The Impact of Hypoglycemic Therapy on the Prognosis for Acute Coronary Syndrome in Patients with Type 2 Diabetes
Abstract
:1. Introduction
2. Discussion
3. Metformin
4. Sulfonylureas
5. DPP-4 Inhibitors
6. Glucagon-Like Peptide 1 (GLP1) Agonists
7. Insulin Therapy
8. Sodium Glucose Transporter Inhibitors (SGLT-2)
9. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Einarson, T.R.; Acs, A.; Ludwig, C.; Panton, U.H. Prevalence of cardiovascular disease in type 2 diabetes: A systematic literature review of scientific evidence from across the world in 2007–2017. Cardiovasc. Diabetol. 2018, 17, 83. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pan, W.; Lu, H.; Lian, B.; Liao, P.; Guo, L.; Zhang, M. Prognostic value of HbA1c for in-hospital and short-term mortality in patients with acute coronary syndrome: A systematic review and meta-analysis. Cardiovasc. Diabetol. 2019, 18, 169. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- The Emerging Risk Factors Collaboration; Sarwar, N.; Gao, P.; Seshasai, S.R.; Gobin, R.; Kaptoge, S.; Di Angelantonio, E.; Ingelsson, E.; Lawlor, D.A.; Selvin, E.; et al. Diabetes mellitus, fasting blood glucose concentration, and risk of vascular disease: A collaborative meta-analysis of 102 prospective studies. Lancet 2010, 375, 2215–2222, Erratum in Lancet 2010, 376, 958. [Google Scholar] [CrossRef]
- Katz, P.; A Leiter, L.; Mellbin, L.; Rydén, L. The clinical burden of type 2 diabetes in patients with acute coronary syndromes: Prognosis and implications for short- and long-term management. Diabetes Vasc. Dis. Res. 2014, 11, 395–409. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Avogaro, A.; Bonora, E.; Consoli, A.; Del Prato, S.; Genovese, S.; Giorgino, F. Glucose-lowering therapy and cardiovascular outcomes in patients with type 2 diabetes mellitus and acute coronary syndrome. Diabetes Vasc. Dis. Res. 2019, 16, 399–414. [Google Scholar] [CrossRef] [Green Version]
- Komaru, Y.; Takeuchi, T.; Suzuki, L.; Asano, T.; Urayama, K.Y. Recurrent cardiovascular events in patients with newly diagnosed acute coronary syndrome: Influence of diabetes and its management with medication. J. Diabetes Complicat. 2020, 34, 107511. [Google Scholar] [CrossRef]
- Sasso, F.C.; Rinaldi, L.; Lascar, N.; Marrone, A.; Pafundi, P.C.; Adinolfi, L.E.; Marfella, R. Role of Tight Glycemic Control during Acute Coronary Syndrome on CV Outcome in Type 2 Diabetes. J. Diabetes Res. 2018, 2018, 3106056. [Google Scholar] [CrossRef] [Green Version]
- Toth, P.P. Management of Acute Coronary Syndromes in Patients with Diabetes. J. Fam. Pract. 2017, 66 (Suppl. S12), 1217. [Google Scholar]
- Jermendy, G. Clinical consequences of cardiovascular autonomic neuropathy in diabetic patients. Acta Diabetol. 2003, 40 (Suppl. S2), S370–S374. [Google Scholar] [CrossRef]
- Debono, M.; Cachia, E. The impact of Cardiovascular Autonomic Neuropathy in diabetes: Is it associated with left ventricular dysfunction? Auton. Neurosci. 2007, 132, 1–7. [Google Scholar] [CrossRef]
- Bednarska, J.; Bednarska-Chabowska, D.; Adamiec-Mroczek, J. Coronary artery disease: New Insights into revascularization treatment of diabetic patients. Adv. Clin. Exp. Med. 2017, 26, 1163–1167. [Google Scholar] [CrossRef] [PubMed]
- Khafaji, H.A.H.; Al Suwaidi, J.M. Atypical presentation of acute and chronic coronary artery disease in diabetics. World J. Cardiol. 2014, 6, 802–813. [Google Scholar] [CrossRef] [PubMed]
- Halimi, S. Place de l’insuline à la phase aiguë des maladies coronaires [Insulin in acute coronary syndromes]. Arch. Mal. Coeur Vaiss. 2004, 97, 63–70. (In French) [Google Scholar] [PubMed]
- Armstrong, E.J.; Rutledge, J.C.; Rogers, J.H. Coronary artery revascularization in patients with diabetes mellitus. Circulation 2013, 128, 1675–1685. [Google Scholar] [CrossRef] [Green Version]
- Timmer, J.R.; Hoekstra, M.; Nijsten, M.W.; van der Horst, I.C.; Ottervanger, J.P.; Slingerland, R.J.; Dambrink, J.-H.E.; Bilo, H.J.; Zijlstra, F.; Hof, A.W.V. Prognostic Value of Admission Glycosylated Hemoglobin and Glucose in Nondiabetic Patients With ST-Segment–Elevation Myocardial Infarction Treated With Percutaneous Coronary Intervention. Circulation 2011, 124, 704–711. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Erickson, J.R.; Pereira, L.; Wang, L.; Han, G.; Ferguson, A.; Dao, K.; Copeland, R.J.; Despa, F.; Hart, G.W.; Ripplinger, C.; et al. Diabetic hyperglycaemia activates CaMKII and arrhythmias by O-linked glycosylation. Nature 2013, 502, 372–376. [Google Scholar] [CrossRef]
- Zhang, L.; Xu, C.; Liu, J.; Bai, X.; Li, R.; Wang, L.; Zhou, J.; Wu, Y.; Yuan, Z. Baseline plasma fibrinogen is associated with haemoglobin A1c and 2-year major adverse cardiovascular events following percutaneous coronary intervention in patients with acute coronary syndrome: A single-centre, prospective cohort study. Cardiovasc. Diabetol. 2019, 18, 52. [Google Scholar] [CrossRef] [Green Version]
- Deedwania, P.; Kosiborod, M.; Barrett, E.; Ceriello, A.; Isley, W.; Mazzone, T.; Raskin, P. Hyperglycemia and acute coronary syndrome: A scientific statement from the American Heart Association Diabetes Committee of the Council on Nutrition, Physical Activity, and Metabolism. Anesthesiology 2008, 109, 14–24. [Google Scholar] [CrossRef] [Green Version]
- E Capes, S.; Hunt, D.; Malmberg, K.; Gerstein, H. Stress hyperglycaemia and increased risk of death after myocardial infarction in patients with and without diabetes: A systematic overview. Lancet 2000, 355, 773–778. [Google Scholar] [CrossRef]
- Kosiborod, M.; Inzucchi, S.E.; Krumholz, H.M.; Xiao, L.; Jones, P.G.; Fiske, S.; Masoudi, F.A.; Marso, S.P.; Spertus, J.A. Glucometrics in patients hospitalized with acute myocardial infarction: Defining the optimal outcomes-based measure of risk. Circulation 2008, 117, 1018–1127. [Google Scholar] [CrossRef] [Green Version]
- Task Force on Diabetes, Pre-Diabetes, and Cardiovascular Diseases of the European Society of Cardiology (ESC); European Association for the Study of Diabetes (EASD); Rydén, L.; Grant, P.J.; Anker, S.D.; Berne, C.; Cosentino, F.; Danchin, N.; Deaton, C.; Escaned, J.; et al. ESC guidelines on diabetes, pre-diabetes, and cardiovascular diseases developed in collaboration with the EASD—summary. Diab. Vasc. Dis. Res. 2014, 11, 133–173. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ma, P.; Han, L.; Lv, Z.; Chen, W.; Hu, H.; Tu, J.; Zhou, X.; Liu, S.-M. In-hospital free fatty acids levels predict the severity of myocardial ischemia of acute coronary syndrome. BMC Cardiovasc. Disord. 2016, 16, 29. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Verges, B.; Patois-Vergès, B.; Iliou, M.-C.; Simoneau-Robin, I.; Bertrand, J.-H.; Feige, J.-M.; Douard, H.; Catargi, B.; Fischbach, M.; DARE Study Group. Influence of glycemic control on gain in VO2 peak, in patients with type 2 diabetes enrolled in cardiac rehabilitation after an acute coronary syndrome. The prospective DARE study. BMC Cardiovasc. Disord. 2015, 15, 64. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Paneni, F.; Lüscher, T.F. Cardiovascular Protection in the Treatment of Type 2 Diabetes: A Review of Clinical Trial Results Across Drug Classes. Am. J. Cardiol. 2017, 120, S17–S27. [Google Scholar] [CrossRef] [Green Version]
- De Caterina, R.; Madonna, R.; Sourij, H.; Wascher, T. Glycaemic control in acute coronary syndromes: Prognostic value and therapeutic options. Eur. Heart J. 2010, 31, 1557–1564. [Google Scholar] [CrossRef] [Green Version]
- American Diabetes Association. 2. Classification and Diagnosis of Diabetes: Standards of Medical Care in Diabetes-2020. Diabetes Care 2020, 43 (Suppl. S1), S14–S31. [Google Scholar] [CrossRef] [Green Version]
- Bromage, D.; Yellon, D.M. The pleiotropic effects of metformin: Time for prospective studies. Cardiovasc. Diabetol. 2015, 14, 109. [Google Scholar] [CrossRef] [Green Version]
- Rena, G.; Hardie, D.G.; Pearson, E.R. The mechanisms of action of metformin. Diabetologia 2017, 60, 1577–1585. [Google Scholar] [CrossRef] [Green Version]
- Jong, C.-B.; Chen, K.-Y.; Hsieh, M.-Y.; Su, F.-Y.; Wu, C.-C.; Voon, W.-C.; Hsieh, I.-C.; Shyu, K.-G.; Chong, J.-T.; Lin, W.-S.; et al. Metformin was associated with lower all-cause mortality in type 2 diabetes with acute coronary syndrome: A Nationwide registry with propensity score-matched analysis. Int. J. Cardiol. 2019, 291, 152–157. [Google Scholar] [CrossRef]
- Jørgensen, C.; Gislason, G.; Bretler, D.; Sørensen, R.; Norgaard, M.; Hansen, M.; Schramm, T.; Abildstrom, S.; Torp-Pedersen, C.; Hansen, P. Glyburide increases risk in patients with diabetes mellitus after emergent percutaneous intervention for myocardial infarction—A nationwide study. Int. J. Cardiol. 2011, 152, 327–331. [Google Scholar] [CrossRef]
- Nikolaev, K.Y.; Bondareva, K.I.; Kovaleva, A.Y.; Lifshits, G.I. Estimation of metformin and other sugar reducing therapy influence on the outcomes in patients with acute coronary syndrome and diabetes mellitus type II. Complex Issues Cardiovasc. Dis. 2021, 10, 39–47. [Google Scholar] [CrossRef]
- Nikolaev, K.Y.; Bondareva, K.I.; Kovaleva, A.Y.; Lifshits, G.I. Peculiarities of hypoglycaemic therapy in acute coronary syndrome in patients with type 2 diabetes mellitus. Patol. Krovoobrashcheniya I Kardiokhirurgiya Circ. Pathol. Card. Surgery 2021, 25, 27–37. (In Russian) [Google Scholar] [CrossRef]
- Zinman, B.; Wanner, C.; Lachin, J.M.; Fitchett, D.; Bluhmki, E.; Hantel, S.; Mattheus, M.; Devins, T.; Johansen, O.E.; Woerle, H.J.; et al. Empagliflozin, Cardiovascular Outcomes, and Mortality in Type 2 Diabetes. N. Engl. J. Med. 2015, 373, 2117–2128. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McMurray, J.J.V.; DeMets, D.L.; Inzucchi, S.E.; Køber, L.; Kosiborod, M.N.; Langkilde, A.M.; Martinez, F.A.; Bengtsson, O.; Ponikowski, P.; Sabatine, M.S.; et al. The Dapagliflozin And Prevention of Adverse-outcomes in Heart Failure (DAPA-HF) trial: Baseline characteristics. Eur. J. Heart Fail. 2019, 21, 1402–1411. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kosiborod, M.N.; Jhund, P.S.; Docherty, K.; Diez, M.; Petrie, M.C.; Verma, S.; Nicolau, J.; Merkely, B.; Kitakaze, M.; DeMets, D.L.; et al. Effects of dapagliflozin on symptoms, function and quality of life in patients with heart failure and reduced ejection fraction: Results from the DAPA-HF Trial. Circulation 2019, 141, 90–99. [Google Scholar] [CrossRef]
- Hage, C.; Brismar, K.; Efendic, S.; Lundman, P.; Rydén, L.; Mellbin, L. Sitagliptin improves beta-cell function in patients with acute coronary syndromes and newly diagnosed glucose abnormalities-the BEGAMI study. J. Intern. Med. 2013, 273, 410–421. [Google Scholar] [CrossRef]
- Lim, S.; Kim, K.M.; Nauck, M.A. Glucagon-like Peptide-1 Receptor Agonists and Cardiovascular Events: Class Effects versus Individual Patterns. Trends Endocrinol. Metab. 2018, 29, 238–248. [Google Scholar] [CrossRef]
- García, M.I.D.O.; Merino-Torres, J.F. GLP 1 receptor agonists, glycemic variability, oxidative stress and acute coronary syndrome. Med. Hypotheses 2020, 136, 109504. [Google Scholar] [CrossRef]
- Pfeffer, M.A.; Claggett, B.; Diaz, R.; Dickstein, K.; Gerstein, H.; Køber, L.V.; Lawson, F.C.; Ping, L.; Wei, X.; Lewis, E.F.; et al. Lixisenatide in Patients with Type 2 Diabetes and Acute Coronary Syndrome. N. Engl. J. Med. 2015, 373, 2247–2257. [Google Scholar] [CrossRef]
- Drucker, D.J.; Nauck, M.A. The incretin system: Glucagon-like peptide-1 receptor agonists and dipeptidyl peptidase-4 inhibitors in type 2 diabetes. Lancet 2006, 368, 1696–1705. [Google Scholar] [CrossRef]
- Zhou, Y.; Guo, Z.; Yan, W.; Wang, W. Cardiovascular effects of sitagliptin—An anti-diabetes medicine. Clin. Exp. Pharmacol. Physiol. 2018, 45, 628–635. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kuramitsu, S.; Miyauchi, K.; Yokoi, H.; Suwa, S.; Nishizaki, Y.; Yokoyama, T.; Nojiri, S.; Iwabuchi, M.; Shirai, S.; Ando, K.; et al. Effect of sitagliptin on plaque changes in coronary artery following acute coronary syndrome in diabetic patients: The ESPECIAL-ACS study. J. Cardiol. 2017, 69, 369–376. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Azoulay, L.; Suissa, S. Sulfonylureas and the Risks of Cardiovascular Events and Death: A Methodological Meta-Regression Analysis of the Observational Studies. Diabetes Care 2017, 40, 706–714. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abdelmoneim, A.S.; Eurich, D.T.; Senthilselvan, A.; Qiu, W.; Simpson, S.H. Dose-response relationship between sulfonylureas and major adverse cardiovascular events in elderly patients with type 2 diabetes. Pharmacoepidemiol. Drug Saf. 2016, 25, 1186–1195. [Google Scholar] [CrossRef]
- Lan, N.S.R.; Fegan, P.G.; Rankin, J.M.; Bell, D.A.; Watts, G.F.; Yeap, B.B. Implementing simple algorithms to improve glucose and lipid management in people with diabetes and acute coronary syndrome. Diabet. Med. 2019, 36, 1643–1651. [Google Scholar] [CrossRef]
- Parra, V.; Verdejo, H.E.; Iglewski, M.; del Campo, A.; Troncoso, R.; Jones, D.; Zhu, Y.; Kuzmicic, J.; Pennanen, C.; Lopez-Crisosto, C.; et al. Insulin Stimulates Mitochondrial Fusion and Function in Cardiomyocytes via the Akt-mTOR-NFκB-Opa-1 Signaling Pathway. Diabetes 2014, 63, 75–88. [Google Scholar] [CrossRef] [Green Version]
- Lipton, J.A.; Can, A.; Akoudad, S.; Simoons, M.L. The role of insulin therapy and glucose normalisation in patients with acute coronary syndrome. Neth. Heart J. 2011, 19, 79–84. [Google Scholar] [CrossRef] [Green Version]
- Pinto, D.S.; Skolnick, A.H.; Kirtane, A.J.; Murphy, S.A.; Barron, H.V.; Giugliano, R.P.; Cannon, C.P.; Braunwald, E.; Gibson, C.M.; TIMI Study Group. U-shaped relationship of blood glucose with adverse outcomes among patients with ST-segment elevation myocardial infarction. J. Am. Coll. Cardiol. 2005, 46, 178–180. [Google Scholar] [CrossRef] [Green Version]
- Nam, M.C.Y.; Byrne, C.D.; Kaski, J.C.; Greaves, K. Insulin in Acute Coronary Syndrome: A Narrative Review with Contemporary Perspectives. Cardiovasc. Drugs Ther. 2016, 30, 493–504. [Google Scholar] [CrossRef] [Green Version]
- Frier, B.M. Hypoglycaemia in diabetes mellitus: Epidemiology and clinical implications. Nat. Rev. Endocrinol. 2014, 10, 711–722. [Google Scholar] [CrossRef]
- Cosmi, F.; Mariottoni, B.; Cosmi, D. II cardiopatico iperglicemico in area critica: È possibile un rischio ipoglicemico zero? [Medical intensive care unit patients with hyperglycemia: Is it possible a hypoglycemic risk close to zero?]. G. Ital. Cardiol. (Rome) 2018, 19, 460–466. (In Italian) [Google Scholar] [CrossRef]
- Vergès, B.; Avignon, A.; Bonnet, F.; Catargi, B.; Cattan, S.; Cosson, E.; Ducrocq, G.; Elbaz, M.; Fredenrich, A.; Gourdy, P.; et al. Consensus statement on the care of the hyperglycaemic/diabetic patient during and in the immediate follow-up of acute coronary syndrome. Diabetes Metab. 2012, 38, 113–127. [Google Scholar] [CrossRef] [PubMed]
- Task Force on the Management of ST-Segment Elevation Acute Myocardial Infarction of the European Society of Cardiology (ESC); Steg, P.G.; James, S.K.; Atar, D.; Badano, L.P.; Lundqvist, C.B.; Borger, M.A.; Di Mario, C.; Dickstein, K.; Ducrocq, G.; et al. ESC Guidelines for the management of acute myocardial infarction in patients presenting with ST-segment elevation. Eur. Heart J. 2012, 33, 2569–2619. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- A Malmberg, K.; Efendic, S.; E Rydén, L.; Multicenter Study Group. Feasibility of insulin-glucose infusion in diabetic patients with acute myocardial infarction. A report from the multicenter trial: DIGAMI. Diabetes Care 1994, 17, 1007–1014. [Google Scholar] [CrossRef] [PubMed]
- Malmberg, K.; Ryden, L.; Hamstent, A.; Herlitz, J.; Waldenstrom, A.; Wedel, H.; DIGAMI Study Group. Effects of insulin treatment on cause-specific one-year mortality and morbidity in diabetic patients with acute myocardial infarction. DIGAMI Study Group. Diabetes Insulin-Glucose in Acute Myocardial Infarction. Eur. Heart J. 1996, 17, 1337–1344. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nanjan, M.J.; Mohammed, M.; Kumar, B.P.; Chandrasekar, M.J.N. Thiazolidinediones as antidiabetic agents: A critical review. Bioorg. Chem. 2018, 77, 548–567. [Google Scholar] [CrossRef]
- Dedov, I.I.; Shestakova, M.V.; Mayorov, A.Y.; Vikulova, O.K.; Galstyan, G.R.; Kuraeva, T.L.; Peterkova, V.A.; Smirnova, O.M.; Starostina, E.G.; Surkova, E.V.; et al. Standards of specialized diabetes care. Diabetes Mellit. 2019, 22, 1–144. (In Russian) [Google Scholar] [CrossRef] [Green Version]
- White, S.; Driver, B.E.; Cole, J.B. Metformin-Associated Lactic Acidosis Presenting as Acute ST-Elevation Myocardial Infarction. J. Emerg. Med. 2016, 50, 32–36. [Google Scholar] [CrossRef]
- Malmberg, K.; Rydén, L. Effect of Insulin–Glucose Infusion on Mortality Following Acute Myocardial Infarction in Patients with Diabetes: The Diabetes and Insulin–Glucose Infusion in Acute Myocardial Infarction Studies. Semin. Thorac. Cardiovasc. Surg. 2006, 18, 326–329. [Google Scholar] [CrossRef]
- Dobrecky-Mery, I.; Sommer, A. Vildagliptin vs. insulin treatment alone in diabetic acute coronary syndrome patients. Coron. Artery Dis. 2021, 32, 4–9. [Google Scholar] [CrossRef]
Basic Hypoglycemic Drugs | Cardiovascular Effects | Renal Effects | References | ||
---|---|---|---|---|---|
ACD | Heart Failure | Chronic Kidney Disease | Contraindications | ||
Metformin | Potential benefits | Neutral | Neutral | Contraindicated at GRF < 30 mL/min/1.73 m2 | [6,26,27,28,29,30,31] |
SGLT-2 inhibitors | Benefit | Benefit: dapagliflozin empagliflozin | Benefit: dapagliflozin | Contraindicated at GRF < 30 mL/min/1.73 m2 | [32,33,34,35] |
GLP1 agonists | Benefit: liraglutide | Neutral | Benefit: liraglutide | Contraindicated at GRF < 30 mL/min/1.73 m2 | [36,37,38,39] |
DPP-4 inhibitors | Neutral | Potential risk: saxagliptin, alogliptin | Neutral | Dose adjustment required in renal failure | [40,41,42] |
Sulfonylureas | Neutral | Neutral | Neutral | Glibenclamide is not recommended | [24,43,44] |
Insulin | Neutral | Neutral | Neutral | Dose adjustment required in renal failure | [13,25,45,46,47,48,49,50,51,52,53,54,55] |
Thiazolidinediones | Potential benefits: pioglitazone | Increased risk | Neutral | Not recommended in renal failure due to risk of fluid retention. | [56] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nikolaev, K.Y.; Shevela, A.I.; Mustafina, S.V.; Rymar, O.D.; Ovsyannikova, A.K.; Zelenskaya, E.M.; Kovaleva, A.Y.; Lifshits, G.I. The Impact of Hypoglycemic Therapy on the Prognosis for Acute Coronary Syndrome in Patients with Type 2 Diabetes. J. Pers. Med. 2022, 12, 845. https://doi.org/10.3390/jpm12050845
Nikolaev KY, Shevela AI, Mustafina SV, Rymar OD, Ovsyannikova AK, Zelenskaya EM, Kovaleva AY, Lifshits GI. The Impact of Hypoglycemic Therapy on the Prognosis for Acute Coronary Syndrome in Patients with Type 2 Diabetes. Journal of Personalized Medicine. 2022; 12(5):845. https://doi.org/10.3390/jpm12050845
Chicago/Turabian StyleNikolaev, K. Yu., A. I. Shevela, S. V. Mustafina, O. D. Rymar, A. K. Ovsyannikova, E. M. Zelenskaya, A. Y. Kovaleva, and G. I. Lifshits. 2022. "The Impact of Hypoglycemic Therapy on the Prognosis for Acute Coronary Syndrome in Patients with Type 2 Diabetes" Journal of Personalized Medicine 12, no. 5: 845. https://doi.org/10.3390/jpm12050845
APA StyleNikolaev, K. Y., Shevela, A. I., Mustafina, S. V., Rymar, O. D., Ovsyannikova, A. K., Zelenskaya, E. M., Kovaleva, A. Y., & Lifshits, G. I. (2022). The Impact of Hypoglycemic Therapy on the Prognosis for Acute Coronary Syndrome in Patients with Type 2 Diabetes. Journal of Personalized Medicine, 12(5), 845. https://doi.org/10.3390/jpm12050845