Predictors of SARS-CoV-2 IgG Spike Antibody Responses on Admission and Clinical Outcomes of COVID-19 Disease in Fully Vaccinated Inpatients: The CoVax Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Detection of the SARS-CoV-2 IgG S Protein-Specific Antibodies
2.3. Statistical Analysis
3. Results
3.1. Baseline Characteristics of the Study Population
3.2. Factors Influencing SARS-CoV-2 IgG S Antibody Responses
3.3. Factors Influencing the Outcome of COVID-19 Disease in Fully Vaccinated, Hospitalized Patients
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Majumder, J.; Minko, T. Recent Developments on Therapeutic and Diagnostic Approaches for COVID-19. AAPS J. 2021, 23, 1–22. [Google Scholar] [CrossRef] [PubMed]
- Lin, C.Y.; Wolf, J.; Brice, D.C.; Sun, Y.; Locke, M.; Cherry, S.; Castellaw, A.H.; Wehenkel, M.; Crawford, J.C.; Zarnitsyna, V.I.; et al. Pre-existing humoral immunity to human common cold coronaviruses negatively impacts the protective SARS-CoV-2 antibody response. Cell Host Microbe 2021, 30, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Galarza, J.; Prócel, C.; Cañadas, C.; Aguirre, D.; Pibaque, R.; Bedón, R.; Sempértegui, F.; Drexhage, H.; Baldeón, L. Immune response to SARS-CoV-2 infection in obesity and T2D: Literature review. Vaccines 2021, 9, 102. [Google Scholar] [CrossRef]
- Fathi, A.; Addo, M.M.; Dahlke, C. Sex Differences in Immunity: Implications for the Development of Novel Vaccines Against Emerging Pathogens. Front. Immunol. 2021, 11, 1–7. [Google Scholar] [CrossRef]
- Andre, F.E.; Booy, R.; Bock, H.L.; Clemens, J.; Datta, S.K.; John, T.J.; Lee, B.W.; Lolekha, S.; Peltola, H.; Ruff, T.A.; et al. Vaccination greatly reduces disease, disability, death and inequity worldwide. Bull. World Health Organ. 2008, 86, 140–146. [Google Scholar] [CrossRef] [PubMed]
- Zimmermann, P.; Curtis, N. Factors That Influence the Immune Response to Vaccination. Clin. Microbiol. Rev. 2019, 32, 1–50. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sallusto, F.; Lanzavecchia, A.; Araki, K.; Ahmed, R. Immunity Review from Vaccines to Memory and Back. Immunity 2010, 33, 451–463. [Google Scholar] [CrossRef] [Green Version]
- Hadj Hassine, I. Covid-19 vaccines and variants of concern: A review. Rev. Med. Virol. 2021, 2021, e2313. [Google Scholar] [CrossRef]
- Amanat, F.; Strohmeier, S.; Meade, P.; Dambrauskas, N.; Mühlemann, B.; Smith, D.J.; Vigdorovich, V.; Sather, D.N.; Coughlan, L.; Krammer, F. Vaccination with SARS-CoV-2 variants of concern protects mice from challenge with wild-type virus. PLoS Biol. 2021, 19, e3001384. [Google Scholar] [CrossRef]
- Lipsitch, M.; Krammer, F.; Regev-Yochay, G.; Lustig, Y.; Balicer, R.D. SARS-CoV-2 breakthrough infections in vaccinated individuals: Measurement, causes and impact. Nat. Rev. Immunol. 2022, 22, 57–65. [Google Scholar] [CrossRef]
- Nomura, Y.; Sawahata, M.; Nakamura, Y.; Koike, R.; Katsube, O.; Hagiwara, K.; Niho, S.; Masuda, N.; Tanaka, T.; Sugiyama, K. Attenuation of Antibody Titers from 3 to 6 Months after the Second Dose of the BNT162b2 Vaccine Depends on Sex, with Age and Smoking Risk Factors for Lower Antibody Titers at 6 Months. Vaccines 2021, 9, 1500. [Google Scholar] [CrossRef] [PubMed]
- Wei, J.; Stoesser, N.; Matthews, P.C.; Ayoubkhani, D.; Studley, R.; Bell, I.; Bell, J.I.; Newton, J.N.; Farrar, J.; Diamond, I.; et al. Antibody responses to SARS-CoV-2 vaccines in 45,965 adults from the general population of the United Kingdom. Nat. Microbiol. 2021, 6, 1140–1149. [Google Scholar] [CrossRef] [PubMed]
- Watanabe, M.; Balena, A.; Tuccinardi, D.; Tozzi, R.; Risi, R.; Masi, D.; Caputi, A.; Rossetti, R.; Spoltore, M.E.; Filippi, V.; et al. Central obesity, smoking habit, and hypertension are associated with lower antibody titres in response to COVID-19 mRNA vaccine. Diabetes Metab. Res. Rev. 2022, 38, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Monin, L.; Laing, A.G.; Muñoz-Ruiz, M.; McKenzie, D.R.; Del Molino Del Barrio, I.D.; Alaguthurai, T.; Domingo-Vila, C.; Hayday, T.S.; Graham, C.; Seow, J.; et al. Safety and immunogenicity of one versus two doses of the COVID-19 vaccine BNT162b2 for patients with cancer: Interim analysis of a prospective observational study. Lancet Oncol. 2021, 22, 765–778. [Google Scholar] [CrossRef]
- Frasca, D.; Diaz, A.; Romero, M.; Landin, A.M.; Blomberg, B.B. Age effects on B cells and humoral immunity in humans. Ageing Res. Rev. 2011, 10, 330–335. [Google Scholar] [CrossRef] [Green Version]
- Collier, D.A.; Ferreira, I.A.T.M.; Kotagiri, P.; Datir, R.P.; Lim, E.Y.; Touizer, E.; Meng, B.; Abdullahi, A.; Bioresource, T.C.; Elmer, A.; et al. Age-related immune response heterogeneity to SARS-CoV-2 vaccine BNT162b2. Nature 2021, 596, 417–422. [Google Scholar] [CrossRef]
- Korosec, C.S.; Farhang-sardroodi, S.; Dick, D.W.; Gholami, S.; Ghaemi, M.S.; Moyles, I.R.; Craig, M.; Ooi, H.K.; Heffernan, J.M. Long-term predictions of humoral immunity after two doses of BNT162b2 and mRNA-1273 vaccines based on dosage, age and sex. MedRxiv 2021, 1–16. [Google Scholar] [CrossRef]
- Müller, L.; Andrée, M.; Moskorz, W.; Drexler, I.; Walotka, L.; Grothmann, R.; Ptok, J.; Hillebrandt, J.; Ritchie, A.; Rabl, D.; et al. Age-dependent Immune Response to the Biontech/Pfizer BNT162b2 Coronavirus Disease 2019 Vaccination. Clin. Infect. Dis. 2021, 73, 2065–2072. [Google Scholar] [CrossRef]
- Singanayagam, A.; Hakki, S.; Dunning, J.; Madon, K.J.; Crone, M.A.; Koycheva, A.; Derqui-Fernandez, N.; Barnett, J.L.; Whitfield, M.G.; Varro, R.; et al. Community transmission and viral load kinetics of the SARS-CoV-2 delta (B.1.617.2) variant in vaccinated and unvaccinated individuals in the UK: A prospective, longitudinal, cohort study. Lancet Infect. Dis. 2021, 22, 183–195. [Google Scholar] [CrossRef]
- Knol, M.J.; Backer, J.A.; de Melker, H.E.; van den Hof, S.; de Gier, B. Transmissibility of SARS-CoV-2 among fully vaccinated individuals. Lancet Infect. Dis. 2022, 22, 16–17. [Google Scholar] [CrossRef]
- Regev-Yochay, G.; Amit, S.; Bergwerk, M.; Lipsitch, M.; Leshem, E.; Kahn, R.; Lustig, Y.; Cohen, C.; Doolman, R.; Ziv, A.; et al. Decreased infectivity following BNT162b2 vaccination: A prospective cohort study in Israel. Lancet Reg. Health Eur. 2021, 7, 100150. [Google Scholar] [CrossRef] [PubMed]
- Prediletto, I.; Antoni, L.D.; Carbonara, P.; Daniele, F.; Dongilli, R.; Flore, R.; Pacilli, A.M.G.; Pisani, L.; Tomsa, C.; Vega, M.L.; et al. Standardizing PaO2 for PaCO2 in P / F ratio predicts in-hospital mortality in acute respiratory failure due to Covid-19 : A pilot prospective study. Eur. J. Intern. Med. 2021, 92, 48–54. [Google Scholar] [CrossRef] [PubMed]
- Komaru, Y.; Doi, K. Does a slight change in serum creatinine matter in coronavirus disease 2019 (Covid-19) patients? Kidney Res. Clin. Pract. 2021, 40, 177–179. [Google Scholar] [CrossRef] [PubMed]
- Alfano, G.; Ferrari, A.; Fontana, F.; Mori, G.; Ligabue, G.; Giovanella, S.; Magistroni, R.; Meschiari, M.; Franceschini, E.; Menozzi, M.; et al. Twenty-four-hour serum creatinine variation is associated with poor outcome in the novel coronavirus disease 2019 (Covid-19) patients. Kidney Res. Clin. Pract. 2021, 40, 231–240. [Google Scholar] [CrossRef]
- Van Praet, J.; Reynders, M.; De Bacquer, D.; Viaene, L.; Schoutteten, M.K.; Caluwé, R.; Doubel, P.; Heylen, L.; De Bel, A.V.; Van Vlem, B.; et al. Predictors and dynamics of the humoral and cellular immune response to SARS-CoV-2 mRNA vaccines in hemodialysis patients: A multicenter observational study. JASN 2021, 32, 3208–3220. [Google Scholar] [CrossRef]
- Rouka, E.; Livanou, E.; Sinis, S.; Dimeas, I.; Pantazopoulos, I.; Papagiannis, D.; Malli, F.; Kotsiou, O.; Gourgoulianis, K.I. Immune response to the severe acute respiratory syndrome coronavirus 2 vaccines: Is it sustained in the diabetes population? J. Diabetes Investig. 2022. [Google Scholar] [CrossRef]
- Cheng, X.; Liu, Y.M.; Li, H.; Zhang, X.; Lei, F.; Qin, J.J.; Chen, Z.; Deng, K.Q.; Lin, L.; Chen, M.M.; et al. Metformin Is Associated with Higher Incidence of Acidosis, but Not Mortality, in Individuals with COVID-19 and Pre-existing Type 2 Diabetes. Cell Metab. 2020, 32, 537–547. [Google Scholar] [CrossRef]
- Turk Wensveen, T.; Gašparini, D.; Rahelić, D.; Wensveen, F.M. Type 2 diabetes and viral infection; cause and effect of disease. Diabetes Res. Clin. Pract. 2021, 172, 1–13. [Google Scholar] [CrossRef]
- Ades, P.A.; Savage, P.D. The obesity paradox: Perception vs knowledge. Mayo Clin. Proc. 2010, 85, 112–114. [Google Scholar] [CrossRef] [Green Version]
- Vassallo, A.; Shajahan, S.; Harris, K.; Hallam, L.; Hockham, C.; Womersley, K.; Woodward, M.; Sheel, M. Sex and Gender in COVID-19 Vaccine Research: Substantial Evidence Gaps Remain. Front. Glob. Women Health 2021, 2, 1–12. [Google Scholar] [CrossRef]
- Antonelli, M.; Penfold, R.S.; Merino, J.; Sudre, C.H.; Molteni, E.; Berry, S.; Canas, L.S.; Graham, M.S.; Klaser, K.; Modat, M.; et al. Risk factors and disease profile of post-vaccination SARS-CoV-2 infection in UK users of the COVID Symptom Study app: A prospective, community-based, nested, case-control study. Lancet Infect. Dis. 2022, 22, 43–55. [Google Scholar] [CrossRef]
General Information | Lifestyle | Comorbidities |
Age Sex BMI Number of family members Days with symptoms from onset until admission Occupation | Smoking (pack/years) Alcohol (weekly consumption) Exercise (40 min/week) Fruit and vegetable consumption (Yes/No) | Diabetes (Yes/No) Coronary artery disease (Yes/No) Arterial hypertension (Yes/No) COPD-asthma (Yes/No) Obstructive apnea syndrome (Yes/No) Renal disease (Yes/No) Neoplasia (Yes/No) Autoimmune disease (Yes/No) |
Drug Consumption | Vaccine Information | Antibodies |
Immunosuppressive drugs before vaccination (Yes/No) probiotics (Yes/No) Antibiotics taken one week before or after vaccination (Yes/No) Nonsteroidal anti-inflammatory drugs one week before or after vaccination (Yes/No) Vitamin intake one week before or after vaccination (Yes/No) | Anxiety about vaccination (Yes/No) Vaccine type Vaccine doses Day since last dose Symptoms after vaccination (fever > 38, hand pain, arthralgia/myalgia) | Presence of anti-S SARS-CoV-2 antibodies on admission (Yes/No) |
Cases With A Negative Antibody Test (N = 27) | Cases with Detectable Antibody Levels (N = 75) | p Value | Deceased Patients (N = 14) | Non-Deceased Patients (N = 88) | p Value | |
---|---|---|---|---|---|---|
Age, years, median ± SD * | 75 ± 11.1 | 73 ± 12.4 | 0.039 | 82 ± 8.3 | 71 ± 12.2 | 0.003 |
Body mass index, median ± SD | 26 ± 4.5 | 26.9 ± 4.1 | ns | 24.8 ± 3.1 | 27.2 ± 4.1 | 0.029 |
Male sex (%) | 18 | 52 | ns | 11.9 | 57.4 | ns |
Residence, urban (ratio) | 0.7 | 0.76 | ns | 0.85 | 0.74 | ns |
Use of probiotics (ratio) | 0 | 0.03 | ns | 0 | 0.02 | ns |
Vitamin use (ratio) | 0.26 | 0.16 | ns | 0.31 | 0.16 | ns |
Weekly exercise (ratio) | 0.5 | 0.72 | ns | 0.61 | 0.68 | ns |
PaO2/FiO2 (PF) ratio < 150 mm Hg (ratio) | 0.48 | 0.22 | 0.014 | 0.93 | 0.2 | <0.001 |
Corticosteroids use before vaccination (ratio) | 0.08 | 0.03 | ns | 0.07 | 0.04 | ns |
COVID-19 mRNA vaccination (ratio) | 0.76 | 0.74 | ns | 1 | 0.70 | 0.035 |
Vaccination anxiety (ratio) | 0.13 | 0.16 | ns | 0.23 | 0.15 | ns |
Symptoms post vaccination (ratio) | 0.22 | 0.41 | ns | 0.15 | 0.39 | ns |
Days since last vaccination dose, median ± SD | 168 ± 63.1 | 163 ± 59.6 | ns | 181 ± 77.1 | 163 ± 58.5 | ns |
Days from symptom onset to admission, median ± SD | 4 ± 2.3 | 6 ± 2.3 | <0.001 | 5 ± 2.2 | 6 ± 2.45 | 0.007 |
Hospitalization days, median ± SD | 6 ± 9.2 | 6 ± 5.2 | ns | 6 ± 7.8 | 6 ± 6.3 | ns |
Laboratory testing | ||||||
SARS-CoV-2 Cycle threshold, median ± SD | 15.56 ± 4.15 | 19.84 ± 5.5 | <0.001 | 16.26 ± 4.2 | 19.25 ± 5.57 | 0.036 |
Detection of anti-S SARS-CoV-2 IgG responses (ratio) | - | 1 | - | 0.43 | 0.77 | 0.019 |
anti-S SARS-CoV-2 IgG titers (A.U.), median ± SD | - | 2.83 ± 3.57 | - | 0 ± 1.53 | 1.49 ± 3.6 | 0.001 ** |
White blood cells (×109/L), median ± SD | 6100.00 ± 3758.48 | 7600.00 ± 3734.09 | ns | 7950.00 ± 3877.3 | 7000.00 ± 3768.4 | ns |
Lymphocytes (×109/L), median ± SD | 640.00 ± 340.70 | 740.00 ± 1312.97 | ns | 595.00 ± 330.6 | 720.00 ± 1215.1 | ns |
Platelets (×109/L), median ± SD | 205000.00 ± 58002.23 | 219000.00 ± 83154.72 | ns | 201000.00 ± 85309.13 | 215000.00 ± 77491.78 | ns |
C-Reactive protein (mg/dL), median ± SD | 4.72 ± 10.67 | 8.31 ± 6.60 | ns | 13.18 ± 12.9 | 6.63 ± 6.45 | ns |
Creatinine (mg/dL), median ± SD | 1.19 ± 0.92 | 0.9 ± 0.38 | 0.001 ** | 0.97 ± 1.27 | 0.94 ± 0.37 | ns |
Urea (mg/dL), median ± SD | 46.50 ± 41.80 | 38.00 ± 38.96 | ns | 44.2 ± 55.2 | 38.2 ± 36.27 | ns |
Serum glutamic-oxaloacetic transaminase (IU/L), median ± SD | 27.70 ± 34.80 | 28.00 ± 26.10 | ns | 34.7 ± 31.9 | 27.9 ± 27.5 | ns |
Serum glutamic pyruvic transaminase (IU/L), median ± SD | 22.00 ± 27.73 | 24.00 ± 30.69 | ns | 21.65 ± 24.7 | 24.1 ± 27.2 | ns |
Lactate Dehydrogenase (IU/L), median ± SD | 314.00 ± 221.34 | 357.00 ± 154.93 | ns | 371.5 ± 275.77 | 335.00 ± 143.81 | ns |
Ferritin (ng/mL), median ± SD | 619.70 ± 615.67 | 588.20 ± 722.72 | ns | 653.50 ± 1189.80 | 581.75 ± 546.09 | ns |
Creatine Kinase (U/L), median ± SD | 99.00 ± 637.14 | 97.00 ± 133.20 | ns | 115.50 ± 768.43 | 94.50 ± 212.89 | ns |
Comorbidities | ||||||
Diabetes (ratio) | 0.44 | 0.15 | 0.006 | 0.38 | 0.22 | ns |
Coronary disease (ratio) | 0.3 | 0.2 | ns | 0.3 | 0.2 | ns |
Hypertension (ratio) | 0.48 | 0.5 | ns | 0.16 | 0.55 | 0.014 |
Asthma, Chronic obstructive pulmonary disease (ratio) | 0.12 | 0.10 | ns | 0.15 | 0.1 | ns |
Obstructive Sleep Apnea Syndrome (ratio) | 0 | 0.01 | ns | 0.08 | 0 | ns |
Renal disease (ratio) | 0.08 | 0.03 | ns | 0 | 0.05 | ns |
Cancer (ratio) | 0.08 | 0.07 | ns | 0.07 | 0.07 | ns |
Autoimmune disease (ratio) | 0.13 | 0.07 | ns | 0.08 | 0.1 | ns |
Variables in the Model | B | S.E. | Wald | df | p Value | Exp (B) | 95% C.I. for EXP(B) ** | |
---|---|---|---|---|---|---|---|---|
Lower | Upper | |||||||
age | 0.006 | 0.027 | 0.047 | 1 | 0.828 | 1.006 | 0.954 | 1.061 |
Ct | 0.249 | 0.110 | 5.139 | 1 | 0.023 | 1.283 | 1.034 | 1.591 |
PF atio (1) | 0.758 | 0.668 | 1.288 | 1 | 0.256 | 2.134 | 0.576 | 7.899 |
Days WSBH * | 0.387 | 0.173 | 4.990 | 1 | 0.025 | 1.472 | 1.049 | 2.067 |
CREATININE | −0.736 | 0.588 | 1.569 | 1 | 0.210 | 0.479 | 0.151 | 1.515 |
Diabetes (1) | 0.598 | 0.694 | 0.745 | 1 | 0.388 | 1.819 | 0.467 | 7.083 |
Constant | −6.044 | 3.266 | 3.425 | 1 | 0.064 | 0.002 |
Variables in the Model | B | S.E. | Wald | df | p Value | Exp (B) | 95% C.I. for EXP(B) ** | |
---|---|---|---|---|---|---|---|---|
Lower | Upper | |||||||
age | 0.069 | 0.053 | 1.721 | 1 | 0.190 | 1.071 | 0.967 | 1.188 |
Ct | −0.216 | 0.148 | 2.135 | 1 | 0.144 | 0.806 | 0.603 | 1.077 |
Days_WSBH * | −0.059 | 0.306 | 0.037 | 1 | 0.847 | 0.943 | 0.517 | 1.718 |
BMI | −0.235 | 0.160 | 2.159 | 1 | 0.142 | 0.791 | 0.578 | 1.081 |
antibodies (1) | −0.275 | 1.194 | 0.053 | 1 | 0.818 | 0.760 | 0.073 | 7.893 |
PF_Ratio (1) | −4.156 | 1.442 | 8.305 | 1 | 0.004 | 0.016 | 0.001 | 0.265 |
Hypertension (1) | 1.115 | 1.185 | 0.885 | 1 | 0.347 | 3.050 | 0.299 | 31.135 |
Constant | 4.095 | 8.290 | 0.244 | 1 | 0.621 | 60.068 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Livanou, E.; Rouka, E.; Sinis, S.; Dimeas, I.; Pantazopoulos, I.; Papagiannis, D.; Malli, F.; Kotsiou, O.; Gourgoulianis, K.I. Predictors of SARS-CoV-2 IgG Spike Antibody Responses on Admission and Clinical Outcomes of COVID-19 Disease in Fully Vaccinated Inpatients: The CoVax Study. J. Pers. Med. 2022, 12, 640. https://doi.org/10.3390/jpm12040640
Livanou E, Rouka E, Sinis S, Dimeas I, Pantazopoulos I, Papagiannis D, Malli F, Kotsiou O, Gourgoulianis KI. Predictors of SARS-CoV-2 IgG Spike Antibody Responses on Admission and Clinical Outcomes of COVID-19 Disease in Fully Vaccinated Inpatients: The CoVax Study. Journal of Personalized Medicine. 2022; 12(4):640. https://doi.org/10.3390/jpm12040640
Chicago/Turabian StyleLivanou, Eleni, Erasmia Rouka, Sotirios Sinis, Ilias Dimeas, Ioannis Pantazopoulos, Dimitrios Papagiannis, Foteini Malli, Ourania Kotsiou, and Konstantinos I. Gourgoulianis. 2022. "Predictors of SARS-CoV-2 IgG Spike Antibody Responses on Admission and Clinical Outcomes of COVID-19 Disease in Fully Vaccinated Inpatients: The CoVax Study" Journal of Personalized Medicine 12, no. 4: 640. https://doi.org/10.3390/jpm12040640
APA StyleLivanou, E., Rouka, E., Sinis, S., Dimeas, I., Pantazopoulos, I., Papagiannis, D., Malli, F., Kotsiou, O., & Gourgoulianis, K. I. (2022). Predictors of SARS-CoV-2 IgG Spike Antibody Responses on Admission and Clinical Outcomes of COVID-19 Disease in Fully Vaccinated Inpatients: The CoVax Study. Journal of Personalized Medicine, 12(4), 640. https://doi.org/10.3390/jpm12040640