Potential Markers to Reduce Non-Contrast Computed Tomography Use for Symptomatic Patients with Suspected Ureterolithiasis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patient File Selection
2.2. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Westphalen, A.C.; Hsia, R.Y.; Maselli, J.H.; Wang, R.; Gonzales, R. Radiological imaging of patients with suspected urinary tract stones: National trends, diagnoses, and predictors. Acad. Emerg. Med. 2011, 18, 700–707. [Google Scholar] [CrossRef] [PubMed]
- Elder, J.W.; Delgado, M.K.; Chung, B.I.; Pirrotta, E.A.; Wang, N.E. Variation in the intensity of care for patients with uncomplicated renal colic presenting to U.S. emergency departments. J. Emerg. Med. 2016, 51, 628–635. [Google Scholar] [CrossRef] [PubMed]
- Scales, C.D., Jr.; Smith, A.C.; Hanley, J.M.; Saigal, C.S. Prevalence of kidney stones in the United States. Eur. Urol. 2012, 62, 160–165. [Google Scholar] [CrossRef] [Green Version]
- Hyams, E.S.; Korley, F.K.; Pham, J.C.; Matlaga, B.R. Trends in imaging use during the emergency department evaluation of flank pain. J. Urol. 2011, 186, 2270–2274. [Google Scholar] [CrossRef] [PubMed]
- Schoenfeld, E.M.; Pekow, P.S.; Shieh, M.S.; Scales, C., Jr.; Lagu, T.; Lindenauer, P.K. The diagnosis and management of patients with renal colic across a sample of us hospitals: High CT utilization despite low rates of admission and inpatient urologic intervention. PLoS ONE 2017, 12, e0169160. [Google Scholar] [CrossRef] [PubMed]
- Innes, G.D.; Scheuermeyer, F.X.; McRae, A.D.; Law, M.R.; Teichman, J.M.H.; Grafstein, E.; Andruchow, J.E. Which patients should have early surgical intervention for acute ureteral colic? J. Urol. 2021, 205, 152–158. [Google Scholar] [CrossRef] [PubMed]
- Pickard, R.; Starr, K.; MacLennan, G.; Lam, T.; Thomas, R.; Burr, J.; McPherson, G.; McDonald, A.; Anson, K.; N’Dow, J.; et al. Medical expulsive therapy in adults with ureteric colic: A multicentre, randomised, placebo-controlled trial. Lancet 2015, 386, 341–349. [Google Scholar] [CrossRef] [Green Version]
- Modai, J.; Avda, Y.; Shpunt, I.; Abu-Ghanem, Y.; Leibovici, D.; Shilo, Y. Prediction of surgical intervention for distal ureteral stones. J. Endourol. 2019, 33, 750–754. [Google Scholar] [CrossRef]
- Ferrandino, M.N.; Bagrodia, A.; Pierre, S.A.; Scales, C.D.; Rampersaud, E.; Pearle, M.S.; Preminger, G.M. Radiation exposure in the acute and short-term management of urolithiasis at 2 academic centers. J. Urol. 2009, 181, 668–672. [Google Scholar] [CrossRef]
- Fahmy, N.M.; Elkoushy, M.A.; Andonian, S. Effective radiation exposure in evaluation and follow-up of patients with urolithiasis. Urology 2012, 79, 43–47. [Google Scholar] [CrossRef]
- Smith-Bindman, R.; Wang, Y.; Chu, P.; Chung, R.; Einstein, A.J.; Balcombe, J.; Cocker, M.; Das, M.; Delman, B.; Flynn, M.; et al. International variation in radiation dose for computed tomography examinations: Prospective cohort study. BMJ 2019, 364, k4931. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gershan, V.; Homayounieh, F.; Singh, R.; Avramova-Cholakova, S.; Faj, D.; Georgiev, E.; Girjoaba, O.; Griciene, B.; Gruppetta, E.; Šimonji, D.H.; et al. CT protocols and radiation doses for hematuria and urinary stones: Comparing practices in 20 countries. Eur. J. Radiol. 2020, 126, 108923. [Google Scholar] [CrossRef] [PubMed]
- Miller, D.T.; Semins, M.J. Minimizing radiation dose in management of stone disease: How to achieve ‘ALARA’. Curr. Opin. Urol. 2021, 31, 115–119. [Google Scholar] [CrossRef] [PubMed]
- Smith-Bindman, R.; Lipson, J.; Marcus, R.; Kim, K.-P.; Mahesh, M.; Gould, R.; de González, A.B.; Miglioretti, D.L. Radiation dose associated with common computed tomography examinations and the associated lifetime attributable risk of cancer. Arch. Intern. Med. 2009, 169, 2078–2086. [Google Scholar] [CrossRef] [PubMed]
- Mathews, J.D.; Forsythe, A.V.; Brady, Z.; Butler, M.W.; Goergen, S.K.; Byrnes, G.B.; Giles, G.G.; Wallace, A.B.; Anderson, P.R.; Guiver, T.A.; et al. Cancer risk in 680,000 people exposed to computed tomography scans in childhood or adolescence: Data linkage study of 11 million Australians. BMJ 2013, 346, f2360. [Google Scholar] [CrossRef] [Green Version]
- Dai, J.C.; Chang, H.C.; Holt, S.K.; Harper, J.D. National trends in CT utilization and estimated CT-related radiation exposure in the evaluation and follow-up of stone patients. Urology 2019, 133, 50–56. [Google Scholar] [CrossRef]
- Kott, O.; Pereira, J.; Chambers, A.; Pareek, G. Endourology survey on radiation exposure and post-ureteroscopy US and CT reveals a need for clear guidelines. World J. Urol. 2021, 39, 225–231. [Google Scholar] [CrossRef]
- Jendeberg, J.; Geijer, H.; Alshamari, M.; Cierzniak, B.; Lidén, M. Size matters: The width and location of a ureteral stone accurately predict the chance of spontaneous passage. Eur. Radiol. 2017, 27, 4775–4785. [Google Scholar] [CrossRef]
- Assimos, D.; Krambeck, A.; Miller, N.L.; Monga, M.; Murad, M.H.; Nelson, C.P.; Pace, K.T.; Pais, V.M.; Pearle, M.S.; Preminger, C.M.; et al. Surgical management of stones: American Urological Association/Endourological Society Guideline, PART I. J. Urol. 2016, 196, 1153–1160. [Google Scholar] [CrossRef]
- Minotti, B.; Treglia, G.; Pascale, M.; Ceruti, S.; Cantini, L.; Anselmi, L.; Saporito, A. Prevalence of microhematuria in renal colic and urolithiasis: A systematic review and meta-analysis. BMC Urol. 2020, 20, 119. [Google Scholar] [CrossRef]
- Gottlieb, M.; Long, B.; Koyfman, A. The evaluation and management of urolithiasis in the ED: A review of the literature. Am. J. Emerg. Med. 2018, 36, 699–706. [Google Scholar] [CrossRef] [PubMed]
- Moore, C.L.; Bomann, S.; Daniels, B.; Luty, S.; Molinaro, A.; Singh, D.; Gross, C.P. Derivation and validation of a clinical prediction rule for uncomplicated ureteral stone-the STONE score: Retrospective and prospective observational cohort studies. BMJ 2014, 348, g2191. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, R.C.; Rodriguez, R.M.; Moghadassi, M.; Noble, V.; Bailitz, J.; Mallin, M.; Corbo, J.; Kang, T.L.; Chu, P.; Shiboski, S. External validation of the STONE score, a clinical prediction rule for ureteral stone: An observational multi-institutional study. Ann. Emerg. Med. 2016, 67, 423–432.e2. [Google Scholar] [CrossRef] [Green Version]
- Sternberg, K.M.; Pais, V.M.; Larson, T.; Han, J.; Hernandez, N.; Eisner, B. Is hydronephrosis on ultrasound predictive of ureterolithiasis in patients with renal colic? J. Urol. 2016, 196, 1149–1152. [Google Scholar] [CrossRef]
- Smith-Bindman, R.; Aubin, C.; Bailitz, J.; Bengiamin, R.N.; Camargo, C.A., Jr.; Corbo, J.; Dean, A.J.; Goldstein, R.B.; Griffey, R.T.; Jay, G.D.; et al. Ultrasonography versus computed tomography for suspected nephrolithiasis. N. Engl. J. Med. 2014, 371, 1100–1110. [Google Scholar] [CrossRef] [Green Version]
- Schoenfeld, E.M.; Poronsky, K.E.; Elia, T.R.; Budhram, G.R.; Garb, J.L.; Mader, T.J. Young patients with suspected uncomplicated renal colic are unlikely to have dangerous alternative diagnoses or need emergent intervention. West. J. Emerg. Med. 2015, 16, 269–275. [Google Scholar] [CrossRef]
- Yan, J.W.; McLeod, S.L.; Edmonds, M.L.; Sedran, R.J.; Theakston, K.D. Risk factors associated with urologic intervention in emergency department patients with suspected renal colic. J. Emerg. Med. 2015, 49, 130–135. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.C.; Rodriguez, R.M.; Fahimi, J.; Hall, M.K.; Shiboski, S.; Chi, T.; Smith-Bindman, R. Derivation of decision rules to predict clinically important outcomes in acute flank pain patients. Am. J. Emerg. Med. 2017, 35, 554–563. [Google Scholar] [CrossRef] [Green Version]
- Yan, J.W.; McLeod, S.L.; Edmonds, M.L.; Sedran, R.J.; Theakston, K.D. Normal renal sonogram identifies renal colic patients at low risk for urologic intervention: A prospective cohort study. CJEM 2015, 17, 38–45. [Google Scholar] [CrossRef] [Green Version]
Baseline Characteristics, n = 368 | |
---|---|
Age, mean, years (SD) | 47.2 (13.9) |
Gender | |
Male, % | 84.2 |
Female, % | 15.8 |
Duration of symptoms, mean, days | 4.1 |
Visual Analog Scale score, median (SD) | 8 (3.4) |
Nausea and vomiting, % | 59.7 |
History of urolithiasis, % | 42.4 |
History of intervention for urolithiasis, % | 8.7 |
Serum creatinine level, mean, mg/dL (SD) | 1.2 (0.4) |
WBC count, mean, k/μL (SD) | 11.2 (3.3) |
Stone Location | |
Proximal, % | 29.9 |
Distal, % | 70.1 |
Right, % | 44 |
Left, % | 56 |
Stone size, mean, mm (SD) | 5.0 (2.4) |
Admission, % | 48.4 |
Readmission, % | 13.3 |
Intervention, % | 36.1 |
Median time to intervention, days (IQR) | 2 (1–5) |
Group 1 n = 133 | Group 2 n = 235 | p-Value | |
---|---|---|---|
Age, mean, years | 50 | 46 | 0.003 |
Gender | |||
Male | 83% | 85% | 0.544 |
Female | 17% | 15% | |
Duration of symptoms, mean, days | 6.5 | 2.7 | <0.002 |
Visual Analog Scale score, median | 8 | 8 | 0.224 |
Nausea and vomiting | 57% | 61% | 0.518 |
History of urolithiasis | 53% | 36% | 0.002 |
History of intervention for urolithiasis | 13% | 6% | 0.033 |
Serum creatinine level, mean, mg/dL | 1.32 | 1.14 | 0.001 |
WBC count, mean, k/μL | 10.9 | 11.3 | 0.295 |
OR (95% CI) | p-Value | |
---|---|---|
Creatinine > 1.5 mg/dL | 2.8 (1.5–5.6) | 0.002 |
Duration of Symptoms > 1.5 days | 2.3 (1.4–3.8) | 0.001 |
Age > 45 years | 1.7 (1.02–2.7) | 0.042 |
History of urolithiasis | 1.4 (0.8–2.4) | 0.186 |
History of intervention for urolithiasis | 2.0 (0.8–5.1) | 0.118 |
Clinical Factor | Stone Size mm (SD) | Proximal | Distal |
---|---|---|---|
Age < 45 years | 4.6 (1.9) | 24% | 76% |
Age > 45 years | 5.4 (2.6) | 34% | 66% |
p = 0.001 | p = 0.039 | ||
Cr < 1.5 mg/dL | 4.8 (2.0) | 27% | 73% |
Cr > 1.5 mg/dL | 6.4 (3.7) | 47% | 53% |
p = 0.002 | p < 0.002 | ||
Symptoms < 1.5 days | 4.7 (2.4) | 28% | 72% |
Symptoms > 1.5 days | 5.5 (2.4) | 36% | 64% |
p = 0.002 | p = 0.047 | ||
No Clinical Factors | 4.2 | 22% | 78% |
All Clinical Factors | 6.7 | 54% | 46% |
p < 0.002 | p = 0.002 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Avda, Y.; Shpunt, I.; Modai, J.; Leibovici, D.; Berkowitz, B.; Shilo, Y. Potential Markers to Reduce Non-Contrast Computed Tomography Use for Symptomatic Patients with Suspected Ureterolithiasis. J. Pers. Med. 2022, 12, 1350. https://doi.org/10.3390/jpm12081350
Avda Y, Shpunt I, Modai J, Leibovici D, Berkowitz B, Shilo Y. Potential Markers to Reduce Non-Contrast Computed Tomography Use for Symptomatic Patients with Suspected Ureterolithiasis. Journal of Personalized Medicine. 2022; 12(8):1350. https://doi.org/10.3390/jpm12081350
Chicago/Turabian StyleAvda, Yuval, Igal Shpunt, Jonathan Modai, Dan Leibovici, Brian Berkowitz, and Yaniv Shilo. 2022. "Potential Markers to Reduce Non-Contrast Computed Tomography Use for Symptomatic Patients with Suspected Ureterolithiasis" Journal of Personalized Medicine 12, no. 8: 1350. https://doi.org/10.3390/jpm12081350
APA StyleAvda, Y., Shpunt, I., Modai, J., Leibovici, D., Berkowitz, B., & Shilo, Y. (2022). Potential Markers to Reduce Non-Contrast Computed Tomography Use for Symptomatic Patients with Suspected Ureterolithiasis. Journal of Personalized Medicine, 12(8), 1350. https://doi.org/10.3390/jpm12081350