Neuromuscular Blockade in the Pre- and COVID-19 ARDS Patients
Abstract
:1. Introduction
2. Mechanisms of Action, Pharmacology
3. Rationale for NMBA Use in ARDS
4. Monitoring
5. Potential Adverse Effects
6. Data on NMBA Use in ARDS
7. Subsequent Studies
7.1. Pediatric Population
7.2. COVID-19 ARDS Experience
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ashbaugh, D.G.; Bigelow, D.B.; Petty, T.L.; Levine, B.E. Acute Respiratory distress in adults. Lancet 1967, 2, 319–323. [Google Scholar] [CrossRef]
- Fan, E.; Brodie, D.; Slutsky, A.S. Acute Respiratory Distress Syndrome: Advances in Diagnosis and Treatment. JAMA 2018, 319, 698–710. [Google Scholar] [CrossRef] [PubMed]
- Bellani, G.; Laffey, J.G.; Pham, T.; Fan, E.; Brochard, L.; Esteban, A.; Gattinoni, L.; van Haren, F.; Larsson, A.; McAuley, D.F.; et al. LUNG SAFE Investigators; ESICM Trials Group. Epidemiology, Patterns of Care, and Mortality for Patients with Acute Respiratory Distress Syndrome in Intensive Care Units in 50 Countries. JAMA 2016, 315, 788–800. [Google Scholar] [CrossRef] [PubMed]
- Herridge, M.S.; Tansey, C.M.; Matté, A.; Tomlinson, G.; Diaz-Granados, N.; Cooper, A.; Guest, C.B.; Mazer, C.D.; Mehta, S.; Stewart, T.E.; et al. Canadian Critical Care Trials Group. Functional disability 5 years after acute respiratory distress syndrome. N. Engl. J. Med. 2011, 364, 1293–1304. [Google Scholar] [CrossRef]
- Karagiannidis, C.; Mostert, C.; Hentschker, C.; Voshaar, T.; Malzahn, J.; Schillinger, G.; Klauber, J.; Janssens, U.; Marx, G.; Weber-Carstens, S.; et al. Case characteristics, resource use, and outcomes of 10 021 patients with COVID-19 admitted to 920 German hospitals: An observational study. Lancet Respir. Med. 2020, 8, 853–862. [Google Scholar] [CrossRef]
- Richardson, S.; Hirsch, J.S.; Narasimhan, M.; Crawford, J.M.; McGinn, T.; Davidson, K.W.; The Northwell COVID-19 Research Consortium; Barnaby, D.P.; Becker, L.B.; Chelico, J.D.; et al. Presenting Characteristics, Comorbidities, and Outcomes Among 5700 Patients Hospitalized With COVID-19 in the New York City Area. JAMA 2020, 323, 2052–2059. [Google Scholar] [CrossRef]
- Grasselli, G.; Zangrillo, A.; Zanella, A.; Antonelli, M.; Cabrini, L.; Castelli, A.; Cereda, D.; Coluccello, A.; Foti, G.; Fumagalli, R.; et al. COVID-19 Lombardy ICU Network. Baseline Characteristics and Outcomes of 1591 Patients Infected With SARS-CoV-2 Admitted to ICUs of the Lombardy Region, Italy. JAMA 2020, 323, 1574–1581. [Google Scholar] [CrossRef]
- Lim, Z.J.; Subramaniam, A.; Ponnapa Reddy, M.; Blecher, G.; Kadam, U.; Afroz, A.; Billah, B.; Ashwin, S.; Kubicki, M.; Bilotta, F.; et al. Case Fatality Rates for Patients with COVID-19 Requiring Invasive Mechanical Ventilation. A Meta-analysis. Am. J. Respir. Crit. Care Med. 2021, 203, 54–66. [Google Scholar] [CrossRef]
- Acute Respiratory Distress Syndrome Network; Brower, R.G.; Matthay, M.A.; Morris, A.; Schoenfeld, D.; Thompson, B.T.; Wheeler, A. Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. N. Engl. J. Med. 2000, 342, 1301–1308. [Google Scholar] [CrossRef]
- Amato, M.B.; Meade, M.O.; Slutsky, A.S.; Brochard, L.; Costa, E.L.; Schoenfeld, D.A.; Stewart, T.E.; Briel, M.; Talmor, D.; Mercat, A.; et al. Driving pressure and survival in the acute respiratory distress syndrome. N. Engl. J. Med. 2015, 372, 747–755. [Google Scholar] [CrossRef] [Green Version]
- Brower, R.G.; Lanken, P.N.; MacIntyre, N.; Matthay, M.A.; Morris, A.; Ancukiewicz, M.; Schoenfeld, D.; Thompson, B.T.; National Heart, Lung, and Blood Institute ARDS Clinical Trials Network. Higher versus lower positive end-expiratory pressures in patients with the acute respiratory distress syndrome. N. Engl. J. Med. 2004, 351, 327–336. [Google Scholar] [CrossRef] [PubMed]
- Gattinoni, L.; Chiumello, D.; Caironi, P.; Busana, M.; Romitti, F.; Brazzi, L.; Camporota, L. COVID-19 pneumonia: Different respiratory treatments for different phenotypes? Intensive Care Med. 2020, 46, 1099–1102. [Google Scholar] [CrossRef] [PubMed]
- Tsolaki, V.; Siempos, I.; Magira, E.; Kokkoris, S.; Zakynthinos, G.E.; Zakynthinos, S. PEEP levels in COVID-19 pneumonia. Crit. Care 2020, 24, 303. [Google Scholar] [CrossRef]
- Grasselli, G.; Tonetti, T.; Protti, A.; Langer, T.; Girardis, M.; Bellani, G.; Laffey, J.; Carrafiello, G.; Carsana, L.; Rizzuto, C.; et al. Pathophysiology of COVID-19-associated acute respiratory distress syndrome: A multicentre prospective observational study. Lancet Respir. Med. 2020, 8, 1201–1208. [Google Scholar] [CrossRef]
- Langer, T.; Brioni, M.; Guzzardella, A.; Carlesso, E.; Cabrini, L.; Castelli, G.; Dalla Corte, F.; De Robertis, E.; Favarato, M.; Forastieri, A.; et al. PRONA-COVID Group. Prone position in intubated, mechanically ventilated patients with COVID-19: A multi-centric study of more than 1000 patients. Crit. Care 2021, 25, 128. [Google Scholar] [CrossRef] [PubMed]
- Angus, D.C.; Derde, L.; Al-Beidh, F.; Annane, D.; Arabi, Y.; Beane, A.; van Bentum-Puijk, W.; Berry, L.; Bhimani, Z.; Bonten, M.; et al. Effect of Hydrocortisone on Mortality and Organ Support in Patients with Severe COVID-19: The REMAP-CAP COVID-19 Corticosteroid Domain Randomized Clinical Trial. JAMA 2020, 324, 1317–1329. [Google Scholar] [CrossRef]
- RECOVERY Collaborative Group. Tocilizumab in patients admitted to hospital with COVID-19 (RECOVERY): A randomised, controlled, open-label, platform trial. Lancet 2021, 397, 1637–1645. [Google Scholar] [CrossRef]
- REMAP-CAP Investigators; Gordon, A.C.; Mouncey, P.R.; Al-Beidh, F.; Rowan, K.M.; Nichol, A.D.; Arabi, Y.M.; Annane, D.; Beane, A.; van Bentum-Puijk, W.; et al. Interleukin-6 Receptor Antagonists in Critically Ill Patients with COVID-19. N. Engl. J. Med. 2021, 384, 1491–1502. [Google Scholar] [CrossRef]
- Slutsky, A.S. Neuromuscular blocking agents in ARDS. N. Engl. J. Med. 2010, 363, 1176–1180. [Google Scholar] [CrossRef]
- National Heart, Lung, and Blood Institute PETAL Clinical Trials Network; Moss, M.; Huang, D.T.; Brower, R.G.; Ferguson, N.D.; Ginde, A.A.; Gong, M.N.; Grissom, C.K.; Gundel, S.; Hayden, D.; et al. Early Neuromuscular Blockade in the Acute Respiratory Distress Syndrome. N. Engl. J. Med. 2019, 380, 1997–2008. [Google Scholar] [CrossRef]
- Papazian, L.; Forel, J.M.; Gacouin, A.; Penot-Ragon, C.; Perrin, G.; Loundou, A.; Jaber, S.; Arnal, J.M.; Perez, D.; Seghboyan, J.M.; et al. ACURASYS Study Investigators. Neuromuscular blockers in early acute respiratory distress syndrome. N. Engl. J. Med. 2010, 363, 1107–1116. [Google Scholar] [CrossRef] [PubMed]
- De Backer, J.; Hart, N.; Fan, E. Neuromuscular Blockade in the 21st Century Management of the Critically Ill Patient. Chest 2017, 151, 697–706. [Google Scholar] [CrossRef] [PubMed]
- Naguib, M.; Flood, P.; McArdle, J.J.; Brenner, H.R. Advances in neurobiology of the neuromuscular junction: Implications for the anesthesiologist. Anesthesiology 2002, 96, 202–231. [Google Scholar] [CrossRef] [PubMed]
- Tran, D.T.; Newton, E.K.; Mount, V.A.; Lee, J.S.; Wells, G.A.; Perry, J.J. Rocuronium versus succinylcholine for rapid sequence induction intubation. Cochrane Database Syst. Rev. 2015, 2015, CD002788. [Google Scholar] [CrossRef] [PubMed]
- Khuenl-Brady, K.S.; Sparr, H. Clinical pharmacokinetics of rocuronium bromide. Clin. Pharmacokinet. 1996, 31, 174–183. [Google Scholar] [CrossRef]
- Sottile, P.D.; Kiser, T.H.; Burnham, E.L.; Ho, P.M.; Allen, R.R.; Vandivier, R.W.; Moss, M. Colorado Pulmonary Outcomes Research Group (CPOR). An Observational Study of the Efficacy of Cisatracurium Compared with Vecuronium in Patients with or at Risk for Acute Respiratory Distress Syndrome. Am. J. Respir. Crit. Care Med. 2018, 97, 897–904. [Google Scholar] [CrossRef]
- Lyu, G.; Wang, X.; Jiang, W.; Cai, T.; Zhang, Y. Clinical study of early use of neuromuscular blocking agents in patients with severe sepsis and acute respiratory distress syndrome. Zhonghua Wei Zhong Bing Ji Jiu Yi Xue 2014, 26, 325–329. (In Chinese) [Google Scholar] [CrossRef]
- Ziatkowski-Michaud, J.; Mazard, T.; Delignette, M.C.; Wallet, F.; Aubrun, F.; Dziadzko, M. Neuromuscular monitoring and neuromuscular blocking agent shortages when treating critically ill COVID-19 patients: A multicentre retrospective analysis. Br. J. Anaesth. 2021, 127, e73–e75. [Google Scholar] [CrossRef]
- Schmidt, J.E.; Tamburro, R.F.; Hoffman, G.M. Dilated nonreactive pupils secondary to neuromuscular blockade. Anesthesiology 2000, 92, 1476–1480. [Google Scholar] [CrossRef]
- Zakynthinos, G.E.; Tsolaki, V.; Bardaka, F.; Makris, D. Fixed dilated pupils in Covid-19 ARDS patients under rocuronium, reversed after discontinuation. J. Crit. Care 2021, 65, 259–260. [Google Scholar] [CrossRef]
- Warr, J.; Thiboutot, Z.; Rose, L.; Mehta, S.; Burry, L.D. Current therapeutic uses, pharmacology, and clinical considerations of neuromuscular blocking agents for critically ill adults. Ann. Pharmacother. 2011, 45, 1116–1126. [Google Scholar] [CrossRef] [PubMed]
- Mueller, S.W.; Winn, R.; Macht, M.; Fish, D.N.; Kiser, T.H.; MacLaren, R. Neuromuscular blockade resistance during therapeutic hypothermia. Ann. Pharmacother. 2011, 45, e15. [Google Scholar] [CrossRef]
- Murray, M.J.; DeBlock, H.; Erstad, B.; Gray, A.; Jacobi, J.; Jordan, C.; McGee, W.; McManus, C.; Meade, M.; Nix, S.; et al. Clinical Practice Guidelines for Sustained Neuromuscular Blockade in the Adult Critically Ill Patient. Crit. Care Med. 2016, 44, 2079–2103. [Google Scholar] [CrossRef] [PubMed]
- Guervilly, C.; Bisbal, M.; Forel, J.M.; Mechati, M.; Lehingue, S.; Bourenne, J.; Perrin, G.; Rambaud, R.; Adda, M.; Hraiech, S.; et al. Effects of neuromuscular blockers on transpulmonary pressures in moderate to severe acute respiratory distress syndrome. Intensive Care Med. 2017, 43, 408–418. [Google Scholar] [CrossRef] [PubMed]
- Yoshida, T.; Nakahashi, S.; Nakamura, M.A.M.; Koyama, Y.; Roldan, R.; Torsani, V.; De Santis, R.R.; Gomes, S.; Uchiyama, A.; Amato, M.B.P.; et al. Volume-controlled Ventilation Does Not Prevent Injurious Inflation during Spontaneous Effort. Am. J. Respir. Crit. Care Med. 2017, 196, 590–601. [Google Scholar] [CrossRef]
- Yoshida, T.; Torsani, V.; Gomes, S.; De Santis, R.R.; Beraldo, M.A.; Costa, E.L.; Tucci, M.R.; Zin, W.A.; Kavanagh, B.P.; Amato, M.B. Spontaneous effort causes occult pendelluft during mechanical ventilation. Am. J. Respir. Crit. Care Med. 2013, 188, 1420–1427. [Google Scholar] [CrossRef] [PubMed]
- Beitler, J.R.; Sands, S.A.; Loring, S.H.; Owens, R.L.; Malhotra, A.; Spragg, R.G.; Matthay, M.A.; Thompson, B.T.; Talmor, D. Quantifying unintended exposure to high tidal volumes from breath stacking dyssynchrony in ARDS: The BREATHE criteria. Intensive Care Med. 2016, 42, 1427–1436. [Google Scholar] [CrossRef]
- Kallet, R.H.; Alonso, J.A.; Luce, J.M.; Matthay, M.A. Exacerbation of acute pulmonary edema during assisted mechanical ventilation using a low-tidal volume, lung-protective ventilator strategy. Chest 1999, 116, 1826–1832. [Google Scholar] [CrossRef]
- Kress, J.P.; Pohlman, A.S.; O’Connor, M.F.; Hall, J.B. Daily interruption of sedative infusions in critically ill patients undergoing mechanical ventilation. N. Engl. J. Med. 2000, 342, 1471–1477. [Google Scholar] [CrossRef]
- Olsen, H.T.; Nedergaard, H.K.; Strøm, T.; Oxlund, J.; Wian, K.A.; Ytrebø, L.M.; Kroken, B.A.; Chew, M.; Korkmaz, S.; Lauridsen, J.T.; et al. Nonsedation or Light Sedation in Critically Ill, Mechanically Ventilated Patients. N. Engl. J. Med. 2020, 382, 1103–1111. [Google Scholar] [CrossRef]
- Marik, P.E.; Kaufman, D. The effects of neuromuscular paralysis on systemic and splanchnic oxygen utilization in mechanically ventilated patients. Chest 1996, 109, 1038–1042. [Google Scholar] [CrossRef] [PubMed]
- Forel, J.M.; Roch, A.; Marin, V.; Michelet, P.; Demory, D.; Blache, J.L.; Perrin, G.; Gainnier, M.; Bongrand, P.; Papazian, L. Neuromuscular blocking agents decrease inflammatory response in patients presenting with acute respiratory distress syndrome. Crit. Care Med. 2006, 34, 2749–2757. [Google Scholar] [CrossRef] [PubMed]
- Sottile, P.D.; Albers, D.; Moss, M.M. Neuromuscular blockade is associated with the attenuation of biomarkers of epithelial and endothelial injury in patients with moderate-to-severe acute respiratory distress syndrome. Crit. Care 2018, 22, 63. [Google Scholar] [CrossRef] [PubMed]
- Fanelli, V.; Morita, Y.; Cappello, P.; Ghazarian, M.; Sugumar, B.; Delsedime, L.; Batt, J.; Ranieri, V.M.; Zhang, H.; Slutsky, A.S. Neuromuscular Blocking Agent Cisatracurium Attenuates Lung Injury by Inhibition of Nicotinic Acetylcholine Receptor-α1. Anesthesiology 2016, 124, 132–140. [Google Scholar] [CrossRef]
- Kopman, A.F.; Yee, P.S.; Neuman, G.G. Relationship of the train-of-four fade ratio to clinical signs and symptoms of residual paralysis in awake volunteers. Anesthesiology 1997, 86, 765–771. [Google Scholar] [CrossRef] [PubMed]
- Hraiech, S.; Forel, J.M.; Guervilly, C.; Rambaud, R.; Lehingue, S.; Adda, M.; Sylla, P.; Valera, S.; Carvelli, J.; Gainnier, M.; et al. How to reduce cisatracurium consumption in ARDS patients: The TOF-ARDS study. Ann. Intensive Care 2017, 7, 79. [Google Scholar] [CrossRef]
- Baumann, M.H.; McAlpin, B.W.; Brown, K.; Patel, P.; Ahmad, I.; Stewart, R.; Petrini, M. A prospective randomized comparison of train-of-four monitoring and clinical assessment during continuous ICU cisatracurium paralysis. Chest 2004, 126, 1267–1273. [Google Scholar] [CrossRef]
- Alhazzani, W.; Belley-Cote, E.; Møller, M.H.; Angus, D.C.; Papazian, L.; Arabi, Y.M.; Citerio, G.; Connolly, B.; Denehy, L.; Fox-Robichaud, A.; et al. Neuromuscular blockade in patients with ARDS: A rapid practice guideline. Intensive Care Med. 2020, 46, 1977–1986. [Google Scholar] [CrossRef]
- Kress, J.P.; Hall, J.B. ICU-acquired weakness and recovery from critical illness. N. Engl. J. Med. 2014, 370, 1626–1635. [Google Scholar] [CrossRef]
- De Jonghe, B.; Bastuji-Garin, S.; Durand, M.C.; Malissin, I.; Rodrigues, P.; Cerf, C.; Outin, H.; Sharshar, T.; Groupe de Réflexion et d’Etude des Neuromyopathies en Réanimation. Respiratory weakness is associated with limb weakness and delayed weaning in critical illness. Crit. Care Med. 2007, 35, 2007–2015. [Google Scholar] [CrossRef]
- Zheng, Z.; Jiang, L.; Zhang, S.; Guervilly, C.; Zhang, M.; Feng, X.; Ding, J. Neuromuscular blocking agents for acute respiratory distress syndrome: An updated meta-analysis of randomized controlled trials. Respir. Res. 2020, 21, 23. [Google Scholar] [CrossRef] [PubMed]
- Courcelle, R.; Gaudry, S.; Serck, N.; Blonz, G.; Lascarrou, J.B.; Grimaldi, D.; On Behalf the COVADIS Study Group. Neuromuscular blocking agents (NMBA) for COVID-19 acute respiratory distress syndrome: A multicenter observational study. Crit. Care 2020, 24, 446. [Google Scholar] [CrossRef] [PubMed]
- Lee, B.Y.; Lee, S.I.; Baek, M.S.; Baek, A.R.; Na, Y.S.; Kim, J.H.; Seong, G.M.; Kim, W.Y. Lower Driving Pressure and Neuromuscular Blocker Use Are Associated with Decreased Mortality in Patients With COVID-19 ARDS. Respir. Care 2022, 67, 216–226. [Google Scholar] [CrossRef] [PubMed]
- Núñez-Seisdedos, M.N.; Lázaro-Navas, I.; López-González, L.; López-Aguilera, L. Intensive Care Unit-Acquired Weakness and Hospital Functional Mobility Outcomes Following Invasive Mechanical Ventilation in Patients with COVID-19: A Single-Centre Prospective Cohort Study. J. Intensive Care Med. 2022, 37, 1005–1014. [Google Scholar] [CrossRef]
- Gainnier, M.; Roch, A.; Forel, J.M.; Thirion, X.; Arnal, J.M.; Donati, S.; Papazian, L. Effect of neuromuscular blocking agents on gas exchange in patients presenting with acute respiratory distress syndrome. Crit. Care Med. 2004, 32, 113–119. [Google Scholar] [CrossRef]
- Rao, Z.L.J.; Ma, Y.; Li, X.; Xue, J.; Tian, L.; Zhou, W.; Kuang, Y. To retain spontaneous breathing or eliminate spontaneous breathing with neuromuscular blockers in acute respiratory distress syndrome patients? Chin. Crit. Care Med. 2016, 28, 973–977. [Google Scholar]
- Fan, E.; Dowdy, D.W.; Colantuoni, E.; Mendez-Tellez, P.A.; Sevransky, J.E.; Shanholtz, C.; Himmelfarb, C.R.; Desai, S.V.; Ciesla, N.; Herridge, M.S.; et al. Physical complications in acute lung injury survivors: A two-year longitudinal prospective study. Crit. Care Med. 2014, 42, 849–859. [Google Scholar] [CrossRef]
- Boddi, M.; Barbani, F.; Abbate, R.; Bonizzoli, M.; Batacchi, S.; Lucente, E.; Chiostri, M.; Gensini, G.F.; Peris, A. Reduction in deep vein thrombosis incidence in intensive care after a clinician education program. J. Thromb. Haemost. 2010, 8, 121–128. [Google Scholar] [CrossRef]
- Ballard, N.; Robley, L.; Barrett, D.; Fraser, D.; Mendoza, I. Patients’ recollections of therapeutic paralysis in the intensive care unit. Am. J. Crit. Care 2006, 15, 86–94, quiz 95. [Google Scholar] [CrossRef]
- LeBlanc, J.M.; Dasta, J.F.; Pruchnicki, M.C.; Gerlach, A.; Cook, C. Bispectral index values, sedation-agitation scores, and plasma Lorazepam concentrations in critically ill surgical patients. Am. J. Crit. Care 2012, 21, 99–105. [Google Scholar] [CrossRef]
- Syed, A.; Kobzik, A.; Huang, D.T. Role of Pharmacologic Paralysis in Acute Respiratory Distress Syndrome. Semin. Respir. Crit Care Med. 2019, 40, 101–113. [Google Scholar] [CrossRef] [PubMed]
- Alhazzani, W.; Møller, M.H.; Arabi, Y.M.; Loeb, M.; Gong, M.N.; Fan, E.; Oczkowski, S.; Levy, M.M.; Derde, L.; Dzierba, A.; et al. Surviving Sepsis Campaign: Guidelines on the management of critically ill adults with Coronavirus Disease 2019 (COVID-19). Intensive Care Med. 2020, 46, 854–887. [Google Scholar] [CrossRef] [PubMed]
- Huang, D.T.; Angus, D.C.; Moss, M.; Thompson, B.T.; Ferguson, N.D.; Ginde, A.; Gong, M.N.; Gundel, S.; Hayden, D.L.; Hite, R.D.; et al. Reevaluation of Systemic Early Neuromuscular Blockade Protocol Committee and the National Institutes of Health National Heart, Lung, and Blood Institute Prevention and Early Treatment of Acute Lung Injury Network Investigators. Design and Rationale of the Reevaluation of Systemic Early Neuromuscular Blockade Trial for Acute Respiratory Distress Syndrome. Ann. Am. Thorac. Soc. 2017, 14, 124–133. [Google Scholar] [CrossRef] [PubMed]
- Rudolph, M.W.; Kneyber, M.C.J.; Asaro, L.A.; Cheifetz, I.M.; Wypij, D.; Curley, M.A.Q. Randomized Evaluation of Sedation Titration for Respiratory Failure (RESTORE) Study Investigators. Early Neuromuscular Blockade in Moderate-to-Severe Pediatric Acute Respiratory Distress Syndrome. Crit. Care Med. 2022, 50, e445–e457. [Google Scholar] [CrossRef]
- Ferrando, C.; Suarez-Sipmann, F.; Mellado-Artigas, R.; Hernández, M.; Gea, A.; Arruti, E.; Aldecoa, C.; Martínez-Pallí, G.; Martínez-González, M.A.; Slutsky, A.S.; et al. COVID-19 Spanish ICU Network. Clinical features, ventilatory management, and outcome of ARDS caused by COVID-19 are similar to other causes of ARDS. Intensive Care Med. 2020, 46, 2200–2211. [Google Scholar] [CrossRef]
- COVID-ICU Group on behalf of the REVA Network and the COVID-ICU Investigators. Clinical characteristics and day-90 outcomes of 4244 critically ill adults with COVID-19: A prospective cohort study. Intensive Care Med. 2021, 47, 60–73. [Google Scholar] [CrossRef]
- Botta, M.; Tsonas, A.M.; Pillay, J.; Boers, L.S.; Algera, A.G.; Bos, L.D.J.; Dongelmans, D.A.; Hollmann, M.W.; Horn, J.; Vlaar, A.P.J.; et al. Ventilation management and clinical outcomes in invasively ventilated patients with COVID-19 (PRoVENT-COVID): A national, multicentre, observational cohort study. Lancet Respir. Med. 2021, 9, 139–148. [Google Scholar] [CrossRef]
- Roger, C.; Collange, O.; Mezzarobba, M.; Abou-Arab, O.; Teule, L.; Garnier, M.; Hoffmann, C.; Muller, L.; Lefrant, J.Y.; Guinot, P.G.; et al. French multicentre observational study on SARS-CoV-2 infections intensive care initial management: The FRENCH CORONA study. Anaesth. Crit. Care Pain Med. 2021, 40, 100931. [Google Scholar] [CrossRef]
- Gupta, S.; Hayek, S.S.; Wang, W.; Chan, L.; Mathews, K.S.; Melamed, M.L.; Brenner, S.K.; Leonberg-Yoo, A.; Schenck, E.J.; Radbel, J.; et al. Factors Associated with Death in Critically Ill Patients with Coronavirus Disease 2019 in the US. JAMA Intern. Med. 2020, 180, 1436–1447. [Google Scholar] [CrossRef]
- Ziehr, D.R.; Alladina, J.; Petri, C.R.; Maley, J.H.; Moskowitz, A.; Medoff, B.D.; Hibbert, K.A.; Thompson, B.T.; Hardin, C.C. Respiratory Pathophysiology of Mechanically Ventilated Patients with COVID-19: A Cohort Study. Am. J. Respir. Crit. Care Med. 2020, 201, 1560–1564. [Google Scholar] [CrossRef]
- Schenck, E.J.; Hofman, K.; Goyal, P.; Choi, J.; Torres, L.; Rajwani, K.; Tam, C.W.; Ivascu, N.; Martinez, F.J.; Berlin, D.A. Respiratory mechanics and gas exchange in COVID-19-associated respiratory failure. Ann. Am. Thorac. Soc. 2020, 17, 1158–1161. [Google Scholar] [CrossRef] [PubMed]
- Dres, M.; Hajage, D.; Lebbah, S.; Kimmoun, A.; Pham, T.; Béduneau, G.; Combes, A.; Mercat, A.; Guidet, B.; Demoule, A.; et al. COVID-ICU investigators. Characteristics, management, and prognosis of elderly patients with COVID-19 admitted in the ICU during the first wave: Insights from the COVID-ICU study: Prognosis of COVID-19 elderly critically ill patients in the ICU. Ann. Intensive Care 2021, 11, 77. [Google Scholar] [CrossRef] [PubMed]
- Li Bassi, G.; Gibbons, K.; Suen, J.Y.; Dalton, H.J.; White, N.; Corley, A.; Shrapnel, S.; Hinton, S.; Forsyth, S.; Laffey, J.G.; et al. COVID-19 Critical Care Consortium. Early short course of neuromuscular blocking agents in patients with COVID-19 ARDS: A propensity score analysis. Crit. Care 2022, 26, 141. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez, B.; Branca, M.; Gutt-Will, M.; Roth, M.; Söll, N.; Nansoz, S.; Cameron, D.R.; Tankisi, H.; Tan, S.V.; Bostock, H.; et al. Development and early diagnosis of critical illness myopathy in COVID-19 associated acute respiratory distress syndrome. J. Cachexia Sarcopenia Muscle 2022, 13, 1883–1895. [Google Scholar] [CrossRef] [PubMed]
- Ego, A.; Peluso, L.; Gorham, J.; Diosdado, A.; Restuccia, G.; Creteur, J.; Taccone, F.S. Use of Sedatives and Neuromuscular-Blocking Agents in Mechanically Ventilated Patients with COVID-19 ARDS. Microorganisms 2021, 9, 2393. [Google Scholar] [CrossRef] [PubMed]
- Esnault, P.; Cardinale, M.; Hraiech, S.; Goutorbe, P.; Baumstrack, K.; Prud’homme, E.; Bordes, J.; Forel, J.M.; Meaudre, E.; Papazian, L.; et al. High Respiratory Drive and Excessive Respiratory Efforts Predict Relapse of Respiratory Failure in Critically Ill Patients with COVID-19. Am. J. Respir. Crit. Care Med. 2020, 202, 1173–1178. [Google Scholar] [CrossRef]
- Gattinoni, L.; Marini, J.J.; Camporota, L. The Respiratory Drive: An Overlooked Tile of COVID-19 Pathophysiology. Am. J. Respir. Crit. Care Med. 2020, 202, 1079–1080. [Google Scholar] [CrossRef]
Patients | Primary End Point | Time of Inclusion | ΝΜΒA | Dose | Monitoring | Duration | Sedation | PEEPtot | VT | Pplat | PaO2/FiO2 | Proning | Steroids | Barotrauma | VAP | ICUAW | VFD 28/60 | Mortality | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Gainnier [55] | 56 | Effect on oxygenation after 120 h | Within 36 h meeting inclusion criteria | cis | 50 mg bolus | TOF every 8 h | 48 | midazolam sufentanil | 12.3 ± 3 | 7.1 ± 1.1 | 27.1 | 130 ± 34 | 14.3% | 7.1% | 0 | 46% | 0 | D28: 3.7 ± 37.2 | D28: 35.7% |
2004 | PaO2/FiO2 < 150 mmHg | 5 μg/kg/min | Ramsey 6 | D60: 19 ± 320.3 | D60: 46.4% | ||||||||||||||
ICU: 46.4% | |||||||||||||||||||
actual: 1324 ± 197 | 11.4 ± 2.5 | 7.4 ± 31.9 | 26.1 ± 4 | 119 ± 31 | 14.3% | 14.3% | 1 | 57% | 0 | D28: 1.7 ± 35.3 (NS) | D28: 60.7 (p = 0.061) | ||||||||
D60: 9.8 ± 16.9 (0.071) | D60: 64.3% (p = 0.18) | ||||||||||||||||||
ICU: 71.4% (p = 0.057) | |||||||||||||||||||
Forel [42] | 5.5% | ||||||||||||||||||
2006 | 36 | Effect on pulmonary and systemic proinflammatory cytokines | 48 h of ARDS onset | cis | bolus 0.2 mg/kg | TOF every 8 h | 48 h | 13.2 ± 2.7 | 6.5 ± 0.7 | 27.5 ± 4.4 | 0 | 0 | 1 | D28: 6 ± 8.6 | ICU: 27.8% | ||||
PaO2/FiO2 < 200 mmHg | 5 μg/kg/min | 11 ± 2.7 (p < 0.05) | 7 ± 30.7 | 24.8 ± 35.7 | 0 | 0 | 1 | D28: 5.4 ± 6.4 (ns) | ICU: 55.6% (NS) | ||||||||||
Guervilli [34] | 30 | Effect on respiratory mechanics | 48 h of ARDS onset | cis | bolus 15 mg | TOF | 48 h | midazolam/sufentanil | 11 (10–11.5) | 6.2 (5.9–6.8 | 23 (19–26) | 158 (131–185) | D28: 7 (0–20) | ICU: 38% | |||||
2017 | PaO2/FiO2 100–150 mmHg | 37.5 mg/h | Ramsey 6 | 150 (121–187) | D28: 8(0–18) | ICU: 27% (p = 0.6) | |||||||||||||
Rao [56] | 41 | vecuronium | actual: 1595 mg (1221–1830) | 7.84 ± 2.94 | 4.2% | D28: 17.9 ± 2.77.4 | D28: 4.2% | ||||||||||||
2016 | ARDS pts | 90: 4.2% | |||||||||||||||||
0 | D28: 17.1 ± 8.2 | D28: 11.8% | |||||||||||||||||
5.88 ± 1.96 | 90: 17.6% | ||||||||||||||||||
Lyu [27] 2014 | 96 | vecuronium | 0.05 mg/kg/h | 24–48 h | 140.95 ± 26.97 | D21: 16.7% | |||||||||||||
PaO2/FiO2 < 200 mmHg (24) | D21: 25% (p = 0.035) | ||||||||||||||||||
PaO2/FiO2 < 100 mmHg (24) | 144.33 ± 24.09 | D21: 20.8% | |||||||||||||||||
D21: 50% (0.477) | |||||||||||||||||||
Papazian [21] | 340 | 48 h of ARDS onset | cis | bolus 15 mg | Ramsay 6 | midazolame | 9.2 ± 3.2 | 6.55 ± 1.12 | 25 ± 5.1 | 106 ± 36 | 28% | 16% | 4% | 28D: 70.8% | 28D: 10.6 ± 9.7 | 28D: 23.7% | |||
2010 | PaO2/FiO2 < 150 mmHg | 90-day mortality | actual inclusion time: 16 h | 37.5 mg/h | sufentanil | icu discharge: 64.3% | 90D: 53.1 ± 35.8 | ICU: 29.4% | |||||||||||
ketamin | In hospital: 32.2% | ||||||||||||||||||
propofole | |||||||||||||||||||
9.2 ± 3.5 | 6.48 ± 0.92 | 24.4 ± 4.7 | 115 ± 41 | 29% | 23%(p = 0.1) | 11.7% (p = 0.01) | 28D:67.5% (p = 0.64) | 28D: 8.5 ± 9.4 (p = 0.04) | 28D: 33.3% (p = 0.05) | ||||||||||
icu discharge: 68.5% (p = 0.51) | 90D: 44.6 ± 37.5 (p = 0.03) | ICU: 38.9% (p = 0.06) | |||||||||||||||||
In hospital: 32.2% (p = 0.08) | |||||||||||||||||||
ROSE [20] | 1006 | 90-day mortality | 48 h of ARDS onset | cis | bolus: 15 mg | Ramsey 5–6 | 48 h | 12.6 ± 3.6 | 6.3 ± 0.9 | 25.5 ± 6.0 | 98.7 ± 27.9 | 16.8% | 17% | 4% | D7: 41% | D28: 9.6 ± 10.4 | D90: 42.5% | ||
2019 | PaO2/FiO2 < 150 mmHg | actual randomization time: 8 h | 37.5 mg continuous infusion | RASS −5 | D28:46.8% | D28: 36.7% | |||||||||||||
Ramsey 2–3 | 12.5 ± 3.5 | 6.3 ± 0.9 | 25.7 ± 6.1 | 99.5 ± 27.9 | 14.9% | 16.4% | 6.3% | D7: 31.3% | D28:9.9 ± 10.9 | D90: 42.8% | |||||||||
RASS 0 to −1 | D28:27.5% | D28: 37% | |||||||||||||||||
Courcelle [52] | 407 | NMBA use | 5 days (IQR 2–10) | <48 h: 12 (10–14) | 6.1 (5.8–6.6) | 23 (20–26) | 126 (88–162) | 65% | D28: 0 (0–16) | ICU: 38% | |||||||||
2020 | PaO2/FiO2 < 150 mmHg | 28-day outcomes | Propensity cohort 78% | ||||||||||||||||
COVID-19 ARDS | |||||||||||||||||||
>48 h: 11 (10–13) | 6.1 (5.8–6.6) | 24 (21–26) | 120 (87–157) | 90% (p < 0.001) | D28: 0 (0–10) | ICU: 41% (p = 0.54) | |||||||||||||
propensity cohort: 80% (p = 0.86) | |||||||||||||||||||
Lee [53] | 129 | ICU mortality | 5 days (4–9) | survivors: 10 (9–12) | 7 (6.2–7.9) | 123 (87–197) | 16% | 92% | 53% (superinfection rate) | 8.2 ± 9.7 | ICU 37% | ||||||||
2022 | COVID-19 ARDS | survivors: 20% | 91% | mild ARDS: 20% | |||||||||||||||
non-survivors: 10% | 94% | moderate ARDS: 40% | |||||||||||||||||
non-survivors: 10 (10–12) | 6.8 (6.2–8.3) | 109 (85–134) | severe ARDS: 43% | ||||||||||||||||
Li Bassi [62] | |||||||||||||||||||
2022 | 1953 | 90-day mortality | No NMBA: 12 ± 3 | 7.1 ± 1.4 | 25.4 ± 5.7 | 98.1 ± 31.1 | 8.6% | 21.3% | 12.4% | ||||||||||
COVID-19 ARDS (moderate and severe) | No NMBA(PS): 11.9 ± 2.73.1 | 7.4 ± 1.6 | 25 ± 2.75.9 | 86 ± 30.7 | 10.5% | 22.9% | 9.6% | ||||||||||||
242 with early NMBA | 48 h: 74.4% | NMBA: 12.8 ± 3.3 | 6.9 ± 1.4 | 26.1 ± 2.75.1 | 88.5 ± 29.3 | 21.5% | 19.8% | 9.6% | |||||||||||
72 h: 25.6% | NMBA (PS): 12.8 (3.3) | 6.8 ± 1.4 | 26.2 ± 2.75 | 88.6 ± 29.7 | 21.9% | 19% | 10.4% | ||||||||||||
Nunez-Seisderos [54] | 70 survivors with COVID-19 ARDS | ICUAW | cis | cumulative dose: 739 mg (283–1425) | 5 days (2–8) | 81 (64–97.75) | 91.4% | 100% | 65.7% | IMV DUR: 13 (7–22.5) | |||||||||
2022 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tsolaki, V.; Zakynthinos, G.E.; Papadonta, M.-E.; Bardaka, F.; Fotakopoulos, G.; Pantazopoulos, I.; Makris, D.; Zakynthinos, E. Neuromuscular Blockade in the Pre- and COVID-19 ARDS Patients. J. Pers. Med. 2022, 12, 1538. https://doi.org/10.3390/jpm12091538
Tsolaki V, Zakynthinos GE, Papadonta M-E, Bardaka F, Fotakopoulos G, Pantazopoulos I, Makris D, Zakynthinos E. Neuromuscular Blockade in the Pre- and COVID-19 ARDS Patients. Journal of Personalized Medicine. 2022; 12(9):1538. https://doi.org/10.3390/jpm12091538
Chicago/Turabian StyleTsolaki, Vasiliki, George E. Zakynthinos, Maria-Eirini Papadonta, Fotini Bardaka, George Fotakopoulos, Ioannis Pantazopoulos, Demosthenes Makris, and Epaminondas Zakynthinos. 2022. "Neuromuscular Blockade in the Pre- and COVID-19 ARDS Patients" Journal of Personalized Medicine 12, no. 9: 1538. https://doi.org/10.3390/jpm12091538
APA StyleTsolaki, V., Zakynthinos, G. E., Papadonta, M.-E., Bardaka, F., Fotakopoulos, G., Pantazopoulos, I., Makris, D., & Zakynthinos, E. (2022). Neuromuscular Blockade in the Pre- and COVID-19 ARDS Patients. Journal of Personalized Medicine, 12(9), 1538. https://doi.org/10.3390/jpm12091538