Personalized Predictive Modeling of Subfoveal Choroidal Thickness Changes for Myopic Adolescents after Overnight Orthokeratology
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subjects
2.2. Ortho-K Lens Fitting
2.3. Measurements
2.4. Daily Ocular Environmental Factors
2.5. Statistical Analysis
3. Results
3.1. Baseline Information
3.2. Establishing the Univariate Three-Level Model
3.3. Establishing the Multivariate Three-Level Model
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Burton, M.J.; Ramke, J.; Marques, A.P.; Bourne, R.R.; Congdon, N.; Jones, I.; Tong, B.A.M.A.; Arunga, S.; Bachani, D.; Bascaran, C.; et al. The Lancet Global Health Commission on Global Eye Health: Vision beyond 2020. Lancet Glob. Health 2021, 9, e489–e551. [Google Scholar] [CrossRef]
- Wang, J.; Li, Y.; Much, D.C.; Wei, N.; Qi, X.; Ding, G.; Li, X.; Li, J.; Song, L.; Zhang, Y.; et al. Progression of Myopia in School-Aged Children After COVID-19 Home Confinement. JAMA Ophthalmol. 2021, 139, 293–300. [Google Scholar] [CrossRef]
- Wildsoet, C.F.; Chia, A.; Cho, P.; Guggenheim, J.A.; Polling, J.R.; Read, S.; Sankaridurg, P.; Saw, S.M.; Trier, K.; Walline, J.J.; et al. IMI—Interventions Myopia Institute: Interventions for Controlling Myopia Onset and Progression Report. Investig. Ophthalmol. Vis. Sci. 2019, 60, M106–M131. [Google Scholar] [CrossRef] [PubMed]
- Santodomingo-Rubido, J.; Villa-Collar, C.; Gilmartin, B.; Gutierrez-Ortega, R.; Sugimoto, K. Long-term Efficacy of Orthokeratology Contact Lens Wear in Controlling the Progression of Childhood Myopia. Curr. Eye Res. 2016, 42, 713–720. [Google Scholar] [CrossRef] [PubMed]
- Santodomingo-Rubido, J.; Villa-Collar, C.; Gilmartin, B.; Gutierrez-Ortega, R. Myopia control with orthokeratology contact lenses in Spain: Refractive and biometric changes. Investig. Ophthalmol. Vis. Sci. 2012, 53, 5060–5065. [Google Scholar] [CrossRef] [PubMed]
- Hiraoka, T.; Kakita, T.; Okamoto, F.; Takahashi, H.; Oshika, T. Long-Term Effect of Overnight Orthokeratology on Axial Length Elongation in Childhood Myopia: A 5-Year Follow-Up Study. Investig. Opthalmol. Vis. Sci. 2012, 53, 3913–3919. [Google Scholar] [CrossRef] [PubMed]
- Cho, P.; Cheung, S.W. Retardation of myopia in Orthokeratology (ROMIO) study: A 2-year randomized clinical trial. Investig. Ophthalmol. Vis. Sci. 2012, 53, 7077–7085. [Google Scholar] [CrossRef] [PubMed]
- Liu, B.; Wang, Y.; Li, T.; Lin, Y.; Ma, W.; Chen, X.; Lyu, C.; Li, Y.; Lu, L. Correlation of subfoveal choroidal thickness with axial length, refractive error, and age in adult highly myopic eyes. BMC Ophthalmol. 2018, 18, 127. [Google Scholar] [CrossRef] [PubMed]
- Read, S.A.; Alonso-Caneiro, D.; Vincent, S.J.; Collins, M.J. Peripapillary choroidal thickness in childhood. Exp. Eye Res. 2015, 135, 164–173. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.H.; Hong, I.H.; Lee, T.Y.; Han, J.R.; Jeon, G.S. Choroidal Thickness Changes after Orthokeratology Lens Wearing in Young Adults with Myopia. Ophthalmic Res. 2021, 64, 121–127. [Google Scholar] [CrossRef]
- Li, Z.; Hu, Y.; Cui, D.; Long, W.; He, M.; Yang, X. Change in subfoveal choroidal thickness secondary to orthokeratology and its cessation: A predictor for the change in axial length. Acta Ophthalmol. 2019, 97, e454–e459. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Xue, F.; Zhou, J.; Qu, X.; Zhou, X. Effects of Orthokeratology on Choroidal Thickness and Axial Length. Optom. Vis. Sci. 2016, 93, 1064–1071. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Wang, Y.; Gao, X.; Qian, N.; Zhuo, Y. Choroidal thickness and high myopia: A cross-sectional study and meta-analysis. BMC Ophthalmol. 2015, 15, 70. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.; Chen, W.; Zhao, F.; Zhou, Q.; Reinach, P.S.; Deng, L.; Ma, L.; Luo, S.; Srinivasalu, N.; Pan, M.; et al. Scleral hypoxia is a target for myopia control. Proc. Natl. Acad. Sci. USA 2018, 115, E7091–E7100. [Google Scholar] [CrossRef]
- Hofoss, D.; Veenstra, M.; Krogstad, U. Multilevel analysis in health services research: A tutorial. Ann. Ist. Super. Sanita. 2003, 39, 213–222. [Google Scholar]
- Henderson, C.R., Jr. Analysis of covariance in the mixed model: Higher-level, nonhomogeneous, and random regressions. Biometrics 1982, 38, 623–640. [Google Scholar] [CrossRef] [PubMed]
- Xiong, F.; Tu, J.; Mao, T.; Yu, L.; Lin, N.; Liao, H. Subfoveal Choroidal Thickness in Myopia: An OCT-Based Study in Young Chinese Patients. J. Ophthalmol. 2020, 2020, 5896016. [Google Scholar] [CrossRef]
- Ye, L.; Shi, Y.; Yin, Y.; Li, S.; He, J.; Zhu, J.; Xu, X. Effects of Atropine Treatment on Choroidal Thickness in Myopic Children. Investig. Opthalmol. Vis. Sci. 2020, 61, 15. [Google Scholar] [CrossRef]
- Aydin, E.; Kazanci, L.; Yilmaz, M.B.; Akcay, F.A.; Bayata, S. Analysis of central macular thickness and choroidal thickness changes in patients with cardiovascular risk factors. Eye 2020, 34, 2068–2075. [Google Scholar] [CrossRef]
- Usui, S.; Ikuno, Y.; Akiba, M.; Maruko, I.; Sekiryu, T.; Nishida, K.; Iida, T. Circadian Changes in Subfoveal Choroidal Thickness and the Relationship with Circulatory Factors in Healthy Subjects. Investig. Opthalmol. Vis. Sci. 2012, 53, 2300–2307. [Google Scholar] [CrossRef] [PubMed]
- Zhao, W.; Li, Z.; Hu, Y.; Jiang, J.; Long, W.; Cui, D.; Chen, W.; Yang, X. Short-term effects of atropine combined with orthokeratology (ACO) on choroidal thickness. Contact Lens Anterior Eye 2021, 44, 101348. [Google Scholar] [CrossRef] [PubMed]
- Lau, J.K.; Wan, K.; Cheung, S.-W.; Vincent, S.J.; Cho, P. Weekly Changes in Axial Length and Choroidal Thickness in Children During and Following Orthokeratology Treatment with Different Compression Factors. Transl. Vis. Sci. Technol. 2019, 8, 9. [Google Scholar] [CrossRef] [PubMed]
- Jin, W.Q.; Huang, S.H.; Jiang, J.; Mao, X.J.; Shen, M.X.; Lian, Y. Short term effect of choroid thickness in the horizontal meridian detected by spectral domain optical coherence tomography in myopic children after orthokeratology. Int. J. Ophthalmol. 2018, 11, 991–996. [Google Scholar]
- Gardner, D.J.; Walline, J.J.; Mutti, D.O. Choroidal Thickness and Peripheral Myopic Defocus during Orthokeratology. Optom. Vis. Sci. 2015, 92, 579–588. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Cui, D.; Hu, Y.; Ao, S.; Zeng, J.; Yang, X. Choroidal thickness and axial length changes in myopic children treated with orthokeratology. Contact Lens Anterior Eye 2017, 40, 417–423. [Google Scholar] [CrossRef]
- Qi, Y.; Li, L.; Zhang, F. Choroidal Thickness in Chinese Children Aged 8 to 11 Years with Mild and Moderate Myopia. J. Ophthalmol. 2018, 2018, 7270127. [Google Scholar] [CrossRef]
- Read, S.A.; Collins, M.J.; Vincent, S.J.; Alonso-Caneiro, D. Choroidal thickness in childhood. Investig. Ophthalmol. Vis. Sci. 2013, 54, 3586–3593. [Google Scholar] [CrossRef] [PubMed]
- Jin, P.; Zou, H.; Xu, X.; Chang, T.C.; Zhu, J.; Deng, J.; Lv, M.; Jin, J.; Sun, S.; Wang, L.; et al. Longitudinal Changes in Choroidal and Retinal Thicknesses in Children with Myopic Shift. Retina 2019, 39, 1091–1099. [Google Scholar] [CrossRef]
- Fontaine, M.; Gaucher, D.; Sauer, A.; Speeg-Schatz, C. Choroidal Thickness and Ametropia in Children: A Longitudinal Study. Eur. J. Ophthalmol. 2017, 27, 730–734. [Google Scholar] [CrossRef]
- Wei, W.B.; Xu, L.; Jonas, J.B.; Shao, L.; Du, K.F.; Wang, S.; Chen, C.X.; Xu, J.; Wang, Y.X.; Zhou, J.Q.; et al. Subfoveal choroidal thickness: The Beijing Eye Study. Ophthalmology 2013, 120, 175–180. [Google Scholar] [CrossRef] [PubMed]
- Gwiazda, J.; Thorn, F.; Held, R. Accommodation, accommodative convergence, and response AC/A ratios before and at the onset of myopia in children. Optom. Vis. Sci. 2005, 82, 273–278. [Google Scholar] [CrossRef]
- Ke, B.; Mao, X.; Jiang, H.; He, J.; Liu, C.; Li, M.; Yuan, Y.; Wang, J. The Relationship Between High-Order Aberration and Anterior Ocular Biometry During Accommodation in Young Healthy Adults. Investig. Ophthalmol. Vis. Sci. 2017, 58, 5628–5635. [Google Scholar] [CrossRef]
- Harb, E.; Thorn, F.; Troilo, D. Characteristics of accommodative behavior during sustained reading in emmetropes and myopes. Vis. Res. 2006, 46, 2581–2592. [Google Scholar] [CrossRef]
- Zhao, F.; Zhang, D.; Zhou, Q.; Zhao, F.; He, M.; Yang, Z.; Su, Y.; Zhai, Y.; Yan, J.; Zhang, G.; et al. Scleral HIF-1α is a prominent regulatory candidate for genetic and environmental interactions in human myopia pathogenesis. EBioMedicine 2020, 57, 102878. [Google Scholar] [CrossRef]
- Huang, H.-M.; Chang, D.S.-T.; Wu, P.-C. The Association between Near Work Activities and Myopia in Children-A Systematic Review and Meta-Analysis. PLoS ONE 2015, 10, e0140419. [Google Scholar]
- Pieterse, E.; Read, S.; Collins, M.J.; Alonso-Caneiro, D. Regional Changes in Choroidal Thickness Associated with Accommodation. Investig. Opthalmol. Vis. Sci. 2015, 56, 6414–6422. [Google Scholar] [CrossRef]
- Zhang, S.; Zhang, G.; Zhou, X.; Xu, R.; Wang, S.; Guan, Z.; Lu, J.; Srinivasalu, N.; Shen, M.; Jin, Z.; et al. Changes in Choroidal Thickness and Choroidal Blood Perfusion in Guinea Pig Myopia. Investig. Opthalmol. Vis. Sci. 2019, 60, 3074–3083. [Google Scholar] [CrossRef]
- Lee, S.S.Y.; Alonso-Caneiro, D.; Lingham, G.; Chen, F.K.; Sanfilippo, P.G.; Yazar, S.; Mackey, D.A. Choroidal Thickening During Young Adulthood and Baseline Choroidal Thickness Predicts Refractive Error Change. Investig. Ophthalmol. Vis. Sci. 2022, 63, 34. [Google Scholar] [CrossRef]
- Prousali, E.; Dastiridou, A.; Ziakas, N.; Androudi, S.; Mataftsi, A. Choroidal thickness and ocular growth in childhood. Surv. Ophthalmol. 2021, 66, 261–275. [Google Scholar] [CrossRef]
- Wu, H.; Xie, Z.; Wang, P.; Liu, M.; Wang, Y.; Zhu, J.; Chen, X.; Xu, Z.; Mao, X.; Zhou, X. Differences in Retinal and Choroidal Vasculature and Perfusion Related to Axial Length in Pediatric Anisomyopes. Investig. Opthalmol. Vis. Sci. 2021, 62, 40. [Google Scholar] [CrossRef]
- Zhou, X.; Ye, C.; Wang, X.; Zhou, W.; Reinach, P.; Qu, J. Choroidal blood perfusion as a potential “rapid predictive index” for myopia development and progression. Eye Vis. 2021, 8, 1. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.; Zhang, S.; Yang, F.; Yang, Y.; Huang, Q.; Huang, C.; Qu, J.; Zhou, X. Decreased Choroidal Blood Perfusion Induces Myopia in Guinea Pigs. Investig. Opthalmol. Vis. Sci. 2021, 62, 30. [Google Scholar] [CrossRef] [PubMed]
Details | |
---|---|
Before orthokeratology lens fitting | Learn the benefits and risks of wearing orthokeratology lenses |
Ensure the wearer and/or guardian provide full informed consent | |
The proper lens application and removal instructions, including lens maintenance and care | |
Evaluation of ocular health (including eyelid condition and the corneal endothelium) by slit-lamp biomicroscopy | |
Good adherence to routine follow-ups | |
Orthokeratology lensfitting | Evaluate and record data on the following measurements: Refraction Ocular health Corneal topography |
Lens parameter selection and lens fitting evaluation | |
Fluorescein evaluation | |
Final parameter selection and lens customization | |
Aftercare procedures | Avoid storing the lenses and other accessories in the bathroom or other humid places |
Carefully check the lenses and identify if there are any noncompliant behaviors | |
Evaluation of the cornea condition | |
Measure other data mentioned in this study |
Ocular Environmental Factors | Classification | Assignment |
---|---|---|
Average working distance per day (Distance) | <33 cm | 0 |
33–40 cm | 1 | |
>40 cm | 2 | |
Average near-work hours per day (Time) | >5 h | 0 |
2–5 h | 1 | |
<2 h | 2 | |
Average sleeping hours per night (Sleep) | ≤7 h | 0 |
8 h | 1 | |
>8 h | 2 | |
Average outdoor time (Outdoor) | <30 min | 0 |
30–60 min | 1 | |
61–120 min | 2 | |
>120 min | 3 |
Characteristics | Right Eye | Left Eye |
---|---|---|
Age (yr) | 10 (9, 11) | |
Sex (Male) | 17 (51.5%) | |
Height (cm) | 142.200 ± 7.400 | |
SE0 (D) | −2.500 (−3.375, −2) | −2.500 (−3.250, −1.500) |
IOP (mmHg) | 15.700 (14, 16.800) | 15.600 (13.700, 17.600) |
AL (mm) | 24.659 ± 0.827 | 24.640 ± 0.834 |
Average working distance per day (distance) | ||
<33 cm | 1 (3.0%) | |
33 cm–40 cm | 32 (97.0%) | |
>40 cm | 0 (0%) | |
Average near-work hours per day (time) | ||
>5 h | 5 (15.2%) | |
2–5 h | 21 (63.6%) | |
<2 h | 7 (21.2%) | |
Average sleeping hours per night (sleep) | ||
≤7 h | 0 (0%) | |
8 h | 29 (87.9%) | |
>8 h | 4 (12.1%) | |
Average outdoor time (outdoor) | ||
<30 min | 1 (3.0%) | |
30–60 min | 17 (51.5%) | |
61–120 min | 10 (30.3%) | |
>120 min | 5 (15.2%) |
Variables | Model | Variance at the Individual Level | Variance at Ocular Level | Variance at Follow-Up Period Level | −2 Log Likelihood Function | |||
---|---|---|---|---|---|---|---|---|
Intercepts | Parameters | |||||||
Value Effect | Wald | p | ||||||
Zero model | 322.169 | - | 41.52 | <0.001 | 1844.42 (490.365) | 248.194 (70.149) | 219.110 (17.058) | 3480.598 |
Univariate analysis model | ||||||||
Age | 395.925 | −7.582 (4.921) | −1.54 | 0.123 | 1711.064 (457.625) | 248.194 (70.149) | 219.110 (17.058) | 3478.305 |
Sex | 286.612 | 23.946 (14.955) | 1.60 | 0.109 | 1701.194 (455.202) | 248.194 (70.149) | 219.110 (17.058) | 3478.129 |
Height | 566.410 | −1.717 (1.021) | −1.68 | 0.093 | 1687.706 (451.891) | 248.194 (70.149) | 219.110 (17.058) | 3477.886 |
SE0 | 311.378 | −4.162 (5.545) | −0.75 | 0.453 | 1807.078 (481.954) | 248.746 (70.372) | 219.110 (17.058) | 3480.040 |
IOP | 336.177 | −0.958 (0.497) | −1.93 | 0.054 | 1829.601 (487.449) | 253.825 (71.484) | 216.421 (16.849) | 3476.915 |
CCT | 501.771 | −351.468 (102.292) | −3.44 | 0.001 ** | 1932.393 (513.555) | 249.495 (70.122) | 210.687 (16.408) | 3469.079 |
Average working distance per day | 325.391 | −3.43 (3.01) | −1.14 | 0.255 | 1838.487 (488.933) | 248.326 (70.149) | 218.316 (16.996) | 3479.302 |
Average near-work hours per day | 326.332 | −4.504 (1.736) | −2.59 | 0.009 ** | 1897.213 (503.809) | 249.014 (70.147) | 214.189 (16.676) | 3473.967 |
Average sleeping hours per night | 328.111 | −5.711 (4.135) | −1.38 | 0.167 | 1862.436 (494.971) | 248.436 (70.148) | 217.656 (16.945) | 3478.699 |
Average outdoor time | 324.915 | −1.855 (1.546) | −1.20 | 0.230 | 1862.231 (494.999) | 248.385 (70.148) | 217.965 (16.969) | 3479.163 |
Multivariate multilevel analysis model | 527.574 | 9.65 | <0.001 | 1922.879 (510.917) | 252.745 (70.673) | 204.502 (15.923) | 3459.3688 | |
CCT | −212.33 (115.576) | −1.84 | 0.066 | |||||
Average near-work hours per day | −3.425 (1.725) | −1.99 | 0.047 * |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, X.; Li, Q.; Liu, L. Personalized Predictive Modeling of Subfoveal Choroidal Thickness Changes for Myopic Adolescents after Overnight Orthokeratology. J. Pers. Med. 2022, 12, 1316. https://doi.org/10.3390/jpm12081316
Chen X, Li Q, Liu L. Personalized Predictive Modeling of Subfoveal Choroidal Thickness Changes for Myopic Adolescents after Overnight Orthokeratology. Journal of Personalized Medicine. 2022; 12(8):1316. https://doi.org/10.3390/jpm12081316
Chicago/Turabian StyleChen, Xiaohang, Qiushi Li, and Longqian Liu. 2022. "Personalized Predictive Modeling of Subfoveal Choroidal Thickness Changes for Myopic Adolescents after Overnight Orthokeratology" Journal of Personalized Medicine 12, no. 8: 1316. https://doi.org/10.3390/jpm12081316
APA StyleChen, X., Li, Q., & Liu, L. (2022). Personalized Predictive Modeling of Subfoveal Choroidal Thickness Changes for Myopic Adolescents after Overnight Orthokeratology. Journal of Personalized Medicine, 12(8), 1316. https://doi.org/10.3390/jpm12081316