A Possible Link between Gut Microbiome Composition and Cardiovascular Comorbidities in Psoriatic Patients
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Parisi, R.; Iskandar, I.Y.K.; Kontopantelis, E.; Augustin, M.; Griffiths, C.E.M.; Ashcroft, D.M.; Global Psoriasis Atlas. National, regional, and worldwide epidemiology of psoriasis: Systematic analysis and modelling study. BMJ 2020, 369, m1590. [Google Scholar] [CrossRef] [PubMed]
- Woo, Y.R.; Park, C.J.; Kang, H.; Kim, J.E. The Risk of Systemic Diseases in Those with Psoriasis and Psoriatic Arthritis: From Mechanisms to Clinic. Int. J. Mol. Sci. 2020, 21, 7041. [Google Scholar] [CrossRef] [PubMed]
- Richetta, A.G.; Silvestri, V.; Giancristoforo, S.; Rizzolo, P.; D’Epiro, S.; Graziano, V.; Mattozzi, C.; Navazio, A.S.; Campoli, M.; D’Amico, C.; et al. A-1012G Promoter Polymorphism of Vitamin D Receptor Gene Is Associated with Psoriasis Risk and Lower Allele-Specific Expression. DNA Cell Biol. 2014, 33, 102–109. [Google Scholar] [CrossRef] [PubMed]
- Coto-Segura, P.; Coto, E.; Mas-Vidal, A.; Morales, B.; Alvarez, V.; Díaz, M.; Alonso, B.; Santos-Juanes, J. Influence of endothelial nitric oxide synthase polymorphisms in psoriasis risk. Arch. Dermatol. Res. 2011, 303, 445–449. [Google Scholar] [CrossRef] [Green Version]
- Newhouse, S.J.; Wallace, C.; Dobson, R.; Mein, C.; Pembroke, J.; Farrall, M.; Clayton, D.; Brown, M.; Samani, N.; Dominiczak, A.; et al. Haplotypes of the WNK1 gene associate with blood pressure variation in a severely hypertensive population from the British Genetics of Hypertension study. Hum. Mol. Genet. 2005, 14, 1805–1814. [Google Scholar] [CrossRef] [PubMed]
- Purzycka-Bohdan, D.; Kisielnicka, A.; Bohdan, M.; Szczerkowska-Dobosz, A.; Sobalska-Kwapis, M.; Nedoszytko, B.; Nowicki, R.J. Analysis of the Potential Genetic Links between Psoriasis and Cardiovascular Risk Factors. Int. J. Mol. Sci. 2021, 22, 9063. [Google Scholar] [CrossRef] [PubMed]
- Cheng, H.; Li, Y.; Zuo, X.-B.; Tang, H.-Y.; Tang, X.-F.; Gao, J.-P.; Sheng, Y.-J.; Yin, X.-Y.; Zhou, F.-S.; Zhang, C.; et al. Identification of a Missense Variant in LNPEP that Confers Psoriasis Risk. J. Investig. Dermatol. 2014, 134, 359–365. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Masson, W.; Lobo, M.; Molinero, G. Psoriasis and Cardiovascular Risk: A Comprehensive Review. Adv. Ther. 2020, 37, 2017–2033. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sikora, M.; Stec, A.; Chrabaszcz, M.; Knot, A.; Waskiel-Burnat, A.; Rakowska, A.; Olszewska, M.; Rudnicka, L. Gut Microbiome in Psoriasis: An Updated Review. Pathogens 2020, 9, 463. [Google Scholar] [CrossRef] [PubMed]
- Valentini, V.; Silvestri, V.; Marraffa, F.; Greco, G.; Bucalo, A.; Grassi, S.; Gagliardi, A.; Mazzotta, A.; Ottini, L.; Richetta, A.G. Gut microbiome profile in psoriatic patients treated and untreated with biologic therapy. J. Dermatol. 2021, 48, 786–793. [Google Scholar] [CrossRef] [PubMed]
- Sikora, M.; Kiss, N.; Stec, A.; Giebultowicz, J.; Samborowska, E.; Jazwiec, R.; Dadlez, M.; Olszewska, M.; Rudnicka, L. Trimethylamine N-Oxide, a Gut Microbiota-Derived Metabolite, Is Associated with Cardiovascular Risk in Psoriasis: A Cross-Sectional Pilot Study. Dermatol. Ther. 2021, 11, 1277–1289. [Google Scholar] [CrossRef] [PubMed]
- Dan, X.; Mushi, Z.; Baili, W.; Han, L.; Enqi, W.; Huanhu, Z.; Shuchun, L. Differential Analysis of Hypertension-Associated Intestinal Microbiota. Int. J. Med. Sci. 2019, 16, 872–881. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sanchez-Alcoholado, L.; Castellano-Castillo, D.; Jordán-Martínez, L.; Moreno-Indias, I.; Cardila-Cruz, P.; Elena, D.; Muñoz-Garcia, A.J.; Queipo-Ortuño, M.I.; Jimenez-Navarro, M. Role of Gut Microbiota on Cardio-Metabolic Parameters and Immunity in Coronary Artery Disease Patients with and without Type-2 Diabetes Mellitus. Front. Microbiol. 2017, 8, 1936. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mushtaq, N.; Hussain, S.; Zhang, S.; Yuan, L.; Li, H.; Ullah, S.; Wang, Y.; Xu, J. Molecular characterization of alterations in the intestinal microbiota of patients with grade 3 hypertension. Int. J. Mol. Med. 2019, 44, 513–522. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chiu, C.-M.; Huang, W.-C.; Weng, S.-L.; Tseng, H.-C.; Liang, C.; Wang, W.-C.; Yang, T.; Yang, T.-L.; Weng, C.-T.; Chang, T.-H.; et al. Systematic Analysis of the Association between Gut Flora and Obesity through High-Throughput Sequencing and Bioinformatics Approaches. BioMed Res. Int. 2014, 2014, 906168. [Google Scholar] [CrossRef] [PubMed]
- Zhong, X.; Harrington, J.M.; Millar, S.R.; Perry, I.J.; O’Toole, P.W.; Phillips, C.M. Gut Microbiota Associations with Metabolic Health and Obesity Status in Older Adults. Nutrients 2020, 12, 2364. [Google Scholar] [CrossRef] [PubMed]
- Yuan, X.; Chen, R.; McCormick, K.L.; Zhang, Y.; Lin, X.; Yang, X. The role of the gut microbiota on the metabolic status of obese children. Microb. Cell Factories 2021, 20, 53. [Google Scholar] [CrossRef] [PubMed]
- Li, R.; Andreu-Sánchez, S.; Kuipers, F.; Fu, J. Gut microbiome and bile acids in obesity-related diseases. Best Pract. Res. Clin. Endocrinol. Metab. 2021, 35, 101493. [Google Scholar] [CrossRef] [PubMed]
- Calgaro, M.; Romualdi, C.; Waldron, L.; Risso, D.; Vitulo, N. Assessment of statistical methods from single cell, bulk RNA-seq, and metagenomics applied to microbiome data. Genome Biol. 2020, 21, 191. [Google Scholar] [CrossRef] [PubMed]
Clinical-Pathological Features | Total Patients N = 28 (%) | Patients with CVD N = 17 (%) | Patients without CVD N = 11 (%) | p-Value 1 |
---|---|---|---|---|
Sex | ||||
Male | 19 (67.8%) | 11 (80.0%) | 8 (72.7%) | |
Female | 9 (32.2%) | 6 (20.0%) | 3 (27.3%) | 0.197 |
Age at enrollment (mean ± standard error) | 59.7 (±2.7) | 67.1 (±1.8) | 48.9 (±4.5) | 0.001 |
Age at diagnosis (mean ± standard error) | 31.7 (±3.1) | 37.2 (±4.2) | 23.6 (±3.5) | 0.049 |
Duration of the disease (mean ± standard error) | 21.1 years (±2.6) | 22.0 years (±3.9) | 19.9 years (±3.0) | 1.000 |
BMI (mean ± standard error) | 28.2 (±0.9) | 30.1 (±1.1) | 25.3 (±1.1) | 0.003 |
Type of psoriasis | ||||
Plaque | 24 (85.8%) | 16 (94.1%) | 8 (72.7%) | |
Guttate | 2 (7.1%) | 1 (5.9%) | 1 (9.1%) | |
Arthropathic | 2 (7.1%) | 0 (0.0%) | 2 (18.2%) | 0.170 |
Degree of psoriasis | ||||
Mild | 3 (10.7%) | 1 (5.9%) | 2 (18.2%) | |
Moderate | 10 (35.7%) | 6 (35.3%) | 4 (36.4%) | |
Severe | 15 (53.6%) | 10 (58.8%) | 5 (45.4%) | 0.557 |
Biological treatment | ||||
Treated 2 | 9 (32.1%) | 5 (29.4%) | 4 (36.4%) | |
Untreated | 19 (67.9%) | 12 (70.6%) | 7 (63.6%) | 0.700 |
Taxonomic Group | Abundance Status | log2 Fold Change | Adjusted p-Value |
---|---|---|---|
p__Bacteroidetes; c__Bacteroidia; o__Bacteroidales; f__[Barnesiellaceae] | Higher in psoriatic patients with CVD | −23.34886701 | 1.05 × 10−12 |
p__Firmicutes; c__Clostridia; o__Clostridiales; f__Lachnospiraceae; g__Coprococcus | Higher in psoriatic patients with CVD | −22.4934482 | 7.37 × 10−12 |
p__Firmicutes; c__Clostridia; o__Clostridiales; f__Veillonellaceae; g__Phascolarctobacterium | Higher in psoriatic patients with CVD | −23.97162303 | 2.65 × 10−15 |
p__Bacteroidetes; c__Bacteroidia; o__Bacteroidales; f__Bacteroidaceae; g__Bacteroides; s__ovatus | Higher in psoriatic patients with CVD | −22.82969217 | 5.42 × 10−13 |
p__Firmicutes; c__Clostridia; o__Clostridiales | Higher in psoriatic patients without CVD | 23.26865584 | 9.73 × 10−13 |
p__Bacteroidetes; c__Bacteroidia; o__Bacteroidales; f__Rikenellaceae; g__Alistipes; s__finegoldii | Higher in psoriatic patients without CVD | 23.55698273 | 5.42 × 10−13 |
p__Firmicutes; c__Clostridia; o__Clostridiales; f__Lachnospiraceae; g__Roseburia; s__faecis | Higher in psoriatic patients without CVD | 23.62161748 | 5.42 × 10−13 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Valentini, V.; Silvestri, V.; Bucalo, A.; Marraffa, F.; Risicato, M.; Grassi, S.; Pellacani, G.; Ottini, L.; Richetta, A.G. A Possible Link between Gut Microbiome Composition and Cardiovascular Comorbidities in Psoriatic Patients. J. Pers. Med. 2022, 12, 1118. https://doi.org/10.3390/jpm12071118
Valentini V, Silvestri V, Bucalo A, Marraffa F, Risicato M, Grassi S, Pellacani G, Ottini L, Richetta AG. A Possible Link between Gut Microbiome Composition and Cardiovascular Comorbidities in Psoriatic Patients. Journal of Personalized Medicine. 2022; 12(7):1118. https://doi.org/10.3390/jpm12071118
Chicago/Turabian StyleValentini, Virginia, Valentina Silvestri, Agostino Bucalo, Federica Marraffa, Maria Risicato, Sara Grassi, Giovanni Pellacani, Laura Ottini, and Antonio Giovanni Richetta. 2022. "A Possible Link between Gut Microbiome Composition and Cardiovascular Comorbidities in Psoriatic Patients" Journal of Personalized Medicine 12, no. 7: 1118. https://doi.org/10.3390/jpm12071118
APA StyleValentini, V., Silvestri, V., Bucalo, A., Marraffa, F., Risicato, M., Grassi, S., Pellacani, G., Ottini, L., & Richetta, A. G. (2022). A Possible Link between Gut Microbiome Composition and Cardiovascular Comorbidities in Psoriatic Patients. Journal of Personalized Medicine, 12(7), 1118. https://doi.org/10.3390/jpm12071118