Evaluation of Subclinical Vascular Disease in Diabetic Kidney Disease: A Tool for Personalization of Management of a High-Risk Population
Abstract
:1. Introduction
2. Patients and Methods
3. Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Reutens, A.T. Epidemiology of diabetic kidney disease. Med. Clin. N. Am. 2013, 97, 1–18. [Google Scholar] [CrossRef] [PubMed]
- Fernández Fernández, B.; Elewa, U.; Sánchez-Niño, M.D.; Rojas-Rivera, J.E.; Martin-Cleary, C.; Egido, J.; Ortiz, A. 2012 update on diabetic kidney disease: The expanding spectrum, novel pathogenic insights and recent clinical trials. Minerva Med. 2012, 103, 219–234. [Google Scholar] [PubMed]
- Sarnak, M.J.; Levey, A.S.; Schoolwerth, A.C.; Coresh, J.; Culleton, B.; Hamm, L.L.; McCullough, P.A.; Kasiske, B.L.; Kelepouris, E.; Klag, M.J.; et al. American Heart Association Councils on Kidney in Cardiovascular Disease, High Blood Pressure Research, ClinicalCardiology, and Epidemiology and Prevention. Kidney disease as a risk factor for development of cardiovascular disease: A statement from the American Heart Association Councils on Kidney in Cardiovascular Disease, High Blood Pressure Research, Clinical Cardiology, and Epidemiology and Prevention. Circulation 2003, 108, 2154–2169. [Google Scholar] [CrossRef] [PubMed]
- Afkarian, M.; Sachs, M.C.; Kestenbaum, B.; Hirsch, I.B.; Tuttle, K.R.; Himmelfarb, J.; de Boer, I.H. Kidney disease and increased mortality risk in type 2 diabetes. J. Am. Soc. Nephrol. 2013, 24, 302–308. [Google Scholar] [CrossRef]
- Bruno, G.; Merletti, F.; Bargero, G.; Novelli, G.; Melis, D.; Soddu, A.; Perotto, M.; Pagano, G.; Cavallo-Perin, P. Estimated glomerular filtration rate, albuminuria and mortality in type 2 diabetes: The Casale Monferrato study. Diabetologia 2007, 50, 941–948. [Google Scholar] [CrossRef]
- Coll, B.; Betriu, A.; Martínez-Alonso, M.; Borràs, M.; Craver, L.; Amoedo, M.L.; Marco, M.P.; Sarró, F.; Junyent, M.; Valdivielso, J.M.; et al. Cardiovascular risk factors underestimate atherosclerotic burden in chronic kidney disease: Usefulness of non-invasive tests in cardiovascular assessment. Nephrol. Dial. Transplant. 2010, 25, 3017–3025. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gansevoort, R.T.; Correa-Rotter, R.; Hemmelgarn, B.R.; Jafar, T.H.; Heerspink, H.J.; Mann, J.F.; Matsushita, K.; Wen, C.P. Chronic kidney disease and cardiovascular risk: Epidemiology, mechanisms, and prevention. Lancet 2013, 382, 339–352. [Google Scholar] [CrossRef]
- Koji, Y.; Tomiyama, H.; Ichihashi, H.; Nagae, T.; Tanaka, N.; Takazawa, K.; Ishimaru, S.; Yamashina, A. Comparison of ankle-brachial pressure index and pulse wave velocity as markers of the presence of coronary artery disease in subjects with a high risk of atherosclerotic cardiovascular disease. Am. J. Cardiol. 2004, 94, 868–872. [Google Scholar] [CrossRef]
- Irie, Y.; Katakami, N.; Kaneto, H.; Nishio, M.; Kasami, R.; Sakamoto, K.; Umayahara, Y.; Sumitsuji, S.; Ueda, Y.; Kosugi, K.; et al. The utility of carotid ultrasonography in identifying severe coronary artery disease in asymptomatic type 2 diabetic patients without history of coronary artery disease. Diabetes Care 2013, 36, 1327–1334. [Google Scholar] [CrossRef] [Green Version]
- Ankle Brachial Index Collaboration; Fowkes, F.G.; Murray, G.D.; Butcher, I.; Heald, C.L.; Lee, R.J.; Chambless, L.E.; Folsom, A.R.; Hirsch, A.T.; Dramaix, M.; et al. Ankle brachial index combined with Framingham Risk Score to predict cardiovascular events and mortality: A meta-analysis. JAMA 2008, 300, 197–208. [Google Scholar] [CrossRef] [Green Version]
- Townsend, R.R.; Wilkinson, I.B.; Schiffrin, E.L.; Avolio, A.P.; Chirinos, J.A.; Cockcroft, J.R.; Heffernan, K.S.; Lakatta, E.G.; McEniery, C.M.; Mitchell, G.F.; et al. American Heart Association Council on Hypertension. Recommendations for Improving and Standardizing Vascular Research on Arterial Stiffness: A Scientific Statement From the American Heart Association. Hypertension 2015, 66, 698–722. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sjöblom, P.; Nystrom, F.H.; Länne, T.; Engvall, J.; Östgren, C.J. Microalbuminuria, but not reduced eGFR, is associated with cardiovascular subclinical organ damage in type 2 diabetes. Diabetes Metab. 2014, 40, 49–55. [Google Scholar] [CrossRef] [PubMed]
- Choi, S.W.; Yun, W.J.; Kim, H.Y.; Lee, Y.H.; Kweon, S.S.; Rhee, J.A.; Choi, J.S.; Shin, M.H. Association between albuminuria, carotid atherosclerosis, arterial stiffness, and peripheral arterial disease in Korean type 2 diabetic patients. Kidney Blood Press. Res. 2010, 33, 111–118. [Google Scholar] [CrossRef] [PubMed]
- Levey, A.S.; Stevens, L.A.; Schmid, C.H.; Zhang, Y.L.; Castro, A.F., 3rd; Feldman, H.I.; Kusek, J.W.; Eggers, P.; Van Lente, F.; Greene, T.; et al. A new equation to estimate glomerular filtration rate. Ann. Intern. Med. 2009, 150, 604–612. [Google Scholar] [CrossRef] [PubMed]
- European Carotid Surgery Trialists’ Collaborative Group. MRC European Carotid Surgery Trial: Interim results for symptomatic patients with severe (70–99%) or with mild (0–29%) carotid stenosis. Lancet 1991, 337, 1235–1243. [Google Scholar] [CrossRef]
- de Groot, E.; vanLeuven, S.I.; Duivenvoorden, R.; Meuwese, M.C.; Akdim, F.; Bots, M.L.; Kastelein, J.J. Measurement of carotid intima-media thickness to assess progression and regression of atherosclerosis. Nat. Clin. Pract. Cardiovasc. Med. 2008, 5, 280–288. [Google Scholar] [CrossRef] [PubMed]
- Johri, A.M.; Nambi, V.; Naqvi, T.Z.; Feinstein, S.B.; Kim, E.S.H.; Park, M.M.; Becher, H.; Sillesen, H. Recommendations for the Assessment of Carotid Arterial Plaque by Ultrasound for the Characterization of Atherosclerosis and Evaluation of Cardiovascular Risk: From the American Society of Echocardiography. J. Am. Soc. Echocardiogr. 2020, 33, 917–933. [Google Scholar] [CrossRef]
- Gerhard-Herman, M.D.; Gornik, H.L.; Barrett, C.; Barshes, N.R.; Corriere, M.A.; Drachman, D.E.; Fleisher, L.A.; Fowkes, F.G.; Hamburg, N.M.; Kinlay, S.; et al. 2016 AHA/ACC Guideline on the Management of Patients With Lower Extremity Peripheral Artery Disease: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. Circulation 2017, 135, e726–e779. [Google Scholar] [CrossRef]
- El Ghoul, B.; Daaboul, Y.; Korjian, S.; ElAlam, A.; Mansour, A.; Hariri, E.; Samad, S.; Salameh, P.; Dahdah, G.; Blacher, J.; et al. Etiology of End-Stage Renal Disease and Arterial Stiffness among Hemodialysis Patients. BioMed. Res. Int. 2017, 2017, 2543262. [Google Scholar] [CrossRef]
- Stevens, L.A.; Schmid, C.H.; Greene, T.; Zhang, Y.L.; Beck, G.J.; Froissart, M.; Hamm, L.L.; Lewis, J.B.; Mauer, M.; Navis, G.J.; et al. Comparative performance of the CKD Epidemiology Collaboration (CKD-EPI) and the Modification of Diet in Renal Disease (MDRD) Study equations for estimating GFR levels above 60 mL/min/1.73 m2. Am. J. Kidney Dis. 2010, 56, 486–495. [Google Scholar] [CrossRef] [Green Version]
- Michels, W.M.; Grootendorst, D.C.; Verduijn, M.; Elliott, E.G.; Dekker, F.W.; Krediet, R.T. Performance of the Cockcroft-Gault, MDRD, and new CKD-EPI formulas in relation to GFR, age, and body size. Clin. J. Am. Soc. Nephrol. 2010, 5, 1003–1009. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cardoso, C.R.L.; Leite, N.C.; Salles, G.C.; Ferreira, M.T.; Salles, G.F. Aortic stiffness and ambulatory blood pressure as predictors of diabetic kidney disease: A competing risks analysis from the Rio de JaneiroType 2 Diabetes Cohort Study. Diabetologia 2018, 61, 455–465. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, X.; Low, S.; Sum, C.F.; Tavintharan, S.; Yeoh, L.Y.; Liu, J.; Li, N.; Ang, K.; Lee, S.B.; Tang, W.E.; et al. Arterial stiffness is an independent predictor for albuminuria progression among Asians with type 2 diabetes—A prospective cohort study. J. Diabetes Complicat. 2017, 31, 933–938. [Google Scholar] [CrossRef] [PubMed]
- O’Rourke, M.F.; Safar, M.E. Relationship between aortic stiffening and microvascular disease in brain and kidney: Cause and logic of therapy. Hypertension 2005, 46, 200–204. [Google Scholar] [CrossRef]
- Liu, X.; Ducasa, G.M.; Mallela, S.K.; Kim, J.J.; Molina, J.; Mitrofanova, A.; Wilbon, S.S.; Ge, M.; Fontanella, A.; Pedigo, C.; et al. Sterol-O-acyltransferase-1 has a role in kidney disease associated with diabetes and Alport syndrome. Kidney Int. 2020, 98, 1275–1285. [Google Scholar] [CrossRef]
- Hai, Q.; Smith, J.D. Acyl-Coenzyme A: Cholesterol Acyltransferase (ACAT) in Cholesterol Metabolism: From Its Discovery to Clinical Trials and the Genomics Era. Metabolites 2021, 11, 543. [Google Scholar] [CrossRef]
- Luo, M.; Opoku, E.; Traughber, C.A.; Hai, Q.; Robinet, P.; Berisha, S.; Smith, J.D. Soat1 mediates the mouse strain effects on cholesterol loading-induced endoplasmic reticulum stress and CHOP expression in macrophages. Biochim. Biophys. Acta Mol. Cell. Biol. Lipids. 2021, 1866, 158825. [Google Scholar] [CrossRef]
- Xiong, W.; Meng, X.F.; Zhang, C. NLRP3 Inflammasome in Metabolic-Associated Kidney Diseases: An Update. Front. Immunol. 2021, 12, 714340. [Google Scholar] [CrossRef]
- Ritchey, B.; Hai, Q.; Han, J.; Barnard, J.; Smith, J.D. Genetic variant in 3’ untranslated region of the mouse pycard gene regulates inflammasome activity. eLife 2021, 10, e68203. [Google Scholar] [CrossRef]
- Tonacci, A.; Quattrocchi, P.; Gangemi, S. IL33/ST2 Axis in Diabetic Kidney Disease: A Literature Review. Medicina 2019, 55, 50. [Google Scholar] [CrossRef] [Green Version]
- Liu, C.L.; Shen, D.L.; Zhu, K.; Tang, J.N.; Hai, Q.M.; Zhang, J.Y. Levels of interleukin-33 and interleukin-6 in patients with acute coronary syndrome or stable angina. Clin. Investig. Med. 2013, 36, E234–E241. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Klimontov, V.V.; Koroleva, E.A.; Khapaev, R.S.; Korbut, A.I.; Lykov, A.P. Carotid Artery Disease in Subjects with Type 2 Diabetes: Risk Factors and Biomarkers. J. Clin. Med. 2021, 11, 72. [Google Scholar] [CrossRef] [PubMed]
- Roy, S.; Schweiker-Kahn, O.; Jafry, B.; Masel-Miller, R.; Raju, R.S.; O’Neill, L.M.O.; Correia, C.R.; Trivedi, A.; Johnson, C.; Pilot, C.; et al. Risk Factors and Comorbidities Associated with Diabetic Kidney Disease. J. Prim. Care Community Health. 2021, 12, 21501327211048556. [Google Scholar] [CrossRef] [PubMed]
- Ito, H.; Komatsu, Y.; Mifune, M.; Antoku, S.; Ishida, H.; Takeuchi, Y.; Togane, M. The estimated GFR, but not the stage of diabetic nephropathy graded by the urinary albumin excretion, is associated with the carotid intima-media thickness in patients with type 2 diabetes mellitus: A cross-sectional study. Cardiovasc. Diabetol. 2010, 9, 18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chan, W.B.; Chan, N.N.; Lai, C.W.; So, W.Y.; Lo, M.K.; Lee, K.F.; Chow, C.C.; Metreweli, C.; Chan, J.C. Vascular defect beyond the endothelium in type II diabetic patients with overt nephropathy and moderate renal insufficiency. Kidney Int. 2006, 70, 711–716. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Seo, D.H.; Kim, S.H.; Song, J.H.; Hong, S.; Suh, Y.J.; Ahn, S.H.; Woo, J.T.; Baik, S.H.; Park, Y.; Lee, K.W.; et al. KNDP StudyGroup. Presence of Carotid Plaque Is Associated with Rapid Renal Function Decline in Patients with Type 2 Diabetes Mellitus and Normal Renal Function. Diabetes Metab. J. 2019, 43, 840–853. [Google Scholar] [CrossRef] [PubMed]
- Cardoso, C.R.L.; Salles, G.C.; Leite, N.C.; Salles, G.F. Prognostic impact of carotid intima-media thickness and carotid plaques on the development of micro- and macrovascular complications in individuals with type 2 diabetes: The Rio de Janeiro type 2 diabetes cohort study. Cardiovasc. Diabetol. 2019, 18, 2. [Google Scholar] [CrossRef] [PubMed]
- Pofi, R.; Giannetta, E.; Feola, T.; Galea, N.; Barbagallo, F.; Campolo, F.; Badagliacca, R.; Barbano, B.; Ciolina, F.; Defeudis, G.; et al. Sex-specific effects of daily tadalafil on diabetic heart kinetics in RECOGITO, a randomized, double-blind, placebo-controlled trial. Sci. Transl. Med. 2022, 14, eabl8503. [Google Scholar] [CrossRef] [PubMed]
- Fukui, M.; Tanaka, M.; Hamaguchi, M.; Senmaru, T.; Sakabe, K.; Asano, M.; Yamazaki, M.; Hasegawa, G.; Imai, S.; Nakamura, N. Toe-brachial index is associated more strongly with albuminuria or glomerular filtration rate than ankle-brachial index in patients with type 2 diabetes. Hypertens. Res. 2012, 35, 745–749. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, C.C.; Tsai, M.C.; Liu, S.C.; Pan, C.F. Relationships between chronic comorbidities and the atherosclerosis indicators ankle-brachial index and brachial-ankle pulse wave velocity in patients with type 2 diabetes mellitus. J. Investig. Med. 2018, 66, 966–972. [Google Scholar] [CrossRef] [PubMed]
- American Diabetes Association Professional Practice, Committee; Draznin, B.; Aroda, V.R.; Bakris, G.; Benson, G.; Brown, F.M.; Freeman, R.; Green, J.; Huang, E.; Isaacs, D.; et al. 11. Chronic Kidney Disease and Risk Management: Standards of Medical Care in Diabetes-2022. Diabetes Care 2022, 45 (Suppl. 1), S175–S184. [Google Scholar] [CrossRef] [PubMed]
- Bhatt, D.L.; Fox, K.A.; Hacke, W.; Berger, P.B.; Black, H.R.; Boden, W.E.; Cacoub, P.; Cohen, E.A.; Creager, M.A.; Easton, J.D.; et al. Clopidogrel and aspirin versus aspirin alone for the prevention of atherothrombotic events. N. Engl. J. Med. 2006, 354, 1706–1717. [Google Scholar] [CrossRef] [Green Version]
- Eikelboom, J.W.; Connolly, S.J.; Bosch, J.; Dagenais, G.R.; Hart, R.G.; Shestakovska, O.; Diaz, R.; Alings, M.; Lonn, E.M.; Anand, S.S.; et al. Rivaroxaban with or without Aspirin in Stable Cardiovascular Disease. N. Engl. J. Med. 2017, 377, 1319–1330. [Google Scholar] [CrossRef] [PubMed]
- Ridker, P.M.; Everett, B.M.; Thuren, T.; MacFadyen, J.G.; Chang, W.H.; Ballantyne, C.; Fonseca, F.; Nicolau, J.; Koenig, W.; Anker, S.D.; et al. Antiinflammatory Therapy with Canakinumab for Atherosclerotic Disease. N. Engl. J. Med. 2017, 377, 1119–1131. [Google Scholar] [CrossRef] [PubMed]
- Cannon, C.P.; Blazing, M.A.; Giugliano, R.P.; McCagg, A.; White, J.A.; Theroux, P.; Darius, H.; Lewis, B.S.; Ophuis, T.O.; Jukema, J.W.; et al. Ezetimibe Added to Statin Therapy after Acute Coronary Syndromes. N. Engl. J. Med. 2015, 372, 2387–2397. [Google Scholar] [CrossRef] [Green Version]
- Sabatine, M.S.; Giugliano, R.P.; Keech, A.C.; Honarpour, N.; Wiviott, S.D.; Murphy, S.A.; Kuder, J.F.; Wang, H.; Liu, T.; Wasserman, S.M.; et al. Evolocumab and Clinical Outcomes in Patients with Cardiovascular Disease. N. Engl. J. Med. 2017, 376, 1713–1722. [Google Scholar] [CrossRef]
- Schwartz, G.G.; Steg, P.G.; Szarek, M.; Bhatt, D.L.; Bittner, V.A.; Diaz, R.; Edelberg, J.M.; Goodman, S.G.; Hanotin, C.; Harrington, R.A.; et al. Alirocumab and Cardiovascular Outcomes after Acute Coronary Syndrome. N. Engl. J. Med. 2018, 379, 2097–2107. [Google Scholar] [CrossRef]
- Williams, D.M.; Jones, H.; Stephens, J.W. Personalized Type 2 Diabetes Management: An Update on Recent Advances and Recommendations. Diabetes Metab. Syndr. Obes. 2022, 15, 281–295. [Google Scholar] [CrossRef]
Patients with Diabetic Nephropathy (n = 18) | Patients without Diabetic Nephropathy (n = 22) | p | |
---|---|---|---|
Age (years) | 77.4 ± 6.5 | 76.9 ± 7.9 | 0.873 |
Males (%) | 66.7 | 72.7 | 0.945 |
Systolic blood pressure (mmHg) | 139.8 ± 17.3 | 141.9 ± 12.0 | 0.650 |
Diastolic blood pressure (mmHg) | 81.6 ± 13.9 | 81.9 ± 12.8 | 0.936 |
Heart rate | 71.3 ± 9.1 | 74.7 ± 10.9 | 0.293 |
Hypertension (%) | 100.0 | 77.3 | 0.093 |
Type 2 diabetes mellitus duration (years) | 15.1 ± 8.8 | 11.4 ± 6.6 | 0.133 |
Smoking (current/past, %) | 5.6/44.4 | 22.7/36.4 | 0.318 |
Package-years | 36.2 ± 19.2 | 52.5 ± 35.2 | 0.223 |
Alcohol intake (units/week) | 0.50 ± 1.3 | 0.91 ± 1.6 | 0.398 |
Atrial fibrillation (%) | 38.9 | 13.6 | 0.142 |
Family history of cardiovascular disease (%) | 27.8 | 18.2 | 0.732 |
Coronary heart disease (%) | 44.4 | 36.4 | 0.846 |
Ischemic stroke (%) | 22.3 | 4.5 | 0.220 |
Heart failure (%) | 27.8 | 9.1 | 0.259 |
Weight (kg) | 81.2 ± 19.4 | 84.7 ± 13.9 | 0.515 |
Body mass index (kg/m2) | 28.4 ± 6.1 | 29.4 ± 3.9 | 0.558 |
Waist circumference (cm) | 104.8 ± 13.8 | 106.4 ± 9.9 | 0.680 |
Total cholesterol (mg/dL) | 129.9 ± 37.3 | 123.1 ± 53.8 | 0.655 |
Low-density lipoprotein cholesterol (mg/dL) | 59.7 ± 23.8 | 57.5 ± 50.7 | 0.868 |
High-density lipoprotein cholesterol (mg/dL) | 45.1 ± 20.4 | 39.5 ± 12.4 | 0.295 |
Triglycerides (mg/dL) | 153.8 ± 83.4 | 135.1 ± 51.8 | 0.390 |
HbA1c (%) | 6.9 ± 1.2 | 7.5 ± 1.3 | 0.221 |
Estimated glomerular filtration rate (mL/min/1.73 m2) | 36.8 ± 11.3 | 87.0 ± 11.9 | <0.001 |
Urinary albumin/creatinine ratio (mg/g) | 280.6 ± 473.9 | 41.4 ± 50.3 | 0.024 |
Treatment with statins (%) | 100.0 | 100.0 | (-) |
Treatment with antiplatelet agents (%) | 55.6 | 36.4 | 0.371 |
Treatment with antihypertensive agents (%) | 100.0 | 77.3 | 0.093 |
Patients with Diabetic Nephropathy (n = 18) | Patients without Diabetic Nephropathy (n = 22) | p | |
---|---|---|---|
Ankle-brachial index (left) | 1.07 ± 0.23 | 1.09 ± 0.22 | 0.806 |
Ankle-brachial index (right) | 1.08 ± 0.21 | 1.06 ± 0.27 | 0.791 |
Pulse wave velocity (m/sec) | 9.8 ± 5.5 | 6.6 ± 4.4 | 0.039 |
Augmentation index (%) | 29.6 ± 12.3 | 24.5 ± 11.9 | 0.201 |
Augmentation index adjusted to a heart rate of 75 beats/min (%) | 29.7 ± 11.2 | 27.3 ± 13.3 | 0.556 |
Central systolic blood pressure (mmHg) | 127.1 ± 11.8 | 128.3 ± 10.2 | 0.741 |
Central diastolic blood pressure (mmHg) | 76.2 ± 10.7 | 81.4 ± 13.5 | 0.198 |
Central mean blood pressure (mmHg) | 97.2 ± 10.8 | 103.3 ± 11.8 | 0.097 |
Central pulse pressure (mmHg) | 48.9 ± 15.4 | 46.9 ± 11.8 | 0.639 |
Carotid stenosis (left)(%) | 36.5 ± 12.6 | 22.1 ± 17.2 | 0.024 |
Carotid intima-media thickness (left) | 0.82 ± 0.17 | 0.79 ± 0.30 | 0.779 |
Maximal plaque thickness (left) | 0.25 ± 0.11 | 0.17 ± 0.12 | 0.087 |
Carotid stenosis (right) (%) | 31.3 ± 17.8 | 21.8 ± 18.6 | 0.177 |
Carotid intima-media thickness (right) | 0.93 ± 0.26 | 0.89 ± 0.32 | 0.718 |
Maximal plaque thickness (right) | 0.22 ± 0.11 | 0.25 ± 0.29 | 0.756 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kourtidou, C.; Rafailidis, V.; Varouktsi, G.; Kanakis, E.; Liakopoulos, V.; Vyzantiadis, T.-A.; Stangou, M.; Marinaki, S.; Tziomalos, K. Evaluation of Subclinical Vascular Disease in Diabetic Kidney Disease: A Tool for Personalization of Management of a High-Risk Population. J. Pers. Med. 2022, 12, 1139. https://doi.org/10.3390/jpm12071139
Kourtidou C, Rafailidis V, Varouktsi G, Kanakis E, Liakopoulos V, Vyzantiadis T-A, Stangou M, Marinaki S, Tziomalos K. Evaluation of Subclinical Vascular Disease in Diabetic Kidney Disease: A Tool for Personalization of Management of a High-Risk Population. Journal of Personalized Medicine. 2022; 12(7):1139. https://doi.org/10.3390/jpm12071139
Chicago/Turabian StyleKourtidou, Christodoula, Vasileios Rafailidis, Garyfallia Varouktsi, Efthimios Kanakis, Vassilios Liakopoulos, Timoleon-Achilleas Vyzantiadis, Maria Stangou, Smaragdi Marinaki, and Konstantinos Tziomalos. 2022. "Evaluation of Subclinical Vascular Disease in Diabetic Kidney Disease: A Tool for Personalization of Management of a High-Risk Population" Journal of Personalized Medicine 12, no. 7: 1139. https://doi.org/10.3390/jpm12071139
APA StyleKourtidou, C., Rafailidis, V., Varouktsi, G., Kanakis, E., Liakopoulos, V., Vyzantiadis, T. -A., Stangou, M., Marinaki, S., & Tziomalos, K. (2022). Evaluation of Subclinical Vascular Disease in Diabetic Kidney Disease: A Tool for Personalization of Management of a High-Risk Population. Journal of Personalized Medicine, 12(7), 1139. https://doi.org/10.3390/jpm12071139