G.; Philipsen, T.E.; Vandenbroeck, C.P.; Lauwers, P.R.; Hendriks, J.M.; De Hert, S.G.; Van Schil, P.E. Closure of the cribriform fascia: An efficient anatomical barrier against postoperative neovascularization at the saphenofemoral junction. A prospective study. Eur. J. Vasc. Endovasc. Surg. 2007, 34, 361–366. [Google Scholar] [CrossRef] [Green Version]
- van Rij, A.M.; Jones, G.T.; Hill, B.G.; Amer, M.; Thomson, I.A.; Pettigrew, R.A.; Packer, S.G. Mechanical inhibition of angiogenesis at the saphenofemoral junction in the surgical treatment of varicose veins: Early results of a blinded randomized controlled trial. Circulation 2008, 118, 66–74. [Google Scholar] [CrossRef]
- Kokubo, M.; Nozaka, T.; Takahashi, Y. New method of flush saphenofemoral ligation that is expected to inhibit varicose vein recurrence in the groin: Flush ligation using the avulsion technique method. Ann. Vasc. Dis. 2018, 11, 286–291. [Google Scholar] [CrossRef]
- Howard, A.; Howard, D.P.; Davies, A.H. Surgical treatment of the incompetent saphenous vein. In Handbook of Venous Disorders. Guidelines of the American Venous Forum, 3rd ed.; Peter Gloviczki; Hodder Arnold: London, UK, 2009; pp. 400–408. [Google Scholar]
Group | Patients | Sex (M/F) * | Age (Years) |
---|---|---|---|
Primary Varicose Vein | 24 | 7/17 | 33–67 |
Recurrent Varicose Vein | 19 | 8/11 | 32–69 |
Primary Varicose Veins | Recurrent Varicose Veins | ||||||
---|---|---|---|---|---|---|---|
Genes * | Mean | SD | SEM | Mean | SD | SEM | p-Value |
Eng | 100 | 77.65 | 16.94 | 149.8 | 75.29 | 17.75 | 0.0104 |
HIF1A | 100 | 44.14 | 96.32 | 97.28 | 43.94 | 10.38 | 0.8554 |
VEGFA | 100 | 50.13 | 10.94 | 173.0 | 104.1 | 24.54 | 0.0074 |
VEGFR1 | 100 | 88.50 | 19.31 | 287.7 | 186.3 | 43.91 | < 0.0001 |
VEGFR2 | 100 | 80.37 | 17.54 | 346.4 | 255.1 | 60.13 | < 0.0001 |
Primary Varicose Veins | Recurrent Varicose Veins | ||||||
---|---|---|---|---|---|---|---|
Molecules * | Mean | SD | SEM | Mean | SD | SEM | p-Value |
sEng | 1450 | 624.0 | 87.38 | 1476 | 629.7 | 162.6 | 0.8857 |
VEGFA | 88.66 | 54.78 | 7.826 | 89.41 | 52.57 | 13.57 | 0.9630 |
sFLT1 | 152.6 | 45.53 | 6.314 | 125.8 | 34.75 | 8.973 | 0.0392 |
sFLK | 10419 | 3806 | 527.7 | 10018 | 3544 | 915.0 | 0.7166 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sánchez, F.S.L.; Martínez, J.A.C.; Méndez-García, L.; García-Cenador, M.B.; Pericacho, M. Endoglin and Other Angiogenesis Markers in Recurrent Varicose Veins. J. Pers. Med. 2022, 12, 528. https://doi.org/10.3390/jpm12040528
Sánchez FSL, Martínez JAC, Méndez-García L, García-Cenador MB, Pericacho M. Endoglin and Other Angiogenesis Markers in Recurrent Varicose Veins. Journal of Personalized Medicine. 2022; 12(4):528. https://doi.org/10.3390/jpm12040528
Chicago/Turabian StyleSánchez, Francisco S. Lozano, José A. Carnicero Martínez, Lucía Méndez-García, M. Begoña García-Cenador, and Miguel Pericacho. 2022. "Endoglin and Other Angiogenesis Markers in Recurrent Varicose Veins" Journal of Personalized Medicine 12, no. 4: 528. https://doi.org/10.3390/jpm12040528