Machine Learning Models for Nocturnal Hypoglycemia Prediction in Hospitalized Patients with Type 1 Diabetes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Databases
2.2. Model Building
2.2.1. CGM Data Cleaning and Preprocessing
2.2.2. Extraction of CGM Metrics
2.2.3. Data Sampling
2.2.4. Input Clinical Parameters into the Models
2.2.5. ML Algorithms
2.3. Model Evaluation
2.4. Assessment of NH Predictors
3. Results
3.1. Characteristics of Patients
3.2. Evaluation of ML Models
3.3. Evaluation of NH Predictors
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ANN | Artificial Neural Networks |
AUC | area under the curve |
AVL | acceleration over the last values |
BMI | body mass index |
CGM | continuous glucose monitoring |
CONGA-1 | 1 h continuous overlapping net glycemic action |
CV | coefficient of variation |
DVL | difference between the last two values |
eGFR | estimated glomerular filtration rate |
HbA1c | glycated hemoglobin A1c |
LBGI | Low Blood Glucose Index |
LC | linear trend coefficient |
LI | Lability Index |
LogRLasso | Logistic Linear Regression with Lasso regularization |
ML | machine learning |
NH | nocturnal hypoglycemia |
PH | prediction horizon |
RF | Random Forest |
Se | sensitivity |
Sp | specificity |
T1D | type 1 diabetes |
t-SNE | t-distributed Stochastic Neighbor Embedding |
UACR | urinary albumin-to-creatinine ratio |
References
- Allen, K.V.; Frier, B.M. Nocturnal hypoglycemia: Clinical manifestations and therapeutic strategies toward prevention. Endocr. Pract. 2003, 9, 530–543. [Google Scholar] [CrossRef] [PubMed]
- Graveling, A.J.; Frier, B.M. The risks of nocturnal hypoglycaemia in insulin-treated diabetes. Diabetes Res. Clin. Pract. 2017, 133, 30–39. [Google Scholar] [CrossRef] [PubMed]
- Saik, O.V.; Klimontov, V.V. Hypoglycemia, Vascular Disease and Cognitive Dysfunction in Diabetes: Insights from Text Mining-Based Reconstruction and Bioinformatics Analysis of the Gene Networks. Int. J. Mol. Sci. 2021, 22, 12419. [Google Scholar] [CrossRef] [PubMed]
- Seaquist, E.R.; Anderson, J.; Childs, B.; Cryer, P.; Dagogo-Jack, S.; Fish, L.; Heller, S.R.; Rodriguez, H.; Rosenzweig, J.; Vigersky, R. Hypoglycemia and diabetes: A report of a workgroup of the American Diabetes Association and the Endocrine Society. Diabetes Care 2013, 36, 1384–1395. [Google Scholar] [CrossRef] [Green Version]
- Siamashvili, M.; Davis, H.A.; Davis, S.N. Nocturnal hypoglycemia in type 1 and type 2 diabetes: An update on prevalence, prevention, pathophysiology and patient awareness. Expert Rev. Endocrinol. Metab. 2021, 16, 281–293. [Google Scholar] [CrossRef] [PubMed]
- Schultes, B.; Jauch-Chara, K.; Gais, S.; Hallschmid, M.; Reiprich, E.; Kern, W.; Oltmanns, K.M.; Peters, A.; Fehm, H.L.; Born, J. Defective awakening response to nocturnal hypoglycemia in patients with type 1 diabetes mellitus. PLoS Med. 2007, 4, e69. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Whincup, G.; Milner, R.D. Prediction and management of nocturnal hypoglycaemia in diabetes. Arch. Dis. Child. 1987, 62, 333–337. [Google Scholar] [CrossRef]
- Ling, Q.; Lu, J.; Li, X.; Qiao, C.; Zhu, D.; Bi, Y. Value of Capillary Glucose Profiles in Assessing Risk of Nocturnal Hypoglycemia in Type 1 Diabetes Based on Continuous Glucose Monitoring. Diabetes Ther. 2020, 11, 915–925. [Google Scholar] [CrossRef] [Green Version]
- Jensen, M.H.; Dethlefsen, C.; Vestergaard, P.; Hejlesen, O. Prediction of Nocturnal Hypoglycemia from Continuous Glucose Monitoring Data in People with Type 1 Diabetes: A Proof-of-Concept Study. J. Diabetes Sci. Technol. 2020, 14, 250–256. [Google Scholar] [CrossRef] [PubMed]
- Sampath, S.; Tkachenko, P.; Renard, E.; Pereverzev, S.V. Glycemic Control Indices and Their Aggregation in the Prediction of Nocturnal Hypoglycemia from Intermittent Blood Glucose Measurements. J. Diabetes Sci. Technol. 2016, 10, 1245–1250. [Google Scholar] [CrossRef] [Green Version]
- Klimontov, V.V.; Myakina, N.E. Glucose variability indices predict the episodes of nocturnal hypoglycemia in elderly type 2 diabetic patients treated with insulin. Diabetes Metab. Syndr. 2017, 11, 119–124. [Google Scholar] [CrossRef] [PubMed]
- Mujahid, O.; Contreras, I.; Vehi, J. Machine learning techniques for hypoglycemia prediction: Trends and challenges. Sensors 2021, 21, 546. [Google Scholar] [CrossRef] [PubMed]
- Kodama, S.; Fujihara, K.; Shiozaki, H.; Horikawa, C.; Yamada, M.H.; Sato, T.; Yaguchi, Y.; Yamamoto, M.; Kitazawa, M.; Iwanaga, M.; et al. Ability of Current Machine Learning Algorithms to Predict and Detect Hypoglycemia in Patients with Diabetes Mellitus: Meta-analysis. JMIR Diabetes 2021, 6, e22458. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Ma, X.; Tobore, I.; Liu, Y.; Kandwal, A.; Wang, L.; Lu, J.; Lu, W.; Bao, Y.; Zhou, J.; et al. A Novel CGM Metric-Gradient and Combining Mean Sensor Glucose Enable to Improve the Prediction of Nocturnal Hypoglycemic Events in Patients with Diabetes. J. Diabetes Res. 2020, 2020, 8830774. [Google Scholar] [CrossRef]
- Vu, L.; Kefayati, S.; Idé, T.; Pavuluri, V.; Jackson, G.; Latts, L.; Zhong, Y.; Agrawal, P.; Chang, Y.C. Predicting Nocturnal Hypoglycemia from Continuous Glucose Monitoring Data with Extended Prediction Horizon. AMIA Annu. Symp. Proc. 2020, 2019, 874–882. [Google Scholar]
- Dave, D.; DeSalvo, D.J.; Haridas, B.; McKay, S.; Shenoy, A.; Koh, C.J.; Lawley, M.; Erraguntla, M. Feature-Based Machine Learning Model for Real-Time Hypoglycemia Prediction. J. Diabetes Sci. Technol. 2021, 15, 842–855. [Google Scholar] [CrossRef]
- Calhoun, P.; Levine, R.A.; Fan, J. Repeated measures random forests (RMRF): Identifying factors associated with nocturnal hypoglycemia. Biometrics 2021, 77, 343–351. [Google Scholar] [CrossRef]
- Vehí, J.; Contreras, I.; Oviedo, S.; Biagi, L.; Bertachi, A. Prediction and prevention of hypoglycaemic events in type-1 diabetic patients using machine learning. Health Inform. J. 2020, 26, 703–718. [Google Scholar] [CrossRef] [Green Version]
- Bertachi, A.; Viñals, C.; Biagi, L.; Contreras, I.; Vehí, J.; Conget, I.; Giménez, M. Prediction of Nocturnal Hypoglycemia in Adults with Type 1 Diabetes under Multiple Daily Injections Using Continuous Glucose Monitoring and Physical Activity Monitor. Sensors 2020, 20, 1705. [Google Scholar] [CrossRef] [Green Version]
- Ulmer, B.J.; Kara, A.; Mariash, C.N. Temporal occurrences and recurrence patterns of hypoglycemia during hospitalization. Endocr. Pract. 2015, 21, 501–507. [Google Scholar] [CrossRef]
- Pratiwi, C.; Mokoagow, M.I.; Made Kshanti, I.A.; Soewondo, P. The risk factors of inpatient hypoglycemia: A systematic review. Heliyon 2020, 6, e03913. [Google Scholar] [CrossRef] [PubMed]
- Fralick, M.; Dai, D.; Pou-Prom, C.; Verma, A.A.; Mamdani, M. Using machine learning to predict severe hypoglycaemia in hospital. Diabetes Obes. Metab. 2021, 23, 2311–2319. [Google Scholar] [CrossRef] [PubMed]
- Danne, T.; Nimri, R.; Battelino, T.; Bergenstal, R.M.; Close, K.L.; DeVries, J.H.; Garg, S.; Heinemann, L.; Hirsch, I.; Amiel, S.A.; et al. International Consensus on Use of Continuous Glucose Monitoring. Diabetes Care 2017, 40, 1631–1640. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rodbard, D. Glucose Variability: A Review of Clinical Applications and Research Developments. Diabetes Technol. Ther. 2018, 20, S25–S215. [Google Scholar] [CrossRef]
- Kovatchev, B. Glycemic Variability: Risk Factors, Assessment, and Control. J. Diabetes Sci. Technol. 2019, 13, 627–635. [Google Scholar] [CrossRef]
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef] [Green Version]
- Friedman, J.; Hastie, T.; Tibshirani, R. Regularization Paths for Generalized Linear Models via Coordinate Descent. J. Stat. Softw. 2010, 33, 1–22. [Google Scholar] [CrossRef] [Green Version]
- Kanzow, C.; Yamashita, N.; Fukushima, M. Levenberg–Marquardt methods with strong local convergence properties for solving nonlinear equations with convex constraints. J. Comp. Appl. Math. 2005, 173, 321–343. [Google Scholar] [CrossRef] [Green Version]
- Clarke, W.L.; Cox, D.J.; Gonder-Frederick, L.A.; Julian, D.; Schlundt, D.; Polonsky, W. Reduced awareness of hypoglycemia in adults with IDDM. A prospective study of hypoglycemic frequency and associated symptoms. Diabetes Care 1995, 18, 517–522. [Google Scholar] [CrossRef]
- Steineck, I.; Ranjan, A.; Nørgaard, K.; Schmidt, S. Sensor-Augmented Insulin Pumps and Hypoglycemia Prevention in Type 1 Diabetes. J. Diabetes Sci. Technol. 2017, 11, 50–58. [Google Scholar] [CrossRef] [PubMed]
- Chen, E.; King, F.; Kohn, M.A.; Spanakis, E.K.; Breton, M.; Klonoff, D.C. A Review of Predictive Low Glucose Suspend and Its Effectiveness in Preventing Nocturnal Hypoglycemia. Diabetes Technol. Ther. 2019, 21, 602–609. [Google Scholar] [CrossRef] [PubMed]
- American Diabetes Association. Healthy Living. Hypoglycemia (Low Blood Glucose). Available online: https://www.diabetes.org/healthy-living/medication-treatments/blood-glucose-testing-and-control/hypoglycemia (accessed on 8 February 2022).
- Provost, F. Machine learning from imbalanced data sets 101. In AAAI Technical Report WS-00-05, Proceedings of the AAAI’2000 Workshop on Imbalanced Data Sets, Austin, TX, USA, 31 July 2000; AAAI Press: Palo Alto, CA, USA, 2000; Volume 68, p. 2000. [Google Scholar]
- Chawla, N.V. Data mining for imbalanced datasets: An overview. In Data Mining and Knowledge Discovery Handbook; Springer: Berlin/Heidelberg, Germany, 2009; pp. 875–886. [Google Scholar]
Parameter | Formula |
---|---|
CV | |
LI | |
LBGI | , where , |
CONGA-1 | |
Minimum value | |
DLV | |
ALV | |
LC |
General Demographic and Clinical Parameters | |
---|---|
Sex, m/f, n (%) | 147/259 (36.2/63.8) |
Age, years | 36 (28–48) |
BMI, kg/m2 | 23.6 (21.2–27.1) |
Waist-to-hip ratio | 0.84 (0.78–0.91) |
Current smoking, n (%) | 68 (16.7) |
Diabetes-related parameters and associated diseases | |
Diabetes duration, years | 16 (10–25) |
Daily insulin dose, IU | 40 (29.1–53.6) |
Daily insulin dose, IU/kg | 0.59 (0.47–0.76) |
Daily basal insulin dose, IU | 19.0 (13.6–26) |
Daily basal insulin dose, IU/kg | 0.28 (0.21–0.38) |
Diabetic retinopathy, n (%) | 246 (60.6) |
Chronic kidney disease, n (%) | 274 (67.5) |
Neuropathy, n (%) | 301 (74.1) |
Impaired awareness of hypoglycemia, n (%) | 148 (36.5) |
Arterial hypertension, n (%) | 159 (39.2) |
Coronary artery disease, n (%) | 31 (7.6) |
Laboratory parameters | |
HbA1c, % | 8.1 (7.1–9.2) |
Total cholesterol, mmol/L | 5.0 (4.2–5.9) |
LDL cholesterol, mmol/L | 3.0 (2.4–3.7) |
HDL cholesterol, mmol/L | 1.5 (1.3–1.7) |
Triglycerides, mmol/L | 1.0 (0.7–1.4) |
Serum creatinine, µmol/L | 81.9 (73.7–94.0) |
eGFR, mL/min/1.73 m2 | 88.0 (73.0–100.0) |
UACR, mg/mmoL | 2.1 (2.0–7.65) |
PH | Sampling/Parameters | RF | LogRLasso | ANN | ||||
---|---|---|---|---|---|---|---|---|
CGM | CGM + Clinical Data | CGM | CGM + Clinical Data | CGM | CGM + Clinical Data | |||
15 min | OS | Se Sp AUC | 93.6 (3.4) 90.1 (2.4) 0.958 (0.011) | 90.9 (2.8) 91.8 (2.3) 0.953 (0.012) | 93.6 (1.9) 91.9 (2.2) 0.962 (0.010) | 93.0 (3.0) 93.0 (2.0) 0.968 (0.014) | 90.5 (5.9) 91.4 (1.6) 0.946 (0.032) | 90.8 (2.5) 89.1 (4.5) 0.935 (0.029) |
NS | Se Sp AUC | 91.8 (1.2) 91.1 (3.9) 0.959 (0.020) | 94.5 (2.6) 91.4 (3.3) 0.97 (0.017) | 93.6 (3.4) 91.2 (2.5) 0.957 (0.021) | 92.4 (2.5) 92.3 (3.7) 0.958 (0.025) | 88.6 (3.6) 92.6 (3.1) 0.934 (0.032) | 90.3 (3.1) 91.0 (1.6) 0.935 (0.027) | |
US | Se Sp AUC | 88.2 (5.2) 92.7 (2.1) 0.953 (0.023) | 92.3 (3.4) 90.6 (1.3) 0.956 (0.009) | 90.5 (6.7) 91.4 (1.4) 0.947 (0.036) | 90.8 (4.7) 91.2 (2.4) 0.947 (0.018) | 90.0 (4.7) 90.2 (2.8) 0.947 (0.033) | 91.9 (3.7) 88.9 (3.6) 0.945 (0.017) | |
30 min | OS | Se Sp AUC | 87.6 (1.9) 88.9 (3.1) 0.927 (0.03) | 86.6 (3.6) 87.0 (2.6) 0.911 (0.019) | 90.4 (1.7) 87.5 (2.2) 0.932 (0.06) | 91.0 (3.5) 87.7 (3.7) 0.94 (0.012) | 87.6 (3.9) 88.0 (4.0) 0.918 (0.031) | 84.6 (5.2) 87.2 (5.5) 0.881 (0.034) |
NS | Se Sp AUC | 87.1 (4.6) 87.1 (6.0) 0.92 (0.036) | 90.4 (4.7) 87.4 (1.6) 0.942 (0.028) | 87.1 (4.0) 90.8 (1.9) 0.928 (0.012) | 86.9 (4.0) 90.3 (1.9) 0.933 (0.012) | 86.6 (3.2) 88.7 (2.2) 0.924 (0.018) | 83.3 (4.2) 86.3 (2.8) 0.881 (0.049) | |
US | Se Sp AUC | 89.5 (3.6) 86.5 (2.8) 0.912 (0.031) | 92.4 (3.1) 85.3 (1.2) 0.923 (0.021) | 85.1 (5.6) 89.5 (1.8) 0.913 (0.027) | 90.3 (3.2) 86.7 (1.9) 0.92 (0.03) | 85.1 (5.3) 87.5 (2.7) 0.908 (0.028) | 85.2 (3.6) 84.8 (2.2) 0.901 (0.023) |
PH | Parameters | Importance | Effect |
---|---|---|---|
15 min | Minimal glucose | 1.000 | − |
LBGI | 0.786 | + | |
DLV | 0.723 | + | |
CONGA-1 | 0.625 | + | |
LC | 0.542 | − | |
Proteinuria | 0.494 | + | |
Basal insulin dose, IU/kg | 0.488 | + | |
Diabetes duration | 0.457 | + | |
Autonomic neuropathy | 0.383 | + | |
HbA1c | 0.379 | − | |
30 min | Minimal glucose | 1.000 | − |
LBGI | 0.845 | + | |
Daily insulin dose, IU/kg | 0.770 | + | |
HbA1c | 0.698 | − | |
Diabetes duration | 0.693 | + | |
Basal insulin dose, IU/kg | 0.666 | + | |
Proteinuria | 0.653 | + | |
eGFR | 0.652 | + | |
DLV | 0.589 | + | |
BMI | 0.577 | − |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Berikov, V.B.; Kutnenko, O.A.; Semenova, J.F.; Klimontov, V.V. Machine Learning Models for Nocturnal Hypoglycemia Prediction in Hospitalized Patients with Type 1 Diabetes. J. Pers. Med. 2022, 12, 1262. https://doi.org/10.3390/jpm12081262
Berikov VB, Kutnenko OA, Semenova JF, Klimontov VV. Machine Learning Models for Nocturnal Hypoglycemia Prediction in Hospitalized Patients with Type 1 Diabetes. Journal of Personalized Medicine. 2022; 12(8):1262. https://doi.org/10.3390/jpm12081262
Chicago/Turabian StyleBerikov, Vladimir B., Olga A. Kutnenko, Julia F. Semenova, and Vadim V. Klimontov. 2022. "Machine Learning Models for Nocturnal Hypoglycemia Prediction in Hospitalized Patients with Type 1 Diabetes" Journal of Personalized Medicine 12, no. 8: 1262. https://doi.org/10.3390/jpm12081262
APA StyleBerikov, V. B., Kutnenko, O. A., Semenova, J. F., & Klimontov, V. V. (2022). Machine Learning Models for Nocturnal Hypoglycemia Prediction in Hospitalized Patients with Type 1 Diabetes. Journal of Personalized Medicine, 12(8), 1262. https://doi.org/10.3390/jpm12081262