SARS-CoV-2 Infection (COVID-19) and Rhinologic Manifestation: Narrative Review
Abstract
:1. Introduction
2. Review
2.1. Olfactory Dysfunction
2.2. Rhinosinusitis
2.3. Allergic Rhinitis
3. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chen, N.; Zhou, M.; Dong, X.; Qu, J.; Gong, F.; Han, Y.; Qiu, Y.; Wang, J.; Liu, Y.; Wei, Y.; et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: A descriptive study. Lancet 2020, 395, 507–513. [Google Scholar] [CrossRef] [Green Version]
- Guan, W.J.; Ni, Z.Y.; Hu, Y.; Liang, W.H.; Ou, C.Q.; He, J.X.; Liu, L.; Shan, H.; Lei, C.L.; Hui, D.S.C.; et al. Clinical Characteristics of Coronavirus Disease 2019 in China. N. Engl. J. Med. 2020, 382, 1708–1720. [Google Scholar] [CrossRef] [PubMed]
- Eliezer, M.; Hautefort, C.; Hamel, A.L.; Verillaud, B.; Herman, P.; Houdart, E.; Eloit, C. Sudden and Complete Olfactory Loss of Function as a Possible Symptom of COVID-19. JAMA Otolaryngol. Head Neck Surg. 2020, 146, 674–675. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gane, S.B.; Kelly, C.; Hopkins, C. Isolated sudden onset anosmia in COVID-19 infection. A novel syndrome? Rhinology 2020, 58, 299–301. [Google Scholar] [CrossRef] [PubMed]
- Russell, B.; Moss, C.; Rigg, A.; Hopkins, C.; Papa, S.; Van Hemelrijck, M. Anosmia and ageusia are emerging as symptoms in patients with COVID-19: What does the current evidence say? Ecancermedicalscience 2020, 14, ed98. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.; Guo, Y.; Pan, Y.; Zhao, Z.J. Structure analysis of the receptor binding of 2019-nCoV. Biochem. Biophys. Res. Commun. 2020, 525, 135–140. [Google Scholar] [CrossRef] [PubMed]
- Cheng, H.; Wang, Y.; Wang, G.Q. Organ-protective effect of angiotensin-converting enzyme 2 and its effect on the prognosis of COVID-19. J. Med. Virol. 2020, 92, 726–730. [Google Scholar] [CrossRef]
- Sungnak, W.; Huang, N.; Becavin, C.; Berg, M.; Queen, R.; Litvinukova, M.; Talavera-Lopez, C.; Maatz, H.; Reichart, D.; Sampaziotis, F.; et al. SARS-CoV-2 entry factors are highly expressed in nasal epithelial cells together with innate immune genes. Nat. Med. 2020, 26, 681–687. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xydakis, M.S.; Dehgani-Mobaraki, P.; Holbrook, E.H.; Geisthoff, U.W.; Bauer, C.; Hautefort, C.; Herman, P.; Manley, G.T.; Lyon, D.M.; Hopkins, C. Smell and taste dysfunction in patients with COVID-19. Lancet Infect. Dis. 2020, 20, 1015–1016. [Google Scholar] [CrossRef]
- Kowalski, L.P.; Sanabria, A.; Ridge, J.A.; Ng, W.T.; de Bree, R.; Rinaldo, A.; Takes, R.P.; Makitie, A.A.; Carvalho, A.L.; Bradford, C.R.; et al. COVID-19 pandemic: Effects and evidence-based recommendations for otolaryngology and head and neck surgery practice. Head Neck 2020, 42, 1259–1267. [Google Scholar] [CrossRef] [Green Version]
- Saniasiaya, J.; Islam, M.A.; Abdullah, B. Prevalence of Olfactory Dysfunction in Coronavirus Disease 2019 (COVID-19): A Meta-analysis of 27,492 Patients. Laryngoscope 2021, 131, 865–878. [Google Scholar] [CrossRef]
- Mao, L.; Jin, H.; Wang, M.; Hu, Y.; Chen, S.; He, Q.; Chang, J.; Hong, C.; Zhou, Y.; Wang, D.; et al. Neurologic Manifestations of Hospitalized Patients with Coronavirus Disease 2019 in Wuhan, China. JAMA Neurol. 2020, 77, 683–690. [Google Scholar] [CrossRef] [Green Version]
- Lechien, J.R.; Chiesa-Estomba, C.M.; Beckers, E.; Mustin, V.; Ducarme, M.; Journe, F.; Marchant, A.; Jouffe, L.; Barillari, M.R.; Cammaroto, G.; et al. Prevalence and 6-month recovery of olfactory dysfunction: A multicentre study of 1363 COVID-19 patients. J. Intern. Med. 2021, 290, 451–461. [Google Scholar] [CrossRef]
- Reiter, E.R.; Coelho, D.H.; Kons, Z.A.; Costanzo, R.M. Subjective smell and taste changes during the COVID-19 pandemic: Short term recovery. Am. J. Otolaryngol. 2020, 41, 102639. [Google Scholar] [CrossRef] [PubMed]
- Lv, H.; Zhang, W.; Zhu, Z.; Xiong, Q.; Xiang, R.; Wang, Y.; Shi, W.; Deng, Z.; Xu, Y. Prevalence and recovery time of olfactory and gustatory dysfunction in hospitalized patients with COVID-19 in Wuhan, China. Int. J. Infect. Dis. 2020, 100, 507–512. [Google Scholar] [CrossRef]
- Boscolo-Rizzo, P.; Borsetto, D.; Fabbris, C.; Spinato, G.; Frezza, D.; Menegaldo, A.; Mularoni, F.; Gaudioso, P.; Cazzador, D.; Marciani, S.; et al. Evolution of Altered Sense of Smell or Taste in Patients with Mildly Symptomatic COVID-19. JAMA Otolaryngol. Head Neck Surg. 2020, 146, 729–732. [Google Scholar] [CrossRef] [PubMed]
- Amer, M.A.; Elsherif, H.S.; Abdel-Hamid, A.S.; Elzayat, S. Early recovery patterns of olfactory disorders in COVID-19 patients; a clinical cohort study. Am. J. Otolaryngol. 2020, 41, 102725. [Google Scholar] [CrossRef] [PubMed]
- Altundag, A.; Saatci, O.; Sanli, D.E.T.; Duz, O.A.; Sanli, A.N.; Olmuscelik, O.; Temirbekov, D.; Kandemirli, S.G.; Karaaltin, A.B. The temporal course of COVID-19 anosmia and relation to other clinical symptoms. Eur. Arch. Oto-Rhino-Laryngol. 2020, 278, 1891–1897. [Google Scholar] [CrossRef]
- Seo, M.Y.; Choi, W.S.; Lee, S.H. Clinical Features of Olfactory Dysfunction in COVID-19 Patients. J. Korean Med. Sci. 2021, 36, e161. [Google Scholar] [CrossRef]
- Hummel, T.; Rissom, K.; Reden, J.; Hahner, A.; Weidenbecher, M.; Huttenbrink, K.B. Effects of olfactory training in patients with olfactory loss. Laryngoscope 2009, 119, 496–499. [Google Scholar] [CrossRef]
- Kollndorfer, K.; Fischmeister, F.P.S.; Kowalczyk, K.; Hoche, E.; Mueller, C.A.; Trattnig, S.; Schöpf, V. Olfactory training induces changes in regional functional connectivity in patients with long-term smell loss. NeuroImage Clin. 2015, 9, 401–410. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Seo, M.Y.; Seok, H.; Hwang, S.J.; Choi, H.K.; Jeon, J.H.; Sohn, J.W.; Park, D.W.; Lee, S.H.; Choi, W.S. Trend of Olfactory and Gustatory Dysfunction in COVID-19 Patients in a Quarantine Facility. J. Korean Med. Sci. 2020, 35, e375. [Google Scholar] [CrossRef] [PubMed]
- Denis, F.; Septans, A.L.; Periers, L.; Maillard, J.M.; Legoff, F.; Gurden, H.; Moriniere, S. Olfactory Training and Visual Stimulation Assisted by a Web Application for Patients with Persistent Olfactory Dysfunction After SARS-CoV-2 Infection: Observational Study. J. Med. Internet Res. 2021, 23, e29583. [Google Scholar] [CrossRef]
- Altundag, A.; Yilmaz, E.; Kesimli, M.C. Modified Olfactory Training Is an Effective Treatment Method for COVID-19 Induced Parosmia. Laryngoscope 2022, 132, 1433–1438. [Google Scholar] [CrossRef] [PubMed]
- Huart, C.; Philpott, C.M.; Altundag, A.; Fjaeldstad, A.W.; Frasnelli, J.; Gane, S.; Hsieh, J.W.; Holbrook, E.H.; Konstantinidis, I.; Landis, B.N.; et al. Systemic corticosteroids in coronavirus disease 2019 (COVID-19)-related smell dysfunction: An international view. Int. Forum Allergy Rhinol. 2021, 11, 1041–1046. [Google Scholar] [CrossRef] [PubMed]
- Le Bon, S.D.; Konopnicki, D.; Pisarski, N.; Prunier, L.; Lechien, J.R.; Horoi, M. Efficacy and safety of oral corticosteroids and olfactory training in the management of COVID-19-related loss of smell. Eur. Arch. Oto-Rhino-Laryngol. 2021, 278, 3113–3117. [Google Scholar] [CrossRef]
- Kasiri, H.; Rouhani, N.; Salehifar, E.; Ghazaeian, M.; Fallah, S. Mometasone furoate nasal spray in the treatment of patients with COVID-19 olfactory dysfunction: A randomized, double blind clinical trial. Int. Immunopharmacol. 2021, 98, 107871. [Google Scholar] [CrossRef]
- Saussez, S.; Vaira, L.A.; Chiesa-Estomba, C.M.; Bon, S.L.; Horoi, M.; Deiana, G.; Petrocelli, M.; Boelpaep, P.; Salzano, G.; Khalife, M.; et al. Short-Term Efficacy and Safety of Oral and Nasal Corticosteroids in COVID-19 Patients with Olfactory Dysfunction: A European Multicenter Study. Pathogens 2021, 10, 698. [Google Scholar] [CrossRef]
- Abdelalim, A.A.; Mohamady, A.A.; Elsayed, R.A.; Elawady, M.A.; Ghallab, A.F. Corticosteroid nasal spray for recovery of smell sensation in COVID-19 patients: A randomized controlled trial. Am. J. Otolaryngol. 2021, 42, 102884. [Google Scholar] [CrossRef] [PubMed]
- Kawasumi, T.; Takeno, S.; Nishimura, M.; Ishino, T.; Ueda, T.; Hamamoto, T.; Takemoto, K.; Horibe, Y. Differential expression of angiotensin-converting enzyme-2 in human paranasal sinus mucosa in patients with chronic rhinosinusitis. J. Laryngol. Otol. 2021, 135, 773–778. [Google Scholar] [CrossRef]
- Wang, M.; Wang, C.; Zhang, L. Inflammatory endotypes of CRSwNP and responses to COVID-19. Curr. Opin. Allergy Clin. Immunol. 2021, 21, 8–15. [Google Scholar] [CrossRef]
- Fokkens, W.J.; Lund, V.J.; Hopkins, C.; Hellings, P.W.; Kern, R.; Reitsma, S.; Toppila-Salmi, S.; Bernal-Sprekelsen, M.; Mullol, J.; Alobid, I.; et al. European Position Paper on Rhinosinusitis and Nasal Polyps 2020. Rhinology 2020, 58, 1–464. [Google Scholar] [CrossRef]
- Straburzynski, M.; Nowaczewska, M.; Budrewicz, S.; Waliszewska-Prosol, M. COVID-19-related headache and sinonasal inflammation: A longitudinal study analysing the role of acute rhinosinusitis and ICHD-3 classification difficulties in SARS-CoV-2 infection. Cephalalgia 2022, 42, 218–228. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Song, J.; Pan, L.; Yao, Y.; Deng, Y.K.; Wang, Z.C.; Liao, B.; Ma, J.; He, C.; Zeng, M.; et al. The characterization of chronic rhinosinusitis in hospitalized patients with COVID-19. J. Allergy Clin. Immunol. Pract. 2020, 8, 3597–3599. [Google Scholar] [CrossRef]
- Workman, A.D.; Bhattacharyya, N. Do Patients with Chronic Rhinosinusitis Exhibit Elevated Rates of COVID-19 Infection? Laryngoscope 2022, 132, 257–258. [Google Scholar] [CrossRef] [PubMed]
- Recalde-Zamacona, B.; Tomas-Velazquez, A.; Campo, A.; Satrustegui-Alzugaray, B.; Fernandez-Alonso, M.; Inigo, M.; Rodriguez-Mateos, M.; Di Frisco, M.; Felgueroso, C.; Berto, J.; et al. Chronic rhinosinusitis is associated with prolonged SARS-CoV-2 RNA shedding in upper respiratory tract samples: A case-control study. J. Intern. Med. 2021, 289, 921–925. [Google Scholar] [CrossRef] [PubMed]
- Abdelsamie, A.M.; Abdelazim, H.M.; Elnems, M.G.; Abdelhakam, R.B.; Abdelalim, A.A. COVID-19-Related Acute Invasive Fungal Sinusitis: Clinical Features and Outcomes. Int. Arch. Otorhinolaryngol. 2022, 26, e152–e157. [Google Scholar] [CrossRef]
- Dilek, A.; Ozaras, R.; Ozkaya, S.; Sunbul, M.; Sen, E.I.; Leblebicioglu, H. COVID-19-associated mucormycosis: Case report and systematic review. Travel Med. Infect. Dis. 2021, 44, 102148. [Google Scholar] [CrossRef] [PubMed]
- Karimi-Galougahi, M.; Arastou, S.; Haseli, S. Fulminant mucormycosis complicating coronavirus disease 2019 (COVID-19). Int. Forum Allergy Rhinol. 2021, 11, 1029–1030. [Google Scholar] [CrossRef]
- Waizel-Haiat, S.; Guerrero-Paz, J.A.; Sanchez-Hurtado, L.; Calleja-Alarcon, S.; Romero-Gutierrez, L. A Case of Fatal Rhino-Orbital Mucormycosis Associated with New Onset Diabetic Ketoacidosis and COVID-19. Cureus 2021, 13, e13163. [Google Scholar] [CrossRef] [PubMed]
- El-Kholy, N.A.; El-Fattah, A.M.A.; Khafagy, Y.W. Invasive Fungal Sinusitis in Post COVID-19 Patients: A New Clinical Entity. Laryngoscope 2021, 131, 2652–2658. [Google Scholar] [CrossRef]
- Elmokadem, A.H.; Bayoumi, D.; Mansour, M.; Ghonim, M.; Saad, E.A.; Khedr, D. COVID-19-associated acute invasive fungal sinusitis: Clinical and imaging findings. J. Neuroimaging 2022, 32, 676–689. [Google Scholar] [CrossRef] [PubMed]
- Dubini, M.; Robotti, C.; Benazzo, M.; Rivolta, F. Impact of quarantine and face masks on ragweed-induced oculorhinits during the COVID-19 pandemic in Northern Italy. Int. Forum Allergy Rhinol. 2022, 12, 220–222. [Google Scholar] [CrossRef]
- Liccardi, G.; Bilo, M.B.; Milanese, M.; Martini, M.; Calzetta, L.; Califano, F.; Carucci, L.; Ciccarelli, A.; Cutajar, M.; D’Auria, P.; et al. Face masks during COVID-19 pandemic lockdown and self-reported seasonal allergic rhinitis symptoms. Rhinology 2021, 59, 481–484. [Google Scholar] [CrossRef] [PubMed]
- Klimek, L.; Jutel, M.; Akdis, C.; Bousquet, J.; Akdis, M.; Bachert, C.; Agache, I.; Ansotegui, I.; Bedbrook, A.; Bosnic-Anticevich, S.; et al. Handling of allergen immunotherapy in the COVID-19 pandemic: An ARIA-EAACI statement. Allergy 2020, 75, 1546–1554. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, S.H.; Seo, M.Y. SARS-CoV-2 Infection (COVID-19) and Rhinologic Manifestation: Narrative Review. J. Pers. Med. 2022, 12, 1234. https://doi.org/10.3390/jpm12081234
Lee SH, Seo MY. SARS-CoV-2 Infection (COVID-19) and Rhinologic Manifestation: Narrative Review. Journal of Personalized Medicine. 2022; 12(8):1234. https://doi.org/10.3390/jpm12081234
Chicago/Turabian StyleLee, Seung Hoon, and Min Young Seo. 2022. "SARS-CoV-2 Infection (COVID-19) and Rhinologic Manifestation: Narrative Review" Journal of Personalized Medicine 12, no. 8: 1234. https://doi.org/10.3390/jpm12081234
APA StyleLee, S. H., & Seo, M. Y. (2022). SARS-CoV-2 Infection (COVID-19) and Rhinologic Manifestation: Narrative Review. Journal of Personalized Medicine, 12(8), 1234. https://doi.org/10.3390/jpm12081234