Common UGT1A6 Variant Alleles Determine Acetaminophen Pharmacokinetics in Man
Abstract
:1. Introduction
2. Patients and Methods
3. Results
3.1. Interindividual Variability in Acetaminophen Pharmacokinetics
3.2. Genetic Analyses
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Aronoff, D.M.; Oates, J.A.; Boutaud, O. New insights into the mechanism of action of acetaminophen: Its clinical pharmacologic characteristics reflect its inhibition of the two prostaglandin H2 synthases. Clin. Pharmacol. Ther. 2006, 79, 9–19. [Google Scholar] [CrossRef] [PubMed]
- Moore, R.A.; Moore, N. Paracetamol and pain: The kiloton problem. Eur. J. Hosp. Pharm. Sci. Pract. 2016, 23, 187–188. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Freo, U.; Ruocco, C.; Valerio, A.; Scagnol, I.; Nisoli, E. Paracetamol: A Review of Guideline Recommendations. J. Clin. Med. 2021, 10, 3420. [Google Scholar] [CrossRef] [PubMed]
- Agundez, J.A.G.; Gomez-Tabales, J.; Ruano, F.; Garcia-Martin, E. The potential role of pharmacogenomics and biotransformation in hypersensitivity reactions to paracetamol. Curr. Opin. Allergy Clin. Immunol. 2018, 18, 302–309. [Google Scholar] [CrossRef] [PubMed]
- Amo, G.; Cornejo-Garcia, J.A.; Garcia-Menaya, J.M.; Cordobes, C.; Torres, M.J.; Esguevillas, G.; Mayorga, C.; Martinez, C.; Blanca-Lopez, N.; Canto, G.; et al. FCERI and Histamine Metabolism Gene Variability in Selective Responders to NSAIDS. Front. Pharmacol. 2016, 7, 353. [Google Scholar] [CrossRef] [Green Version]
- Perez-Alzate, D.; Blanca-Lopez, N.; Dona, I.; Agundez, J.A.; Garcia-Martin, E.; Cornejo-Garcia, J.A.; Perkins, J.R.; Blanca, M.; Canto, G. Asthma and Rhinitis Induced by Selective Immediate Reactions to Paracetamol and Non-steroidal Anti-inflammatory Drugs in Aspirin Tolerant Subjects. Front. Pharmacol. 2016, 7, 215. [Google Scholar] [CrossRef] [Green Version]
- Agundez, J.A.; Martinez, C.; Perez-Sala, D.; Carballo, M.; Torres, M.J.; Garcia-Martin, E. Pharmacogenomics in aspirin intolerance. Curr. Drug Metab. 2009, 10, 998–1008. [Google Scholar] [CrossRef] [Green Version]
- Stephens, C.; Andrade, R.J.; Lucena, M.I. Mechanisms of drug-induced liver injury. Curr. Opin. Allergy Clin. Immunol. 2014, 14, 286–292. [Google Scholar] [CrossRef]
- Agundez, J.A.; Lucena, M.I.; Martinez, C.; Andrade, R.J.; Blanca, M.; Ayuso, P.; Garcia-Martin, E. Assessment of nonsteroidal anti-inflammatory drug-induced hepatotoxicity. Expert Opin. Drug Metab. Toxicol. 2011, 7, 817–828. [Google Scholar] [CrossRef]
- Zoubek, M.E.; Lucena, M.I.; Andrade, R.J.; Stephens, C. Systematic review: Ibuprofen-induced liver injury. Aliment. Pharmacol. Ther. 2020, 51, 603–611. [Google Scholar] [CrossRef]
- Agundez, J.A.; Blanca, M.; Cornejo-Garcia, J.A.; Garcia-Martin, E. Pharmacogenomics of cyclooxygenases. Pharmacogenomics 2015, 16, 501–522. [Google Scholar] [CrossRef] [PubMed]
- Agundez, J.A.; Gonzalez-Alvarez, D.L.; Vega-Rodriguez, M.A.; Botello, E.; Garcia-Martin, E. Gene variants and haplotypes modifying transcription factor binding sites in the human cyclooxygenase 1 and 2 (PTGS1 and PTGS2) genes. Curr. Drug Metab. 2014, 15, 182–195. [Google Scholar] [CrossRef]
- Cornejo-Garcia, J.A.; Blanca-Lopez, N.; Dona, I.; Andreu, I.; Agundez, J.A.; Carballo, M.; Blanca, M.; Canto, M.G. Hypersensitivity reactions to non-steroidal anti-inflammatory drugs. Curr. Drug Metab. 2009, 10, 971–980. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Martin, E.; Garcia-Menaya, J.M.; Esguevillas, G.; Cornejo-Garcia, J.A.; Dona, I.; Jurado-Escobar, R.; Torres, M.J.; Blanca-Lopez, N.; Canto, G.; Blanca, M.; et al. Deep sequencing of prostaglandin-endoperoxide synthase (PTGE) genes reveals genetic susceptibility for cross-reactive hypersensitivity to NSAID. Br. J. Pharmacol. 2021, 178, 1218–1233. [Google Scholar] [CrossRef] [PubMed]
- Lucena, M.I.; Garcia-Martin, E.; Daly, A.K.; Blanca, M.; Andrade, R.J.; Agundez, J.A.G. Next-Generation Sequencing of PTGS Genes Reveals an Increased Frequency of Non-synonymous Variants Among Patients With NSAID-Induced Liver Injury. Front. Genet. 2019, 10, 134. [Google Scholar] [CrossRef] [Green Version]
- Leeming, M.G.; Donald, W.A.; O’Hair, R.A.J. Nontargeted Identification of Reactive Metabolite Protein Adducts. Anal. Chem. 2017, 89, 5748–5756. [Google Scholar] [CrossRef]
- Court, M.H.; Zhu, Z.; Masse, G.; Duan, S.X.; James, L.P.; Harmatz, J.S.; Greenblatt, D.J. Race, Gender, and Genetic Polymorphism Contribute to Variability in Acetaminophen Pharmacokinetics, Metabolism, and Protein-Adduct Concentrations in Healthy African-American and European-American Volunteers. J. Pharmacol. Exp. Ther. 2017, 362, 431–440. [Google Scholar] [CrossRef] [Green Version]
- Mazaleuskaya, L.L.; Sangkuhl, K.; Thorn, C.F.; FitzGerald, G.A.; Altman, R.B.; Klein, T.E. PharmGKB summary: Pathways of acetaminophen metabolism at the therapeutic versus toxic doses. Pharm. Genom. 2015, 25, 416–426. [Google Scholar] [CrossRef] [Green Version]
- Rauchschwalbe, S.K.; Zuhlsdorf, M.T.; Wensing, G.; Kuhlmann, J. Glucuronidation of acetaminophen is independent of UGT1A1 promotor genotype. Int. J. Clin. Pharmacol. Ther. 2004, 42, 73–77. [Google Scholar] [CrossRef]
- Tankanitlert, J.; Morales, N.P.; Howard, T.A.; Fucharoen, P.; Ware, R.E.; Fucharoen, S.; Chantharaksri, U. Effects of combined UDP-glucuronosyltransferase (UGT) 1A1*28 and 1A6*2 on paracetamol pharmacokinetics in beta-thalassemia/HbE. Pharmacology 2007, 79, 97–103. [Google Scholar] [CrossRef]
- Navarro, S.L.; Chen, Y.; Li, L.; Li, S.S.; Chang, J.L.; Schwarz, Y.; King, I.B.; Potter, J.D.; Bigler, J.; Lampe, J.W. UGT1A6 and UGT2B15 polymorphisms and acetaminophen conjugation in response to a randomized, controlled diet of select fruits and vegetables. Drug Metab. Dispos. Biol. Fate Chem. 2011, 39, 1650–1657. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Theken, K.N.; Lee, C.R.; Gong, L.; Caudle, K.E.; Formea, C.M.; Gaedigk, A.; Klein, T.E.; Agundez, J.A.G.; Grosser, T. Clinical Pharmacogenetics Implementation Consortium Guideline (CPIC) for CYP2C9 and Nonsteroidal Anti-Inflammatory Drugs. Clin. Pharmacol. Ther. 2020, 108, 191–200. [Google Scholar] [CrossRef] [PubMed]
- Caudle, K.E.; Klein, T.E.; Hoffman, J.M.; Muller, D.J.; Whirl-Carrillo, M.; Gong, L.; McDonagh, E.M.; Sangkuhl, K.; Thorn, C.F.; Schwab, M.; et al. Incorporation of pharmacogenomics into routine clinical practice: The Clinical Pharmacogenetics Implementation Consortium (CPIC) guideline development process. Curr. Drug Metab. 2014, 15, 209–217. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bannwarth, B.; Pehourcq, F. Pharmacologic basis for using paracetamol: Pharmacokinetic and pharmacodynamic issues. Drugs 2003, 63, 5–13. [Google Scholar] [CrossRef]
- Fisher, E.S.; Curry, S.C. Evaluation and treatment of acetaminophen toxicity. Adv. Pharmacol. 2019, 85, 263–272. [Google Scholar] [CrossRef]
- Court, M.H.; Duan, S.X.; von Moltke, L.L.; Greenblatt, D.J.; Patten, C.J.; Miners, J.O.; Mackenzie, P.I. Interindividual variability in acetaminophen glucuronidation by human liver microsomes: Identification of relevant acetaminophen UDP-glucuronosyltransferase isoforms. J. Pharmacol. Exp. Ther. 2001, 299, 998–1006. [Google Scholar]
- Maeda, M.; Tanaka, R.; Aso, M.; Sakamoto, Y.; Song, I.; Ochiai, M.; Saito, Y.; Maekawa, K.; Arakawa, N.; Ohno, Y.; et al. Hepatic Adaptation to Therapeutic Doses of Acetaminophen: An Exploratory Study in Healthy Individuals. Clin. Ther. 2020, 42, 1276–1291.e1. [Google Scholar] [CrossRef]
- Yamamoto, K.; Sato, H.; Fujiyama, Y.; Doida, Y.; Bamba, T. Contribution of two missense mutations (G71R and Y486D) of the bilirubin UDP glycosyltransferase (UGT1A1) gene to phenotypes of Gilbert’s syndrome and Crigler-Najjar syndrome type II. Biochim. Biophys. Acta 1998, 1406, 267–273. [Google Scholar] [CrossRef] [Green Version]
- Arab-Alameddine, M.; Fayet-Mello, A.; Lubomirov, R.; Neely, M.; di Iulio, J.; Owen, A.; Boffito, M.; Cavassini, M.; Gunthard, H.F.; Rentsch, K.; et al. Population pharmacokinetic analysis and pharmacogenetics of raltegravir in HIV-positive and healthy individuals. Antimicrob. Agents Chemother. 2012, 56, 2959–2966. [Google Scholar] [CrossRef] [Green Version]
- Krishnaswamy, S.; Hao, Q.; Al-Rohaimi, A.; Hesse, L.M.; von Moltke, L.L.; Greenblatt, D.J.; Court, M.H. UDP glucuronosyltransferase (UGT) 1A6 pharmacogenetics: II. Functional impact of the three most common nonsynonymous UGT1A6 polymorphisms (S7A, T181A, and R184S). J. Pharmacol. Exp. Ther. 2005, 313, 1340–1346. [Google Scholar] [CrossRef]
- Vinarov, Z.; Abdallah, M.; Agundez, J.A.G.; Allegaert, K.; Basit, A.W.; Braeckmans, M.; Ceulemans, J.; Corsetti, M.; Griffin, B.T.; Grimm, M.; et al. Impact of gastrointestinal tract variability on oral drug absorption and pharmacokinetics: An UNGAP review. Eur. J. Pharm. Sci. Off. J. Eur. Fed. Pharm. Sci. 2021, 162, 105812. [Google Scholar] [CrossRef] [PubMed]
- Joo, J.; Kim, Y.W.; Wu, Z.; Shin, J.H.; Lee, B.; Shon, J.C.; Lee, E.Y.; Phuc, N.M.; Liu, K.H. Screening of non-steroidal anti-inflammatory drugs for inhibitory effects on the activities of six UDP-glucuronosyltransferases (UGT1A1, 1A3, 1A4, 1A6, 1A9 and 2B7) using LC-MS/MS. Biopharm. Drug Dispos. 2015, 36, 258–264. [Google Scholar] [CrossRef] [PubMed]
- Papageorgiou, I.; Freytsis, M.; Court, M.H. Transcriptome association analysis identifies miR-375 as a major determinant of variable acetaminophen glucuronidation by human liver. Biochem. Pharmacol. 2016, 117, 78–87. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Court, M.H.; Peter, I.; Hazarika, S.; Vasiadi, M.; Greenblatt, D.J.; Lee, W.M.; Acute Liver Failure Study Group. Candidate gene polymorphisms in patients with acetaminophen-induced acute liver failure. Drug Metab. Dispos. Biol. Fate Chem. 2014, 42, 28–32. [Google Scholar] [CrossRef] [Green Version]
Characteristics | Men | Women | Total | Intergroup Comparison Values |
---|---|---|---|---|
No. (%) | 68 (32.6%) | 125 (64.8%) | 193 (100%) | - |
Age (years): Mean; median, range | 63.6; 65, 25–83 | 68.2; 71, 17–85 | 66.6; 70, 17–85 | 0.004 |
Weight (kg): Mean; median, range | 84.4; 83, 58–150 | 77.4; 78, 42–113 | 79.9; 80, 42–150 | 0.002 |
Body mass index: Mean; median, range | 31.0; 29.7, 21.0–49.0 | 32.8; 32.8, 19.0–45.0 | 32.1; 32.0, 19.0–49.0 | 0.013 |
Antecedents of nephropathy | 2 (3.0%) | 2 (1.7%) | 4 (2.2%) | 0.616 |
Antecedents of hepatopathy | 0 (0%) | 3 (2.5%) | 3 (1.6% | 0.553 |
Parameter | Mean; SD, Min–Max | Fold Range |
---|---|---|
C0 (μg/mL) | 10.53; 5.23, 2.39–32.43 | 13.57 |
K10 (1/h) | 0.48; 0.18, 0.19–1.44 | 7.58 |
t1/2 (h) | 1.64; 0.54, 0.48–3.61 | 7.52 |
V (mg/(ug/mL)) | 118.61; 60.38, 30.83–339.11 | 11.00 |
CL (mg/(ug/mL)/h) | 56.19; 35.31, 14.21–236.88 | 16.67 |
AUC 0–t (ug/mL*h) | 20.58; 10.59, 4.12–57.66 | 14.00 |
AUC 0–inf (ug/mL*h) | 24.18; 13.14, 4.22–70.35 | 16.67 |
AUMC (ug/mL*h2) | 61.29; 45.4, 4.49–229.51 | 51.12 |
MRT (h) | 2.36; 0.77, 0.70–5.20 | 7.43 |
Vss ((mg/(ug/mL)) | 118.61; 60.38, 30.83–339.11 | 11.00 |
Parameter | Men (n= 66) (Mean; SD, Min–Max) | Women (n = 120) (Mean; SD, Min–Max) | Comparison (p-Value) |
---|---|---|---|
C0 (μg/mL) | 8.29; 4.44, 2.39–26.70 | 11.77; 5.24, 3.31–32.43 | <0.001 |
K10 (1/h) | 0.45; 0.16, 0.19–0.93 | 0.49; 0.19, 0.20–1.44 | 0.207 |
t1/2 (h) | 1.72; 0.58, 0.75–3.61 | 1.59; 0.51, 0.48–3.51 | 0.108 |
V (mg/(ug/mL)) | 146.33; 67.28, 37.45–339.11 | 103.83; 50.76, 30.83–302.39 | <0.001 |
CL (mg/(ug/mL)/h) | 65.88; 36.81, 22.17–205.77 | 50.87; 33.43, 14.21–236.88 | <0.001 |
AUC 0–t (ug/mL*h) | 16.18; 7.19, 4.74–32.13 | 23.00; 11.38, 4.12–57.66 | <0.001 |
AUC 0–inf (ug/mL*h) | 19.17; 8.59, 4.86–45.10 | 26.94; 14.38, 4.22–70.35 | <0.001 |
AUMC (ug/mL*h2) | 49.58; 31.44, 5.86–165.98 | 67.63; 50.46, 4.49–229.51 | 0.058 |
MRT (h) | 2.49; 0.84, 1.08–5.20 | 2.30; 0.73, 0.70–5.07 | 0.108 |
Vss ((mg/(ug/mL)) | 146.33; 67.28, 37.45–339.11 | 103.83; 50.76, 30.83–302.39 | <0.001 |
Parameter | No Substrates or Inhibitors (n = 83) | Treated with Substrates (n = 102) | Treated with Inhibitors (n = 5) |
---|---|---|---|
Mean; SD, Range (p-Values: Crude; Adjusted by Sex) | Mean; SD, Range (p-Values: Crude; Adjusted by Sex) | Mean; SD, Range (p-Values: Crude; Adjusted by Sex) | |
C0 (μg/mL) | 10.49; 4.90, 2.42–30.1 (reference) | 10.63; 5.51, 2.39–32.43 (0.857; 0.998) | 9.46; 3.67, 5.33–13.72 (0.644; 0.924) |
K10 (1/h) | 0.46; 0.17, 0.23–1.19 (reference) | 0.49; 0.19, 0.19–1.44 (0.189; 0.207) | 0.54; 0.21, 0.27–0.85 (0.318; 0.247) |
t1/2 (h) | 1.69; 0.52, 0.58–2.95 (reference) | 1.59; 0.55, 0.48–3.61 (0.204; 0.227) | 1.48; 0.64, 0.82–2.53 (0.374; 0.292) |
V (mg/(ug/mL)) | 117.07; 59.46, 33.22–328.58 (reference) | 119.18; 61.30, 30.83–339.11 (0.815; 0.660) | 121.69; 52.18, 72.90–187.60 (0.865; 0.858) |
CL (mg/(ug/mL)/h) | 52.98; 30.78, 16.56–178.70 (reference) | 58.54; 38.64, 14.21–236.88 (0.287; 0.230) | 62.42; 27.07, 26.12–93.22 (0.503; 0.617) |
AUC 0–t (ug/mL*h) | 20.91; 9.84, 5.45–49.89 (reference) | 20.41; 11.21, 4.12–57.66 (0.749; 0.606) | 17.00; 7.58, 10.06–28.55 (0.384; 0.565) |
AUC 0–inf (ug/mL*h) | 24.87; 12.50, 5.60–60.39 (reference) | 23.74; 13.69, 4.22–70.35 (0.562; 0.443) | 19.64; 11.17, 10.73–38.29 (0.362; 0.522) |
AUMC (ug/mL*h2) | 64.48; 43.19, 6.46–178.09 (reference) | 59.03, 47.28, 4.49–229.51 (0.417, 0.351) | 48.53; 51.62, 19.21–139.91 (0.427; 0.538) |
MRT (h) | 2.44; 0.75, 0.84–4.26 (reference) | 2.30; 0.79, 0.70–5.20 (0.204; 0.227) | 2.13; 0.93, 1.18–3.65 (0.374; 0.292) |
Vss ((mg/(ug/mL)) | 117.07; 59.46, 33.22–328.58 (reference) | 119.18; 61.30, 30.83–339.11 (0.815; 0.660) | 121.69; 52.18, 72.90–187.60 (0.865; 0.858) |
Parameter | No Substrates or Inhibitors (n = 40) | Treated with Substrates (n = 146) | Other (Inhibitors + Inducers) (n = 1) |
---|---|---|---|
Mean; SD, Range (p-Values: Crude; Adjusted by Sex) | Mean; SD, Range (p-Values: Crude; Adjusted by Sex) | ||
C0 (μg/mL) | 12.10; 5.58, 3.04–30.10 (reference) | 10.11; 5.07, 2.39–32.43 (0.032; 0.035) | 3.34; - |
K10 (1/h) | 0.51; 0.25, 0.20–1.44 (reference) | 0.47; 03.16, 0.19–0.96 (0.164; 0.177) | 0.45; - |
t1/2 (h) | 1.60; 0.61, 0.48–3.51 (reference) | 1.65; 0.52, 0.72–3.61 (0.657; 0.694) | 1.54; - |
V (mg/(ug/mL)) | 102.40; 55.64, 33.22–328.58 (reference) | 123.11; 31.05, 30.83–339.11 (0.053; 0.054) | 299.16; - |
CL (mg/(ug/mL)/h) | 51.48; 36.44, 14.21–178.70 (reference) | 57.49; 35.01, 15.11–236.88 (0.340; 0.379) | 134.34; - |
AUC 0–t (ug/mL*h) | 23.31; 11.35, 5.45–57.04 (reference) | 19.83; 10.29, 4.2–57.66 (0.064; 0.072) | 6.66; - |
AUC 0–inf (ug/mL*h) | 27.32; 14.45, 5.60–70.35 (reference) | 23.32; 12.68, 4.22–66.19 (0.087; 0.099) | 7.44; - |
AUMC (ug/mL*h2) | 70.42; 55.67, 4.94–224.94 (reference) | 58.79; 42.03, 4.49–229.51 (0.150; 0.169) | 16.58; - |
MRT (h) | 2.31; 0.88, 0.70–5.07 (reference) | 2.38; 0.74, 1.04–5.20 (0.657; 0.694) | 2.23; - |
Vss ((mg/(ug/mL)) | 102.40; 55.64, 33.22–328.58 (reference) | 123.11; 61.05, 30.83–339.11 (0.053; 0.054) | 299.16; - |
Parameter | UGT1A6*1/*1 (n = 61) | UGT1A6*1/*Mutated (n = 79) | UGT1A6*Mutated/*Mutated (n = 35) |
---|---|---|---|
Mean; SD, Range (p-Values: Crude; Adjusted by Sex) | Mean; SD, Range (p-Values: Crude; Adjusted by Sex) | Mean; SD, Range (p-Values: Crude; Adjusted by Sex) | |
C0 (μg/mL) | 10.47; 4.98, 4.11–30.10 (reference) | 10.06; 5.20, 2.39–26.70 (0.549; 0.710) | 10.94; 5.09, 2.42–21.67 (0.669; 0.893) |
K10 (1/h) | 0.47; 0.17, 0.29–0.88 (reference) | 0.47; 0.17, 0.23–0.96 (0.570; 0.466) | 0.40; 0.13, 0.19–0.68 (0.019; 0.005) |
t1/2 (h) | 1.55; 0.45, 0.79–2.36 (reference) | 1.64; 0.51, 0.72–2.95 (0.570; 0.339) | 1.90; 0.64, 1.02–3.61 (0.019; 0.001) |
V (mg/(ug/mL)) | 117.41; 52.96, 33.22–243.08 (reference) | 127.26; 69.60, 37.45–339.11 (0.636; 0.400) | 109.03; 54.73, 46.14–302.39 (0.400; 0.676) |
CL (mg/(ug/mL)/h) | 56.43; 29.86, 18.67–178.70 (reference) | 59.42; 39.74, 14.21–236.88 (0.910; 0.687) | 45.48; 26.39, 16.56–126.61 (0.081; 0.102) |
AUC 0–t (ug/mL*h) | 19.88; 9.58, 5.45–43.47 (reference) | 19.56; 10.47, 4.12–57.04 (0.870; 0.942) | 23.41; 10.95, 6.19–49.89 (0.113; 0.152) |
AUC 0–inf (ug/mL*h) | 22.99; 11.99, 5.60–53.57 (reference) | 22.84; 12.75, 4.22–70.35 (0.910; 0.968) | 28.96; 14.16, 7.90–60.39 (0.044; 0.045) |
AUMC (ug/mL*h2) | 55.53; 39.99, 7.61–160.47 (reference) | 56.90; 42.67, 4.49–229.51 (0.658; 0.760) | 83.77; 54.66, 17.14–224.94 (0.010; 0.006) |
MRT (h) | 2.24; 0.65, 1.13–3.41 (reference) | 2.36; 0.73, 1.04–4.26 (0.570; 0.339) | 2.75; 0.93, 1.48–5.20 (0.019; 0.001) |
Vss ((mg/(ug/mL)) | 117.41; 52.96, 33.22–243.08 (reference) | 127.26; 69.60, 37.45–339.11 (0.636; 0.400) | 109.03, 54.73, 46.14–302.39 (0.400; 0.676) |
Parameter | UGT1A6*1/*1 (n = 61) | UGT1A6*1/*2 (n = 59) | UGT1A6*1/*3 (n = 14) | UGT1A6*1/*other (n = 6) | UGT1A6*2/*2 (n = 15) | UGT1A6*2/*3 (n = 8) | UGT1A6*2/*4 (n = 8) | UGT1A6*3/*4 (n = 4) |
---|---|---|---|---|---|---|---|---|
Mean; SD, Range (p-Values: Crude; Adjusted by Sex) | Mean; SD, Range (p-Values: Crude; Adjusted by Sex) | Mean; SD, Range (p-Values: Crude; Adjusted by Sex) | Mean; SD, Range (p-Values: Crude; Adjusted by Sex) | Mean; SD, Range (p-Values: Crude; Adjusted by Sex) | Mean; SD, Range (p-Values: Crude; Adjusted by Sex) | Mean; SD, Range (p-Values: Crude; Adjusted by Sex) | Mean; SD, Range (p-Values: Crude; Adjusted by Sex) | |
C0 (μg/mL) | 10.47; 4.98, 4.11–30.10 (reference) | 9.86; 5.54, 2.39–26.70 (0.364; 0.631) | 11.25; 4.28, 5.97–22.00 (0.602; 0.456) | 9.29; 3.58, 3.85–13.65 (0.574; 0.329) | 10.39; 5.93, 2.42–21.67 (0.961; 0.749) | 10.72; 4.05, 6.19–18.53 (0.895; 0.642) | 11.62; 4.96, 6.23–21.12 (0.541; 0.716) | 11.90; 5.78, 7.20–20.07 (0.583; 0.954) |
K10 (1/h) | 0.49; 0.17, 0.29–0.88 (reference) | 0.47; 0.18, 0.23–0.96 (0.307; 0.454) | 0.49; 0.12, 0.25–0.70 (0.511; 0.947) | 0.47; 0.08, 0.31–0.52 (0.797; 0.692) | 0.36; 0.11, 0.19–0.55 (0.004; 0.004) | 00.46; 0.13, 0.27–0.68 (0.952; 0.642) | 00.37; 0.11, 0.25–0.53 (0.038; 0.037) | 0.51; 0.12, 0.39–0.65 (0.484; 0.849) |
t1/2 (h) | 1.55; 0.45, 0.79–2.36 (reference) | 1.67; 0.53, 0.72–2.95 (0.307; 0.202) | 1.52; 0.46, 0.98–2.77 (0.511; 0.804) | 1.53; 0.33, 1.34–2.21 (0.797; 0.913) | 2.14; 0.73, 1.25–3.61 (0.004; 0.004) | 1.62; 0.49, 1.02–2.55 (0.952; 0.732) | 2.03; 0.57, 1.30–2.75 (0.038; 0.006) | 1.41; 0.32, 1.07–1.76 (0.484; 0.545) |
V (mg/(ug/mL)) | 117.41; 52.96, 33.22–243.08 (reference) | 133.38; 74.72, 37.45–339.11 (0.451; 0.204) | 100.59; 36.77, 45.45–167.38 (0.483; 0.186) | 128.95; 70.07, 73.26–259.56 (0.656; 0.419) | 121.02; 75.23, 46.14–302.39 (0.815; 0.578) | 105.14; 38.09, 53.98–161.56 (0.660; 0.348) | 99.11; 37.67, 47.34–160.64 (0.402; 0.462) | 97.69; 38.99, 49.83–138.90 (0.541; 0.850) |
CL (mg/(ug/mL)/h) | 56.43; 29.86, 18.67–178.70 (reference) | 62.62; 44.53 14.21–236.88 (0.922; 0.441) | 47.07; 16.32, 29.43–77.45 (0.280; 0.226) | 56.29; 19.82, 37.28–81.59 (0.991; 0.838) | 46.63; 31.87, 20.68–126.61 (0.129; 0.335) | 50.30; 25.59, 21.61–88.59 (0.583; 0.468) | 34.65; 11.09, 16.56–50.26 (0.031; 0.056) | 53.45; 31.26; 19.62–90.03 (0.848; 0.859) |
AUC 0–t (ug/mL*h) | 19.88; 9.58, 5.45–43.47 (reference) | 19.46; 11.58, 4.12–57.04 (0.667; 0.968) | 20.96; 6.50, 12.34–32.13 (0.369; 0.549) | 17.50; 6.01, 9.71–24.72 (0.640; 0.311) | 22.48; 10.72, 6.19–40.83 (0.340; 0.476) | 22.06; 11.00, 10.62–40.03 (0.590; 0.351) | 26.51; 10.97, 17.70–49.89 (0.072; 0.096) | 23.13; 14.92, 10.67–43.86 (0.771; 0.961) |
AUC 0–inf (ug/mL*h) | 22.99; 11.99, 5.60–53.57 (reference) | 23.03; 14.21, 4.22–70.35 (0.922; 0.845) | 23.56; 7.41, 12.91–33.98 (0.410; 0.720) | 219.50; 6.00, 12.26–26.83 (0.761; 0.268) | 29.35; 14.06, 7.90–48.35 (0.129; 0.108) | 26.16; 14.86, 11.29–46.28 (0.576; 0.322) | 32.55; 13.79, 19.90–60.39 (0.031; 0.050) | 25.98; 17.97, 11.11–50.98 (0.907; 0.921) |
AUMC (ug/mL*h2) | 55.33; 39.99 7.61–160.47 (reference) | 59.43; 47.47, 4.49–229.51 (0.748; 0.512) | 52.94; 26.40, 20.68–121.42 (0.531; 0.941) | 41.79; 10.02, 23.76–52.72 (0.981; 0.259) | 91.81; 57.47, 25.76–224.94 (0.017; 0.007) | 68.74; 56.02, 19.94–165.98 (0.646; 0.294) | 97.35; 52.30, 43.67–178.09 (0.011; 0.010) | 58.49; 51.00, 17.14–129.50 (0.930; 0.769) |
MRT (h) | 2.24; 0.65, 1.13–3.41 (reference) | 2.42; 0.77, 1.04–4.26 (0.307; 0.202) | 2.20; 0.66, 1.42–4.00 (0.511; 0.804) | 2.21; 0.48, 1.93–3.18 (0.797; 0.913) | 3.18; 1.05, 1.81–5.20 (0.004; <0.001) | 2.33; 0.71, 1.48–3.68 (0.925; 0.732) | 2.93; 0.82, 1.88–3.97 (0.038; 0.006) | 2.03; 0.46, 1.54–2.54 (0.484; 0.545) |
Vss ((mg/(ug/mL)) | 117.41; 52.96, 33.22–243.08 (reference) | 133.38; 74.72, 37.45–339.11 (0.451; 0.204) | 100.59; 36.77, 45.45–167.38 (0.483; 0.186) | 128.95; 70.07, 73.26–259.56 (0.656; 0.419) | 121.02; 75.23, 46.14–302.39 (0.815; 0.587) | 105.14; 38.09, 53.98–161.56 (0.660; 0.348) | 99.11; 37.67, 47.34–160.64 (0.402; 0.462) | 97.69; 38.99, 49.83–138.90 (0.541; 0.850) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cerezo-Arias, M.d.l.O.; Gómez-Tabales, J.; Martí, M.; García-Martín, E.; Agúndez, J.A.G. Common UGT1A6 Variant Alleles Determine Acetaminophen Pharmacokinetics in Man. J. Pers. Med. 2022, 12, 720. https://doi.org/10.3390/jpm12050720
Cerezo-Arias MdlO, Gómez-Tabales J, Martí M, García-Martín E, Agúndez JAG. Common UGT1A6 Variant Alleles Determine Acetaminophen Pharmacokinetics in Man. Journal of Personalized Medicine. 2022; 12(5):720. https://doi.org/10.3390/jpm12050720
Chicago/Turabian StyleCerezo-Arias, María de las Olas, Javier Gómez-Tabales, Manuel Martí, Elena García-Martín, and José A. G. Agúndez. 2022. "Common UGT1A6 Variant Alleles Determine Acetaminophen Pharmacokinetics in Man" Journal of Personalized Medicine 12, no. 5: 720. https://doi.org/10.3390/jpm12050720
APA StyleCerezo-Arias, M. d. l. O., Gómez-Tabales, J., Martí, M., García-Martín, E., & Agúndez, J. A. G. (2022). Common UGT1A6 Variant Alleles Determine Acetaminophen Pharmacokinetics in Man. Journal of Personalized Medicine, 12(5), 720. https://doi.org/10.3390/jpm12050720