Clinical Outcomes of Cardiac Rehabilitation in Women with Coronary Artery Disease—Differences in Comparison with Men
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Program of Cardiac Rehabilitation
2.3. Data Collection
2.4. Echocardiography
2.5. Statistical Analysis
3. Results
3.1. Age Subgroups
3.2. BMI Subgroups
3.3. LVEF Subgroups
3.4. Subgroups Created Due to the Number of Coronary Vessels Affected with Atherosclerosis
4. Discussion
Strengths and Limitations of the Study
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- WHO the Top 10 Causes of Death. Available online: https://www.who.int/en/news-room/fact-sheets/detail/the-top-10-causes-of-death (accessed on 4 December 2021).
- Anderson, L.; Oldridge, N.; Thompson, D.R.; Zwisler, A.-D.; Rees, K.; Martin, N.; Taylor, R.S. Exercise-Based Cardiac Rehabilitation for Coronary Heart Disease. J. Am. Coll. Cardiol. 2016, 67, 1–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ambrosetti, M.; Abreu, A.; Corrà, U.; Davos, C.H.; Hansen, D.; Frederix, I.; Iliou, M.C.; Pedretti, R.F.; Schmid, J.-P.; Vigorito, C.; et al. Secondary prevention through comprehensive cardiovascular rehabilitation: From knowledge to implementation. 2020 update. A position paper from the Secondary Prevention and Rehabilitation Section of the European Association of Preventive Cardiology. Eur. J. Prev. Cardiol. 2021, 28, 460–495. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McDonagh, T.A.; Metra, M.; Adamo, M.; Gardner, R.S.; Baumbach, A.; Böhm, M.; Burri, H.; Butler, J.; Čelutkienė, J.; Chioncel, O.; et al. Corrigendum to: 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: Developed by the Task Force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC) With the special contribution of the Heart Failure Association (HFA) of the ESC. Eur. Heart J. 2021, 42, 4901. [Google Scholar] [CrossRef] [PubMed]
- Myers, J.; Prakash, M.; Froelicher, V.; Do, D.; Partington, S.; Atwood, J.E. Exercise Capacity and Mortality among Men Referred for Exercise Testing. N. Engl. J. Med. 2002, 346, 793–801. [Google Scholar] [CrossRef]
- Taylor, R.S.; Brown, A.; Ebrahim, S.; Jolliffe, J.; Noorani, H.; Rees, K.; Skidmore, B.; Stone, J.A.; Thompson, D.R.; Oldridge, N. Exercise-based rehabilitation for patients with coronary heart disease: Systematic review and meta-analysis of randomized controlled trials. Am. J. Med. 2004, 116, 682–692. [Google Scholar] [CrossRef]
- Rauch, B.; Davos, C.H.; Doherty, P.; Saure, D.; Metzendorf, M.I.; Salzwedel, A.; Völler, H.; Jensen, K.; Schmid, J. The prognostic effect of cardiac rehabilitation in the era of acute revascularization and statin therapy: Systematic review and meta-analysis of randomized and non randomized studies—The Cardiac Rehabilitation Outcome Study (CROS). Eur. J. Prev. Cardiol. 2016, 23, 1914–1939. [Google Scholar] [CrossRef] [Green Version]
- Jneid, H.; Fonarow, G.C.; Cannon, C.P.; Hernandez, A.F.; Palacios, I.F.; Maree, A.O.; Wells, Q.; Bozkurt, B.; Labresh, K.A.; Liang, L.; et al. Sex differences in medical care and early death after acute myocardial infarction. Circulation 2008, 118, 2803–2810. [Google Scholar] [CrossRef] [Green Version]
- Feola, M.; Garnero, S.; Daniele, B.; Mento, C.; Dell’Aira, F.; Chizzolini, G.; Testa, M. Gender differences in the efficacy of cardiovascular rehabilitation in patients after cardiac surgery procedures. J. Geriatr. Cardiol. 2015, 12, 575–579. [Google Scholar] [CrossRef]
- Perera, S.; Aslam, A.; Stehli, J.; Kaye, D.; Layland, J.; Nicholls, S.J.; Cameron, J.; Zaman, S. Gender Differences in Healthy Lifestyle Adherence Following Percutaneous Coronary Intervention for Coronary Artery Disease. Heart Lung Circ. 2021, 30, e37–e40. [Google Scholar] [CrossRef]
- Hao, Y.; Liu, J.; Liu, J.; Yang, N.; Smith Jr, S.C.; Huo, Y.; Fonarow, G.C.; Ge, J.; Taubert, K.A.; Morgan, L.; et al. Sex Differences in In-Hospital Management and Outcomes of Patients With Acute Coronary Syndrome. Comp. Study Circ. 2019, 139, 1776–1785. [Google Scholar] [CrossRef]
- Shaw, L.J.; Bugiardini, R.; Merz, C.N.B. Women and Ischemic Heart Disease: Evolving Knowledge. J. Am. Coll. Cardiol. 2009, 54, 1561–1575. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reynolds, H.R.; Srichai, M.B.; Iqbal, S.N.; Slater, J.N.; Mancini, G.B.; Feit, F.; Pena-Sing, I.; Axel, L.; Attubato, M.J.; Yatskar, L.; et al. Mechanisms of Myocardial Infarction in Women Without Angiographically Obstructive Coronary Artery Disease. Circulation 2011, 124, 1414–1425. [Google Scholar] [CrossRef] [PubMed]
- Vanhees, L.; Rauch, B.; Piepoli, M.; van Buuren, F.; Takken, T.; Börjesson, M.; Bjarnason-Wehrens, B.; Doherty, P.; Dugmore, D.; Halle, M.; et al. Importance of characteristics and modalities of physical activity and exercise in the management of cardiovascular health in individuals with cardiovascular disease (Part III). Eur. J. Prev. Cardiol. 2012, 19, 1333–1356. [Google Scholar] [CrossRef] [PubMed]
- Borg, G.A. Psychophysical bases of perceived exertion. Med. Sci. Sports Exerc. 1982, 14, 377–381. [Google Scholar] [CrossRef] [PubMed]
- Gottdiener, J.S.; Bednarz, J.; Devereux, R.; Gardin, J.; Klein, A.; Manning, W.J.; Morehead, A.; Kitzman, D.; Oh, J.; Quinones, M.; et al. American Society of Echocardiography recommendations for use of echocardiography in clinical trials. J. Am. Soc. Echocardiogr. 2004, 17, 1086–1119. [Google Scholar] [CrossRef]
- Kodama, S.; Saito, K.; Tanaka, S.; Maki, M.; Yachi, Y.; Asumi, M.; Sugawara, A.; Totsuka, K.; Shimano, H.; Ohashi, Y.; et al. Cardiorespiratory fitness as a quantitative predictor of all-cause mortality and cardiovascular events in healthy men and women: A meta-analysis. JAMA 2009, 301, 2024–2035. [Google Scholar] [CrossRef] [Green Version]
- Myers, J. New American heart association/American college of cardiology guidelines on cardiovascular risk: When will fitness get the recognition it deserves? Mayo Clin. Proc. 2014, 89, 722–726. [Google Scholar] [CrossRef] [Green Version]
- Imboden, M.T.; Harber, M.P.; Whaley, M.H.; Finch, W.H.; Bishop, D.L.; Kaminsky, L.A. Cardiorespiratory Fitness and Mortality in Healthy Men and Women. J. Am. Coll. Cardiol. 2018, 72, 2283–2292. [Google Scholar] [CrossRef]
- Beckie, T.M.; Beckstead, J.W.; Kip, K.; Fletcher, G. Physiological and Exercise Capacity Improvements in Women Completing Cardiac Rehabilitation. J. Cardiopulm. Rehabil. Prev. 2013, 33, 16–25. [Google Scholar] [CrossRef] [Green Version]
- Sattelmair, J.; Pertman, J.; Ding, E.L.; Kohlll, H.W.; Haskell, W.; Lee, I.M. Dose response between physical activity and risk of coronary heart disease: A meta-analysis. Circulation 2011, 124, 789–795. [Google Scholar] [CrossRef] [Green Version]
- Araya-Ramírez, F.; Briggs, K.K.; Bishop, S.R.; Miller, C.E.; Moncada-Jiménez, J.; Grandjean, P.W. Who Is Likely to Benefit From Phase II Cardiac Rehabilitation? J. Cardiopulm. Rehabil. Prev. 2010, 30, 93–100. [Google Scholar] [CrossRef] [PubMed]
- Ghashghaei, F.E.; Sadeghi, M.; Marandi, S.M.; Ghashghaei, S.E. Exercise-based cardiac rehabilitation improves hemodynamic responses after coronary artery bypass graft surgery. ARYA Atheroscler. 2012, 7, 151–156. [Google Scholar] [PubMed]
- Kavanagh, T.; Hamm, L.F.; Beyene, J.; Mertens, D.J.; Kennedy, J.; Campbell, R.; Fallah, S.; Shephard, R.J. Usefulness of Improvement in Walking Distance Versus Peak Oxygen Uptake in Predicting Prognosis After Myocardial Infarction and/or Coronary Artery Bypass Grafting in Men. Am. J. Cardiol. 2008, 101, 1423–1427. [Google Scholar] [CrossRef]
- Gupta, R.; Sanderson, B.K.; Bittner, V. Outcomes at one-year follow-up of women and men with coronary artery disease discharged from cardiac rehabilitation: What benefits are maintained? J. Cardiopulm. Rehabil. Prev. 2007, 27, 11–18. [Google Scholar] [CrossRef] [PubMed]
- Gee, M.A.; Viera, A.J.; Miller, P.F.; Tolleson-Rinehart, S. Functional Capacity in Men and Women Following Cardiac Rehabilitation. J. Cardiopulm. Rehabil. Prev. 2014, 34, 255–262. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- O’Farrell, P.; Murray, J.; Huston, P.; Legrand, C.; Adamo, K. Sex differences in cardiac rehabilitation. Can. J. Cardiol. 2000, 16, 319–325. [Google Scholar]
- Araya-Ramírez, F.; Moncada-Jiménez, J.; Grandjean, P.W.; Franklin, B.A. Improved Walk Test Performance and Blood Pressure Responses in Men and Women Completing Cardiac Rehabilitation: Implications Regarding Exercise Trainability. Am. J. Lifestyle Med. 2021. [Google Scholar] [CrossRef]
- Colbert, J.D.; Martin, B.-J.; Haykowsky, M.J.; Hauer, T.L.; Austford, L.D.; Arena, R.A.; Knudtson, M.L.; Meldrum, D.A.; Aggarwal, S.G.; Stone, J.A. Cardiac rehabilitation referral, attendance and mortality in women. Eur. J. Prev. Cardiol. 2015, 22, 979–986. [Google Scholar] [CrossRef]
- Grodstein, F.; Stampfer, M. The epidemiology of coronary heart disease and estrogen replacement in postmenopausal women. Prog. Cardiovasc. Dis. 1995, 38, 199–210. [Google Scholar] [CrossRef]
- Grodstein, F.; Manson, J.E.; Colditz, G.A.; Willett, W.C.; Speizer, F.E.; Stampfer, M.J. A Prospective, Observational Study of Postmenopausal Hormone Therapy and Primary Prevention of Cardiovascular Disease. Ann. Intern. Med. 2000, 133, 933–941. [Google Scholar] [CrossRef]
- Hulley, S.; Grady, D.; Bush, T.; Furberg, C.; Herrington, D.; Riggs, B.; Vittinghoff, E. for the Heart and Estrogen/progestin Replacement Study (HERS) Research Group. Randomized Trial of Estrogen Plus Progestin for Secondary Prevention of Coronary Heart Disease in Postmenopausal Women. JAMA 1998, 280, 605–613. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rossouw, J.E.; Anderson, G.L.; Prentice, R.L.; LaCroix, A.Z.; Kooperberg, C.; Stefanick, M.L.; Jackson, R.D.; Beresford, S.A.; Howard, B.V.; Johnson, K.C.; et al. Risks and benefits of estrogen plus progestin in healthy postmenopausal women: Principal results from the women’s health initiative randomized controlled trial. JAMA 2002, 288, 321–333. [Google Scholar] [PubMed] [Green Version]
- De Smedt, D.; De Bacquer, D.; De Sutter, J.; Dallongeville, J.; Gevaert, S.; De Backer, G.; Bruthans, J.; Kotseva, K.; Reiner, Ž.; Tokgözoğlu, L.; et al. The gender gap in risk factor control: Effects of age and education on the control of cardiovascular risk factors in male and female coronary patients. The EUROASPIRE IV study by the European Society of Cardiology. Int. J. Cardiol. 2016, 209, 284–290. [Google Scholar] [CrossRef]
- Mosca, L.; Linfante, A.H.; Benjamin, E.J.; Berra, K.; Hayes, S.N.; Walsh, B.W.; Fabunmi, R.P.; Kwan, J.; Mills, T.; Simpson, S.L. National Study of Physician Awareness and Adherence to Cardiovascular Disease Prevention Guidelines. Circ. 2005, 111, 499–510. [Google Scholar] [CrossRef] [PubMed]
- Gu, Q.; Burt, V.L.; Paulose-Ram, R.; Dillon, C.F. Gender Differences in Hypertension Treatment, Drug Utilization Patterns, and Blood Pressure Control Among US Adults With Hypertension: Data From the National Health and Nutrition Examination Survey 1999–2004. Am. J. Hypertens. 2008, 21, 789–798. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bird, C.E.; Fremont, A.M.; Bierman, A.S.; Wickstrom, S.; Shah, M.; Rector, T.; Horstman, T.; Escarce, J.J. Does quality of care for cardiovascular disease and diabetes differ by gender for enrollees in managed care plans? Womens Health Issues 2007, 17, 131–138. [Google Scholar] [CrossRef]
- Lim, S.K.; Han, J.Y.; Choe, Y.R. Comparison of the Efects of Cardiac Rehabilitation between Obese and Non-obese Patients After Acute Myocardial Infarction. Ann. Rehabil. Med. 2016, 40, 924–932. [Google Scholar] [CrossRef] [Green Version]
- Piepoli, M.F.; Davos, C.; Francis, D.P.; Coats, A.J. ExTraMATCH Collaborative Exercise training meta-analysis of trials in patients with chronic heart failure (ExTraMATCH). BMJ 2004, 328, 189. [Google Scholar] [CrossRef] [Green Version]
- O’Connor, C.M.; Whellan, D.J.; Lee, K.L.; Keteyian, S.J.; Cooper, L.S.; Ellis, S.J.; Leifer, E.S.; Kraus, W.E.; Kitzman, D.W.; Blumenthal, J.A.; et al. Efficacy and safety of exercise training in patients with chronic heart failure: HF-ACTION randomized controlled trial. JAMA 2009, 301, 1439–1450. [Google Scholar] [CrossRef]
- Aguiar, R.S.; Abreu, A.; Soares, R.M.; Rio, P.; Filipeb, C.; Rodriguesa, I.; Monteiro, A.; Soaresa, C.; Ferreira, V.; Silvaa, S.; et al. Cardiac rehabilitation after acute coronary syndrome: Do all patients derive the same benefit? Rev. Port. Cardiol. 2017, 36, 169–176. [Google Scholar] [CrossRef]
- Flynn, K.E.; Pina, I.L.; Whellan, D.J.; Lin, L.; Blumenthal, J.A.; Ellis, S.J.; Fine, L.J.; Howlett, J.G.; Keteyian, S.J.; Kitzman, D.W.; et al. Effects of exercise training on health status in patients with chronic heart failure: HF-ACTION randomized controlled trial. JAMA 2009, 301, 1451–1459. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Taylor, R.S.; Walker, S.; Ciani, O.; Warren, F.; Smart, N.A.; Piepoli, M.; Davos, C.H. Exercise-based cardiac rehabilitation for chronic heart failure: The EXTRAMATCH II individual participant data meta-analysis. Health Technol. Assess. 2019, 23, 1–98. [Google Scholar] [CrossRef] [PubMed]
- Trachsel, L.-D.; Boidin, M.; Henri, C.; Fortier, A.; Lalongé, J.; Juneau, M.; Nigam, A.; Gayda, M. Women and men with coronary heart disease respond similarly to different aerobic exercise training modalities: A pooled analysis of prospective randomized trials. Appl. Physiol. Nutr. Metab. 2021, 46, 417–425. [Google Scholar] [CrossRef] [PubMed]
- Gerlach, S.; Mermier, C.; Kravitz, L.; Dalleck, L.; Zuhl, M. Predicting functional outcomes among CAD who complete cardiac rehabilitation. Int. J. Cardiol. Cardiovasc Dis. 2021, 1, 57–62. [Google Scholar]
Study Participants (n = 286) | Women (n = 106) | Men (n = 180) | p |
---|---|---|---|
Age (years) | 65.05 ± 7.2 66 (47–83) | 60.5 ± 10.5 62 (31–85) | 0.00052 |
BMI (kg/m2) | 28 (20.8–41.7) | 28.4 (19.1–40.8) | 0.52 |
Waist circumference (cm) | 96 (70–122) | 102 (81–136) | 0.00001 |
Clinical history | |||
ST Elevation Myocardial Infarction STEMI (fraction) | 37 (0.35) | 70 (0.38) | 0.54 |
No ST Elevation Myocardial Infarction NSTEMI (fraction) | 48 (0.45) | 82 (0.45) | 0.96 |
PCI (fraction) | 91 (0.85) | 151 (0.84) | 0.81 |
CABG (fraction) | 10 (0.1) | 30 (0.16) | 0.08 |
Duration of CAD (years) | 0 (0–20) | 0 (0–27) | 0.64 |
Single-vessel disease (fraction) | 52 (0.49) | 64 (0.35) | 0.025 |
Two-vessel disease (fraction) | 31 (0.29) | 52 (0.28) | 0.94 |
Three-vessel disease (fraction) | 20 (0.18) | 59 (0.33) | 0.01 |
Diabetes Mellitus (fraction) | 24 (0.22) | 53 (0.29) | 0.21 |
Arterial hypertension (fraction) | 86 (0.81) | 149 (0.83) | 0.73 |
Smokers/exsmokers (fraction) | 0/46 (0.43) | 0/92 (0.5) | 0.2 |
Study Population (286) | Women with CAD (n = 106) | Men with CAD (n = 180) | ||||
---|---|---|---|---|---|---|
Baseline | After 8 Weeks of CR | p | Baseline | After 8 Weeks of CR | p | |
LVEF (%) | 55 (35–80) | 57,5 (28–80) | 0.00001 | 52 * (20–72) | 55 ** (32–85) | 0.00001 |
Presence of left ventricular segmental systolic dysfunction (fraction) | 45 (0.42) | 13 (0.12) | 0.00001 | 99 * (0.55) | 42 ** (0.23) | 0.00001 |
Presence of left ventricular hyperthrophy (fraction) | 48 (0.45) | 48 (0.45) | 0.18 | 129 * (0.72) | 131 ** (0.73) | 0.65 |
Presence of left ventricular enlargement (fraction) | 15 (0.14) | 15 (0.14) | 0.83 | 63 * (0.35) | 63 ** (0.35) | 0.29 |
Study Population (286) | Women with CAD (n = 106) | Men with CAD (n = 180) | ||||
---|---|---|---|---|---|---|
Baseline | After 8 Weeks of CR | p | Baseline | After 8 Weeks of CR | p | |
Total cholesterol (mmol/L) | 4.1 (2.62–7.25) | 4.12 (2.21–7.29) | 0.1 | 3.55 * (2.08–8.44) | 3.54 ** (2.07–9.21) | 0.54 |
HDLc (mmol/L) | 1.41 (0.69–2.29) | 1.41 (0.8–2.28) | 0.41 | 1.1 * (0.56–1.76) | 1.15 ** (0.62–1.95) | 0.13 |
LDLc (mmol/L) | 2 (0.81–4.68) | 1.99 (0.81–4.98) | 0.29 | 1.71 * (0.56–6.32) | 1.72 ** (0.42–6.82) | 0.24 |
Triglycerides (mmol/L) | 1.56 (0.23–4.6) | 1.48 (0.63–4.75) | 0.62 | 1.23 (0.5–4.68) | 1.32 (0.5–6.82) | 0.001 |
Glucose (mmol/L) | 5.5 (4.15–15.19) | 5.37 (4.1—15.1) | 0.1 | 5.68 (2.32–13.96) | 5.68 (3.32–13.96) | 0.02 |
Study Population (286) | Women with CAD (n = 106) | Men with CAD (n = 180) | ||||
---|---|---|---|---|---|---|
Baseline | After 8 Weeks of CR | p | Baseline | After 8 Weeks of CR | p | |
BMI (kg/m2) | 28 (20.8–41.2) | 28.05 (20.8–41.7) | 0.053 | 28.4 (19.1–40.8) | 28.5 (19.4–40.3) | 0.005 |
Waist circumference (cm) | 96 (70–122) | 96 (68–120) | 0.29 | 102 (81–136) | 102.5 (80–136) | 0.85 |
HR at rest (beats × min−1) | 70 (55–92) | 71 (49–100) | 0.09 | 73 (52–103) | 71 (49–100) | 0.000002 |
SBP at rest (mmHg) | 130 (100–150) | 120 (90–150) | 0.000003 | 120 (90–150) | 120 (90–160) | 0.005 |
DBP at rest (mmHg) | 80 (60–100) | 75 (50–90) | 0.00003 | 80 (60–100) | 75 (50–90) | 0.004 |
Resting RPP × 10−2 (beats × min−1 × mmHg) | 88.4 (61–135) | 84.5 (56–139.5) | 0.00002 | 88.5 * (57–138.6) | 82.5 (56.7–134.4) | 0.000001 |
Peak workload (W) | 60 (30–90) | 90 (30–120) | 0.0000001 | 90 (30–180) | 120 (60–240) | 0.000001 |
Peak workload (W/kg) | 0.88 (0.34–1.63) | 1.03 (0.38–1.73) | 0.0000001 | 1.08 * (0.49–2.14) | 1.36 ** (0.64–2.85) | 0.000001 |
Exercise capacity (MET) | 4.02 (2.19–6.6) | 4.5 (2.33–6.9) | 0.0000001 | 4.7 (2.68–8.34) | 5.67 (3.2–10.8) | 0.000001 |
Δ of exercise capacity (MET) | 0.6 ± 0.77 0.0 (−1.24–3.14) | 1 ± 0.74 ** 1.1 (−1, 29–3.1) | 0.0019 | |||
RPPpeak × 10−2 (beats × min−1 × mmHg) | 176.2 (110.4–281.6) | 185.6 (112.2–297) | 0.56 | 174.2 (66–302.5) | 185.6 (110.6–295) | 0.000062 |
RPE (points) | 14 (13–17) | 15 (13–17) | 0.12 | 15 (13–18) | 16 (14–17) | 0.27 |
Women (n = 106) | Men (n = 180) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Subgroups | n | Exercise capacity (MET) | n | Exercise Capacity (MET) | |||||||
Baseline | After 8 Weeks of CR | Δ of Exercise Capacity | p | Baseline | After 8 Weeks of CR | Δ of Exercise Capacity | p | ||||
Age (years) | <55 | 9 | 3.74 (3.0–6.5) | 4.8 (3.5–6.1) | 1.03 (−0.03–1.7) | 0.0000001 | 49 | 5.26 (3.32–8.34) | 6.4 (4.02–10.8) | 1.17 (−0.14–3.0) | 0.0000001 |
≥55 | 97 | 4.02 (2.19–6.6) | 4.5 (2.33–6.9) | 0.03 (−1.2–3.14) | 0.0000001 | 131 | 4.56 (2.68–7.08) | 5.47 (3.21–7.76) | 1.12 (−1.29–3.1) | 0.0000001 | |
BMI (kg/m2) | <25 | 23 | 4.4 (2.75–6.6) | 4.8 (3.91–6.93) | 0.01 (−0.04–1.9) | 0.007 | 27 | 5.4 (2.6–8.3) | 6.8 (4.3–10.8) | 1.4 (−0.12–2.9) | 0.00001 |
≥25 | 83 | 3.87 (2.1–6.2) | 4.5 (2.33–6.9 | 0.04 (−1.2–3.14 | 0.0000001 | 153 | 4.67 (3.01–7.1) | 5.5 (3.2–7.9) | 1.09 (−1.29–3.1) | 0.0000001 | |
LVEF (%) | ≤40% | 7 | 4.31 (3.58–5.28) | 5.2 (3.55–6.9) | 0.68 (−0.03–3.14) | 0.08 | 18 | 4.35 (3.32–6.27) | 5.2 (3.77–6.55) | 1.1 (−0.02–1.46) | 0.0008 |
41%-49% | 31 | 3.8 (2.3–6.1) | 4.7 (2.3–6.9) | 1.23 (−0.1–2.6) | 0.0002 | 60 | 4.83 (2.68–6.14) | 5.8 (3.21–8.24) | 1.17 (−0.15–2.98) | 0.0000001 | |
≥50% | 68 | 4.03 (2.2–6) | 4.4 (2.7–6.7) | 0.02 (−1.2–1.5) | 0.00003 | 102 | 4.74 (3.13–8.34) | 5.6 (4.11–10.79) | 1.12 (−1.29–3.1) | 0.0000001 | |
CAD | single-vessel disease | 52 | 3.9 (2.3–6.5) | 4.8 (2.3–6.9) | 0.97 (−0.1–3.14) | 0.0000001 | 64 | 4.85 (3.01–6.96) | 5.8 (3.91–8.24) | 1.1 (−0.15–3.1) | 0.0000001 |
two-vessel disease | 31 | 4.0 (3.0–6.2) | 4.2 (3.2–6.6) | 0.01 (−1.2–2.26) | 0.02 | 52 | 4.76 (3.26–6.2) | 5.66 (3.21–7.5) | 1.15 (−1.29–2.98) | 0.0000001 | |
three-vessel disease | 20 | 4.07 (2.1–6.6) | 4.3 (2.7–6.9) | 0.1 (−0.1–1.9) | 0.19 | 59 | 4.63 (2.68–8.34) | 5.5 (3.5–10.79) | 1.14 (−0.14–2.7) | 0.0000001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Szmigielska, K.; Jegier, A. Clinical Outcomes of Cardiac Rehabilitation in Women with Coronary Artery Disease—Differences in Comparison with Men. J. Pers. Med. 2022, 12, 600. https://doi.org/10.3390/jpm12040600
Szmigielska K, Jegier A. Clinical Outcomes of Cardiac Rehabilitation in Women with Coronary Artery Disease—Differences in Comparison with Men. Journal of Personalized Medicine. 2022; 12(4):600. https://doi.org/10.3390/jpm12040600
Chicago/Turabian StyleSzmigielska, Katarzyna, and Anna Jegier. 2022. "Clinical Outcomes of Cardiac Rehabilitation in Women with Coronary Artery Disease—Differences in Comparison with Men" Journal of Personalized Medicine 12, no. 4: 600. https://doi.org/10.3390/jpm12040600
APA StyleSzmigielska, K., & Jegier, A. (2022). Clinical Outcomes of Cardiac Rehabilitation in Women with Coronary Artery Disease—Differences in Comparison with Men. Journal of Personalized Medicine, 12(4), 600. https://doi.org/10.3390/jpm12040600