Direct Oral Anticoagulants for Stroke and Systemic Embolism Prevention in Patients with Left Ventricular Thrombus
Abstract
:1. Introduction
2. The Use of DOACs in Patients with LV Thrombus
2.1. Acute Myocardial Infarction
2.2. Myocarditis
Author, Year | Sex, Age | Substrate | Antithrombotic Treatment | Thrombus Location and Size | Thrombus Outcome | Method of Confirming the Resolution of the Thrombus |
---|---|---|---|---|---|---|
McGee et al., 2018 [47] | M, 44 y | Bacterial myocarditis, normal LV size and systolic function | Enoxaparin, then Apixaban 5 mg bid | NR | Resolution at 3-week follow-up | CMR |
Sossou et al., 2019 [31] | M, 33 y | History of acute viral perimyocarditis (4 months), HF, LVEF ~ 30–35%, PE, bilateral occlusion of the superficial femoral, popliteal, peroneal, anterior and posterior tibial arteries | UFH, then Rivaroxaban 15 mg bid for 21 days and 10 mg od thereafter | Multiple biventricular pedunculated mobile thrombi, 20–30 mm | Free of any complication at follow-up | NR |
Tran et al., 2020 [48] | F, 62 y | Idiopathic eosinophilic myocarditis, mid-apical inferior and mid infero-lateral hypokinesia, HF, LVEF = 41%, small pericardial effusion | Apixaban 5 mg bid | Apical, mobile, 27 mm × 15 mm × 14 mm | Resolution at 3-month follow-up, thrombus absent at 12-month follow-up | TTE |
Dimitroglou et al., 2021 [32] | F, 40 y | Eosinophilic myocarditis Strongyloides stercoralis infection, PE, DVT, HF, LVEF = 33% | Rivaroxaban * | Extensive mural thrombi | Resolution of thrombi at 3-month follow-up | TEE, CMR |
Bodagh et al., 2022 [46] | M, 76 y | Eosinophilic myocarditis HF, dilated LV, LVEF = 33%, sub-endocardial apical fibrosis, hyper-eosinophilia secondary to respiratory infection | Rivaroxaban 20 mg od | Apical 28 mm × 14 mm | Resolution of majority of the thrombus at 9-month follow-up | TEE |
Cottet et al., 2022 [49] | F, 42 y | Influenza A myocarditis, cardiogenic shock, LVEF = 25%, severe RV systolic dysfunction | Rivaroxaban 20 mg od | LV: apical, pedunculated, 22 mm × 15 mm, RV: apical | Resolution of thrombi at 8-day follow-up, thrombus absent at 6-month follow-up | TTE |
2.3. Hypertrophic Cardiomyopathies
2.4. Tachycardia-Induced Cardiomyopathy
2.5. Takotsubo Cardiomyopathy
Author, Year | Sex, Age | Substrate | Antithrombotic Treatment | Thrombus Location and Size | Thrombus Outcome | Method of Confirming the Resolution of the Thrombus | Comments |
---|---|---|---|---|---|---|---|
Kumar et al., 2021 [85] | F, 42 y | Severe global hypokinesis with apical akinesis, HF, LVEF = 17%, 5-FU treatment | Apixaban 2.5 mg bid, Aspirin 81 mg od | Apical, NR | Resolution at 6-week follow-up | TTE | Resolution of HF, LVEF = 70% Treatment stopped after 3 months |
Blazak et al., 2022 [86] | F, 65 y | Circumferential akinesis of the mid to apical segments with hyperkinetic basal segments, fibromuscular dysplasia, type 2A spontaneous coronary artery dissection involving the first diagonal artery, HF, LVEF = 29%, RVEF = 49% | Rivaroxaban 15 mg od, Clopidogrel 75 mg od | Apical, 8 mm × 8 mm × 6 mm | Resolution at 6-week follow-up | Contrast-enhanced TTE | Resolution of LV dysfunction (LVEF = 56%) and normal RV size and function |
2.6. Left Ventricular Thrombus in Patients with COVID-19
2.7. Overview Studies and Meta-Analyses
3. Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hindricks, G.; Potpara, T.; Dagres, N.; Arbelo, E.; Bax, J.J.; Blomstrom-Lundqvist, C.; Boriani, G.; Castella, M.; Dan, G.A.; Dilaveris, P.E.; et al. 2020 ESC Guidelines for the diagnosis and management of atrial fibrillation developed in collaboration with the European Association for Cardio-Thoracic Surgery (EACTS): The Task Force for the diagnosis and management of atrial fibrillation of the European Society of Cardiology (ESC) Developed with the special contribution of the European Heart Rhythm Association (EHRA) of the ESC. Eur. Heart J. 2021, 42, 373–498. [Google Scholar] [CrossRef]
- Ghalyoun, B.A.; Lempel, M.; Shaaban, H.; Shamoon, F. Successful resolution with apixaban of a massive left atrial appendage thrombus due to nonrheumatic atrial fibrillation: A case report and review. Ann. Card. Anaesth. 2018, 21, 76–77. [Google Scholar] [PubMed]
- Vidal, A.; Vanerio, G. Dabigatran and left atrial appendage thrombus. J. Thromb. Thrombolysis 2012, 34, 545–547. [Google Scholar] [CrossRef] [PubMed]
- Gaznabi, S.; Abugroun, A.; Mahbub, H.; Campos, E. Successful Resolution of a Large Left Atrial and Left Atrial Appendage Thrombus with Rivaroxaban. Case Rep. Cardiol. 2019, 2019, 6076923. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lip, G.Y.; Hammerstingl, C.; Marin, F.; Cappato, R.; Meng, I.L.; Kirsch, B.; van Eickels, M.; Cohen, A.; X-TRA Study and CLOT-AF Registry Investigators. Left atrial thrombus resolution in atrial fibrillation or flutter: Results of a prospective study with rivaroxaban (X-TRA) and a retrospective observational registry providing baseline data (CLOT-AF). Am. Heart J. 2016, 178, 126–134. [Google Scholar] [CrossRef] [Green Version]
- Delewi, R.; Zijlstra, F.; Piek, J.J. Left ventricular thrombus formation after acute myocardial infarction. Heart 2012, 98, 1743–1749. [Google Scholar] [CrossRef] [Green Version]
- McCarthy, C.P.; Vaduganathan, M.; McCarthy, K.J.; Januzzi, J.L., Jr.; Bhatt, D.L.; McEvoy, J.W. Left Ventricular Thrombus After Acute Myocardial Infarction: Screening, Prevention, and Treatment. JAMA Cardiol. 2018, 3, 642–649. [Google Scholar] [CrossRef]
- Habash, F.; Vallurupalli, S. Challenges in management of left ventricular thrombus. Ther. Adv. Cardiovasc. Dis. 2017, 11, 203–213. [Google Scholar] [CrossRef] [Green Version]
- Ibanez, B.; James, S.; Agewall, S.; Antunes, M.J.; Bucciarelli-Ducci, C.; Bueno, H.; Caforio, A.L.P.; Crea, F.; Goudevenos, J.A.; Halvorsen, S.; et al. 2017 ESC Guidelines for the management of acute myocardial infarction in patients presenting with ST-segment elevation: The Task Force for the management of acute myocardial infarction in patients presenting with ST-segment elevation of the European Society of Cardiology (ESC). Eur. Heart J. 2018, 39, 119–177. [Google Scholar] [CrossRef] [Green Version]
- O’Gara, P.T.; Kushner, F.G.; Ascheim, D.D.; Casey, D.E., Jr.; Chung, M.K.; de Lemos, J.A.; Ettinger, S.M.; Fang, J.C.; Fesmire, F.M.; Franklin, B.A.; et al. 2013 ACCF/AHA guideline for the management of ST-elevation myocardial infarction: Executive summary: A report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. Circulation 2013, 127, 529–555. [Google Scholar] [CrossRef]
- Cannon, C.P.; Bhatt, D.L.; Oldgren, J.; Lip, G.Y.H.; Ellis, S.G.; Kimura, T.; Maeng, M.; Merkely, B.; Zeymer, U.; Gropper, S.; et al. Dual Antithrombotic Therapy with Dabigatran after PCI in Atrial Fibrillation. N. Engl. J. Med. 2017, 377, 1513–1524. [Google Scholar] [CrossRef] [PubMed]
- Gibson, C.M.; Mehran, R.; Bode, C.; Halperin, J.; Verheugt, F.W.; Wildgoose, P.; Birmingham, M.; Ianus, J.; Burton, P.; van Eickels, M.; et al. Prevention of Bleeding in Patients with Atrial Fibrillation Undergoing PCI. N. Engl. J. Med. 2016, 375, 2423–2434. [Google Scholar] [CrossRef] [Green Version]
- Lopes, R.D.; Heizer, G.; Aronson, R.; Vora, A.N.; Massaro, T.; Mehran, R.; Goodman, S.G.; Windecker, S.; Darius, H.; Li, J.; et al. Antithrombotic Therapy after Acute Coronary Syndrome or PCI in Atrial Fibrillation. N. Engl. J. Med. 2019, 380, 1509–1524. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vranckx, P.; Valgimigli, M.; Eckardt, L.; Tijssen, J.; Lewalter, T.; Gargiulo, G.; Batushkin, V.; Campo, G.; Lysak, Z.; Vakaliuk, I.; et al. Edoxaban-based versus vitamin K antagonist-based antithrombotic regimen after successful coronary stenting in patients with atrial fibrillation (ENTRUST-AF PCI): A randomised, open-label, phase 3b trial. Lancet 2019, 394, 1335–1343. [Google Scholar] [CrossRef] [PubMed]
- Ohashi, N.; Okada, T.; Uchida, M.; Amioka, M.; Fujiwara, M.; Kaseda, S. Effects of Dabigatran on the Resolution of Left Ventricular Thrombus after Acute Myocardial Infarction. Intern. Med. 2015, 54, 1761–1763. [Google Scholar] [CrossRef] [Green Version]
- Mano, Y.; Koide, K.; Sukegawa, H.; Kodaira, M.; Ohki, T. Successful resolution of a left ventricular thrombus with apixaban treatment following acute myocardial infarction. Heart Vessel. 2016, 31, 118–123. [Google Scholar] [CrossRef]
- Summaria, F.; Sgueglia, G.A.; D’Errico, F.; De Santis, A.; Piccioni, F.; Gioffre, G.; Gaspardone, A. Safety and Efficacy of Triple Therapeutic Targets with Rivaroxaban after Acute Myocardial Infarction Complicated by Left Ventricular Thrombi in a Case of Nonvalvular Atrial Fibrillation. Case Rep. Cardiol. 2018, 2018, 6503435. [Google Scholar] [CrossRef]
- Makrides, C.A. Resolution of left ventricular postinfarction thrombi in patients undergoing percutaneous coronary intervention using rivaroxaban in addition to dual antiplatelet therapy. BMJ Case Rep. 2016, 2016, bcr2016217843. [Google Scholar] [CrossRef] [Green Version]
- Seecheran, R.; Seecheran, V.; Persad, S.; Seecheran, N.A. Rivaroxaban as an Antithrombotic Agent in a Patient With ST-Segment Elevation Myocardial Infarction and Left Ventricular Thrombus: A Case Report. J. Investig. Med. High Impact Case Rep. 2017, 5, 2324709617697991. [Google Scholar] [CrossRef]
- Cheong, K.I.; Chuang, W.P.; Wu, Y.W.; Huang, S.H. Successful Resolution of Left Ventricular Thrombus after ST-Elevation Myocardial Infarction by Edoxaban in a Patient with High Bleeding Risk. Acta Cardiol. Sin. 2019, 35, 85–88. [Google Scholar] [CrossRef]
- Jones, D.A.; Wright, P.; Alizadeh, M.A.; Fhadil, S.; Rathod, K.S.; Guttmann, O.; Knight, C.; Timmis, A.; Baumbach, A.; Wragg, A.; et al. The use of novel oral anticoagulants compared to vitamin K antagonists (warfarin) in patients with left ventricular thrombus after acute myocardial infarction. Eur. Heart J. Cardiovasc. Pharmacother. 2021, 7, 398–404. [Google Scholar] [CrossRef] [PubMed]
- Jaidka, A.; Zhu, T.; Lavi, S.; Johri, A. Treatment of left ventricular thrombus using warfarin versus direct oral anticoagulants following anterior myocardial infarction. Can. J. Cardiol. 2018, 34, S143. [Google Scholar] [CrossRef] [Green Version]
- Kernan, W.N.; Ovbiagele, B.; Black, H.R.; Bravata, D.M.; Chimowitz, M.I.; Ezekowitz, M.D.; Fang, M.C.; Fisher, M.; Furie, K.L.; Heck, D.V.; et al. Guidelines for the prevention of stroke in patients with stroke and transient ischemic attack: A guideline for healthcare professionals from the American Heart Association/American Stroke Association. Stroke 2014, 45, 2160–2236. [Google Scholar] [CrossRef]
- Fang, S.; Zhu, B.Z.; Yang, F.; Wang, Z.; Xiang, Q.; Gong, Y.J. Direct Oral Anticoagulants Compared with Vitamin K Antagonists for Left Ventricular Thrombus: A Systematic Review and Meta-analysis. Curr. Pharm. Des. 2022, 28, 1902–1910. [Google Scholar] [CrossRef]
- Smetana, K.S.; Dunne, J.; Parrott, K.; Davis, G.A.; Collier, A.C.S.; Covell, M.; Smyth, S. Oral factor Xa inhibitors for the treatment of left ventricular thrombus: A case series. J. Thromb. Thrombolysis 2017, 44, 519–524. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Hu, Y.; Wu, Z. Direct Oral Anticoagulants versus Vitamin K Antagonists for the Treatment of Left Ventricular Thrombosis: A Meta-Analysis. Rev. Cardiovasc. Med. 2022, 23, 312. [Google Scholar] [CrossRef]
- Altintas, B.; Yaylak, B.; Baysal, E.; Deniz, D.; Ede, H.; Bilge, O. Left ventricular apical thrombus formation following acute yocardial infarction in a patient under dabigatran treatment. Am. J. Cardiol. 2016, 117, S75–S76. [Google Scholar] [CrossRef]
- Zhang, Z.; Si, D.; Zhang, Q.; Jin, L.; Zheng, H.; Qu, M.; Yu, M.; Jiang, Z.; Li, D.; Li, S.; et al. Prophylactic Rivaroxaban Therapy for Left Ventricular Thrombus After Anterior ST-Segment Elevation Myocardial Infarction. JACC Cardiovasc. Interv. 2022, 15, 861–872. [Google Scholar] [CrossRef]
- Pollack, A.; Kontorovich, A.R.; Fuster, V.; Dec, G.W. Viral myocarditis--diagnosis, treatment options, and current controversies. Nat. Rev. Cardiol. 2015, 12, 670–680. [Google Scholar] [CrossRef]
- Thuny, F.; Avierinos, J.F.; Jop, B.; Tafanelli, L.; Renard, S.; Riberi, A.; Metras, D.; Habib, G. Images in cardiovascular medicine. Massive biventricular thrombosis as a consequence of myocarditis: Findings from 2-dimensional and real-time 3-dimensional echocardiography. Circulation 2006, 113, e932–e933. [Google Scholar] [CrossRef]
- Sossou, C.; Ogundare, T.; Chika-Nwosuh, O.; Sodha, A.; Nnaoma, C.; McKinney, C.; Bustillo, J. A Rare Culprit of Simultaneous Arteriovenous Thromboembolism: Acute Viral Perimyocarditis. Case Rep. Cardiol. 2019, 2019, 5361529. [Google Scholar] [CrossRef]
- Dimitroglou, Y.; Alexopoulos, T.; Aggeli, C.; Kalantzi, M.; Nouli, A.; Dourakis, S.P.; Tsioufis, K. Eosinophilic Myocarditis in a Patient With Strongyloides stercoralis Infection. JACC Case Rep. 2021, 3, 954–959. [Google Scholar] [CrossRef]
- Antoniak, S.; Boltzen, U.; Riad, A.; Kallwellis-Opara, A.; Rohde, M.; Dorner, A.; Tschope, C.; Noutsias, M.; Pauschinger, M.; Schultheiss, H.P.; et al. Viral myocarditis and coagulopathy: Increased tissue factor expression and plasma thrombogenicity. J. Mol. Cell. Cardiol. 2008, 45, 118–126. [Google Scholar] [CrossRef] [PubMed]
- Goeijenbier, M.; van Wissen, M.; van de Weg, C.; Jong, E.; Gerdes, V.E.; Meijers, J.C.; Brandjes, D.P.; van Gorp, E.C. Review: Viral infections and mechanisms of thrombosis and bleeding. J. Med. Virol. 2012, 84, 1680–1696. [Google Scholar] [CrossRef] [PubMed]
- Antoniak, S.; Boltzen, U.; Eisenreich, A.; Stellbaum, C.; Poller, W.; Schultheiss, H.P.; Rauch, U. Regulation of cardiomyocyte full-length tissue factor expression and microparticle release under inflammatory conditions in vitro. J. Thromb. Haemost. 2009, 7, 871–878. [Google Scholar] [CrossRef] [PubMed]
- Seguela, P.E.; Iriart, X.; Acar, P.; Montaudon, M.; Roudaut, R.; Thambo, J.B. Eosinophilic cardiac disease: Molecular, clinical and imaging aspects. Arch. Cardiovasc. Dis. 2015, 108, 258–268. [Google Scholar] [CrossRef] [Green Version]
- Gottdiener, J.S.; Maron, B.J.; Schooley, R.T.; Harley, J.B.; Roberts, W.C.; Fauci, A.S. Two-dimensional echocardiographic assessment of the idiopathic hypereosinophilic syndrome. Anatomic basis of mitral regurgitation and peripheral embolization. Circulation 1983, 67, 572–578. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ogbogu, P.U.; Rosing, D.R.; Horne, M.K., 3rd. Cardiovascular manifestations of hypereosinophilic syndromes. Immunol. Allergy Clin. N. Am. 2007, 27, 457–475. [Google Scholar] [CrossRef] [Green Version]
- Moosbauer, C.; Morgenstern, E.; Cuvelier, S.L.; Manukyan, D.; Bidzhekov, K.; Albrecht, S.; Lohse, P.; Patel, K.D.; Engelmann, B. Eosinophils are a major intravascular location for tissue factor storage and exposure. Blood 2007, 109, 995–1002. [Google Scholar] [CrossRef]
- Wang, J.G.; Mahmud, S.A.; Thompson, J.A.; Geng, J.G.; Key, N.S.; Slungaard, A. The principal eosinophil peroxidase product, HOSCN, is a uniquely potent phagocyte oxidant inducer of endothelial cell tissue factor activity: A potential mechanism for thrombosis in eosinophilic inflammatory states. Blood 2006, 107, 558–565. [Google Scholar] [CrossRef]
- Slungaard, A.; Vercellotti, G.M.; Tran, T.; Gleich, G.J.; Key, N.S. Eosinophil cationic granule proteins impair thrombomodulin function. A potential mechanism for thromboembolism in hypereosinophilic heart disease. J. Clin. Investig. 1993, 91, 1721–1730. [Google Scholar] [CrossRef] [PubMed]
- Venge, P.; Dahl, R.; Hallgren, R. Enhancement of factor XII dependent reactions by eosinophil cationic protein. Thromb. Res. 1979, 14, 641–649. [Google Scholar] [CrossRef] [PubMed]
- Rohrbach, M.S.; Wheatley, C.L.; Slifman, N.R.; Gleich, G.J. Activation of platelets by eosinophil granule proteins. J. Exp. Med. 1990, 172, 1271–1274. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sunbul, M.; Tigen, K.; Sari, I.; Cincin, A.; Atas, H. Myocarditis patient with left ventricular, right atrial, and pericardial thrombi. Successful treatment with warfarin. Herz 2014, 39, 403–404. [Google Scholar] [CrossRef]
- Farhat, N.; Bouhabib, M.; Joye, R.; Vallee, J.P.; Beghetti, M. Contribution of imaging modalities to eosinophilic myocarditis diagnosis: A case report. Eur. Heart J. Case Rep. 2022, 6, ytac058. [Google Scholar] [CrossRef]
- Bodagh, C.; Sawh, C.; Garg, P. The role of rivaroxaban in eosinophilic myocarditis. Eur. Heart J. Case Rep. 2022, 6, ytac219. [Google Scholar] [CrossRef]
- McGee, M.; Shiel, E.; Brienesse, S.; Murch, S.; Pickles, R.; Leitch, J. Staphylococcus aureus Myocarditis with Associated Left Ventricular Apical Thrombus. Case Rep. Cardiol. 2018, 2018, 7017286. [Google Scholar] [CrossRef] [Green Version]
- Tran, N.; Kwok, C.S.; Bennett, S.; Ratib, K.; Heatlie, G.; Phan, T. Idiopathic eosinophilic myocarditis presenting with features of an acute coronary syndrome. Echo Res. Pract. 2020, 7, K1–K6. [Google Scholar] [CrossRef] [Green Version]
- Cottet, M.; Vivekanantham, H.; Arroja, J.D.; Arroyo, D. Fulminant Influenza A myocarditis in a patient presenting with cardiogenic shock and biventricular thrombi: A case report. Eur. Heart J. Case Rep. 2022, 6, ytac026. [Google Scholar] [CrossRef]
- Kaya, A.; Hayiroglu, M.I.; Keskin, M.; Tekkesin, A.I.; Alper, A.T. Resolution of left ventricular thrombus with apixaban in a patient with hypertrophic cardiomyopathy. Turk Kardiyol. Dern. Ars. 2016, 44, 335–337. [Google Scholar] [CrossRef]
- Kolekar, S.; Munjewar, C.; Sharma, S. Dabigatran for left ventricular thrombus. Indian Heart J. 2015, 67, 495–496. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ommen, S.R.; Mital, S.; Burke, M.A.; Day, S.M.; Deswal, A.; Elliott, P.; Evanovich, L.L.; Hung, J.; Joglar, J.A.; Kantor, P.; et al. 2020 AHA/ACC Guideline for the Diagnosis and Treatment of Patients With Hypertrophic Cardiomyopathy: Executive Summary: A Report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines. Circulation 2020, 142, e533–e557. [Google Scholar] [CrossRef] [PubMed]
- Elliott, P.M.; Anastasakis, A.; Borger, M.A.; Borggrefe, M.; Cecchi, F.; Charron, P.; Hagege, A.A.; Lafont, A.; Limongelli, G.; Mahrholdt, H.; et al. 2014 ESC Guidelines on diagnosis and management of hypertrophic cardiomyopathy: The Task Force for the Diagnosis and Management of Hypertrophic Cardiomyopathy of the European Society of Cardiology (ESC). Eur. Heart J. 2014, 35, 2733–2779. [Google Scholar] [CrossRef]
- Hamada, M. Left Ventricular Thrombus in Hypertrophic Cardiomyopathy. Intern. Med. 2019, 58, 465–467. [Google Scholar] [CrossRef] [Green Version]
- Cheng, Z.; Fang, T.; Huang, J.; Guo, Y.; Alam, M.; Qian, H. Hypertrophic Cardiomyopathy: From Phenotype and Pathogenesis to Treatment. Front. Cardiovasc. Med. 2021, 8, 722340. [Google Scholar] [CrossRef] [PubMed]
- Binder, J.; Attenhofer Jost, C.H.; Klarich, K.W.; Connolly, H.M.; Tajik, A.J.; Scott, C.G.; Julsrud, P.R.; Ehrsam, J.E.; Bailey, K.R.; Ommen, S.R. Apical hypertrophic cardiomyopathy: Prevalence and correlates of apical outpouching. J. Am. Soc. Echocardiogr. 2011, 24, 775–781. [Google Scholar] [CrossRef]
- Zhai, M.; Huang, L.; Liang, L.; Tian, P.; Zhao, L.; Zhao, X.; Huang, B.; Feng, J.; Huang, Y.; Zhou, Q.; et al. Clinical characteristics of patients with heart failure and intracardiac thrombus. Front. Cardiovasc. Med. 2022, 9, 934160. [Google Scholar] [CrossRef]
- Rowin, E.J.; Maron, B.J.; Haas, T.S.; Garberich, R.F.; Wang, W.; Link, M.S.; Maron, M.S. Hypertrophic Cardiomyopathy With Left Ventricular Apical Aneurysm: Implications for Risk Stratification and Management. J. Am. Coll. Cardiol. 2017, 69, 761–773. [Google Scholar] [CrossRef]
- Holloway, C.J.; Betts, T.R.; Neubauer, S.; Myerson, S.G. Hypertrophic cardiomyopathy complicated by large apical aneurysm and thrombus, presenting as ventricular tachycardia. J. Am. Coll. Cardiol. 2010, 56, 1961. [Google Scholar] [CrossRef] [Green Version]
- Raza, N.; Burnette, S.; Joolhar, F.S.; Ghandforoush, A.; Win, T.T. A Giant Left Intraventricular Thrombus Associated with Apical Hypertrophic Cardiomyopathy Mimics Cancer. Cureus 2021, 13, e15554. [Google Scholar] [CrossRef]
- Dominguez, F.; Climent, V.; Zorio, E.; Ripoll-Vera, T.; Salazar-Mendiguchia, J.; Garcia-Pinilla, J.M.; Urbano-Moral, J.A.; Fernandez-Fernandez, X.; Lopez-Cuenca, D.; Ajo-Ferrer, R.; et al. Direct oral anticoagulants in patients with hypertrophic cardiomyopathy and atrial fibrillation. Int. J. Cardiol. 2017, 248, 232–238. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, Y.; Xiong, H.; Su, J.; Lin, J.; Zhou, Q.; Lin, M.; Zhao, W.; Peng, F. Effectiveness and safety of non-vitamin K antagonist oral anticoagulants in patients with hypertrophic cardiomyopathy with non-valvular atrial fibrillation. Heart Vessel. 2022, 37, 1224–1231. [Google Scholar] [CrossRef] [PubMed]
- Jung, H.; Yang, P.S.; Jang, E.; Yu, H.T.; Kim, T.H.; Uhm, J.S.; Kim, J.Y.; Pak, H.N.; Lee, M.H.; Joung, B.; et al. Effectiveness and Safety of Non-Vitamin K Antagonist Oral Anticoagulants in Patients with Atrial Fibrillation with Hypertrophic Cardiomyopathy: A Nationwide Cohort Study. Chest 2019, 155, 354–363. [Google Scholar] [CrossRef] [PubMed]
- Kaku, B. Intra-cardiac thrombus resolution after anti-coagulation therapy with dabigatran in a patient with mid-ventricular obstructive hypertrophic cardiomyopathy: A case report. J. Med. Case Rep. 2013, 7, 238. [Google Scholar] [CrossRef] [Green Version]
- Perez-Silva, A.; Merino, J.L. Tachycardia-induced cardiomyopathy. E-J. Cardiol. Pract. 2009, 7, 16. [Google Scholar]
- Gerloni, R.; Abate, E.; Pinamonti, B.; Milo, M.; Benussi, B.; Poletti, A.; Pappalardo, A.; Bussani, R.; Sinagra, G. A life-threatening manifestation of tachycardia-induced cardiomyopathy. J. Cardiovasc. Med. 2014, 15, 164–166. [Google Scholar] [CrossRef] [PubMed]
- Stampfli, S.F.; Plass, A.; Muller, A.; Greutmann, M. Complete Recovery from Severe Tachycardia-Induced Cardiomyopathy in a Patient with Ebstein’s Anomaly. World J. Pediatr. Congenit. Heart Surg. 2014, 5, 484–487. [Google Scholar] [CrossRef] [PubMed]
- Abid, L.; Trabelsi, I.; Chtourou, S.; Krichene, S.; Laroussi, L.; Hammami, R.; Sahnoun, M.; Mallek, S.; Hentati, M.; Kammoun, S. Left ventricular thrombus complicating tachycardia-induced cardiomyopathy. Int. J. Cardiol. 2011, 146, e33–e37. [Google Scholar] [CrossRef]
- Nakasuka, K.; Ito, S.; Noda, T.; Hasuo, T.; Sekimoto, S.; Ohmori, H.; Inomata, M.; Yoshida, T.; Tamai, N.; Saeki, T.; et al. Resolution of left ventricular thrombus secondary to tachycardia-induced heart failure with rivaroxaban. Case Rep. Med. 2014, 2014, 814524. [Google Scholar] [CrossRef]
- Assad, J.; Femia, G.; Pender, P.; Badie, T.; Rajaratnam, R. Takotsubo Syndrome: A Review of Presentation, Diagnosis and Management. Clin. Med. Insights Cardiol. 2022, 16, 11795468211065782. [Google Scholar] [CrossRef]
- Wittstein, I.S.; Thiemann, D.R.; Lima, J.A.; Baughman, K.L.; Schulman, S.P.; Gerstenblith, G.; Wu, K.C.; Rade, J.J.; Bivalacqua, T.J.; Champion, H.C. Neurohumoral features of myocardial stunning due to sudden emotional stress. N. Engl. J. Med. 2005, 352, 539–548. [Google Scholar] [CrossRef] [PubMed]
- de Gregorio, C. Cardioembolic outcomes in stress-related cardiomyopathy complicated by ventricular thrombus: A systematic review of 26 clinical studies. Int. J. Cardiol. 2010, 141, 11–17. [Google Scholar] [CrossRef] [PubMed]
- Templin, C.; Ghadri, J.R.; Diekmann, J.; Napp, L.C.; Bataiosu, D.R.; Jaguszewski, M.; Cammann, V.L.; Sarcon, A.; Geyer, V.; Neumann, C.A.; et al. Clinical Features and Outcomes of Takotsubo (Stress) Cardiomyopathy. N. Engl. J. Med. 2015, 373, 929–938. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Scally, C.; Rudd, A.; Mezincescu, A.; Wilson, H.; Srivanasan, J.; Horgan, G.; Broadhurst, P.; Newby, D.E.; Henning, A.; Dawson, D.K. Persistent Long-Term Structural, Functional, and Metabolic Changes after Stress-Induced (Takotsubo) Cardiomyopathy. Circulation 2018, 137, 1039–1048. [Google Scholar] [CrossRef]
- Naegele, M.; Flammer, A.J.; Enseleit, F.; Roas, S.; Frank, M.; Hirt, A.; Kaiser, P.; Cantatore, S.; Templin, C.; Frohlich, G.; et al. Endothelial function and sympathetic nervous system activity in patients with Takotsubo syndrome. Int. J. Cardiol. 2016, 224, 226–230. [Google Scholar] [CrossRef] [PubMed]
- Ghadri, J.R.; Wittstein, I.S.; Prasad, A.; Sharkey, S.; Dote, K.; Akashi, Y.J.; Cammann, V.L.; Crea, F.; Galiuto, L.; Desmet, W.; et al. International Expert Consensus Document on Takotsubo Syndrome (Part II): Diagnostic Workup, Outcome, and Management. Eur. Heart J. 2018, 39, 2047–2062. [Google Scholar] [CrossRef] [PubMed]
- Barrera-Ramirez, C.F.; Jimenez-Mazuecos, J.M.; Alfonso, F. Apical thrombus associated with left ventricular apical ballooning. Heart 2003, 89, 927. [Google Scholar] [CrossRef]
- Ding, K.J.; Cammann, V.L.; Szawan, K.A.; Stahli, B.E.; Wischnewsky, M.; Di Vece, D.; Citro, R.; Jaguszewski, M.; Seifert, B.; Sarcon, A.; et al. Intraventricular Thrombus Formation and Embolism in Takotsubo Syndrome: Insights From the International Takotsubo Registry. Arterioscler. Thromb. Vasc. Biol. 2020, 40, 279–287. [Google Scholar] [CrossRef]
- Kurisu, S.; Inoue, I.; Kawagoe, T.; Ishihara, M.; Shimatani, Y.; Nakama, Y.; Maruhashi, T.; Kagawa, E.; Dai, K. Incidence and treatment of left ventricular apical thrombosis in Tako-tsubo cardiomyopathy. Int. J. Cardiol. 2011, 146, e58–e60. [Google Scholar] [CrossRef]
- Nonaka, D.; Takase, H.; Machii, M.; Ohno, K. Intraventricular thrombus and severe mitral regurgitation in the acute phase of takotsubo cardiomyopathy: Two case reports. J. Med. Case Rep. 2019, 13, 152. [Google Scholar] [CrossRef]
- Haghi, D.; Papavassiliu, T.; Heggemann, F.; Kaden, J.J.; Borggrefe, M.; Suselbeck, T. Incidence and clinical significance of left ventricular thrombus in tako-tsubo cardiomyopathy assessed with echocardiography. QJM 2008, 101, 381–386. [Google Scholar] [CrossRef] [PubMed]
- Shin, S.N.; Yun, K.H.; Ko, J.S.; Rhee, S.J.; Yoo, N.J.; Kim, N.H.; Oh, S.K.; Jeong, J.W. Left ventricular thrombus associated with takotsubo cardiomyopathy: A cardioembolic cause of cerebral infarction. J. Cardiovasc. Ultrasound 2011, 19, 152–155. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, P.H.; Song, J.K.; Park, I.K.; Sun, B.J.; Lee, S.G.; Yim, J.H.; Choi, H.O. Takotsubo cardiomyopathy: A case of persistent apical ballooning complicated by an apical mural thrombus. Korean J. Intern. Med. 2011, 26, 455–459. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.M.; Aikat, S.; Bailey, A.; White, M. Takotsubo cardiomyopathy as a source of cardioembolic cerebral infarction. BMJ Case Rep. 2012, 2012, bcr2012006835. [Google Scholar] [CrossRef] [PubMed]
- Kumar, D.; Warsha, F.; Mehta, A.; Deepak, V.; Jawad, W. 5-Fluorouracil Induced Takotsubo Cardiomyopathy Complicated by Left Ventricular Thrombosis. Cureus 2021, 13, e14049. [Google Scholar] [CrossRef]
- Blazak, P.L.; Holland, D.J.; Basso, T.; Martin, J. Spontaneous coronary artery dissection, fibromuscular dysplasia, and biventricular stress cardiomyopathy: A case report. Eur. Heart J. Case Rep. 2022, 6, ytac125. [Google Scholar] [CrossRef]
- Iba, T.; Levy, J.H.; Connors, J.M.; Warkentin, T.E.; Thachil, J.; Levi, M. The unique characteristics of COVID-19 coagulopathy. Crit. Care 2020, 24, 360. [Google Scholar] [CrossRef]
- Knight, R.; Walker, V.; Ip, S.; Cooper, J.A.; Bolton, T.; Keene, S.; Denholm, R.; Akbari, A.; Abbasizanjani, H.; Torabi, F.; et al. Association of COVID-19 with Major Arterial and Venous Thrombotic Diseases: A Population-Wide Cohort Study of 48 Million Adults in England and Wales. Circulation 2022, 146, 892–906. [Google Scholar] [CrossRef]
- Hajra, A.; Torrado, J.; Alviar, C.L.; Bangalore, S.; Keller, N.; Faillace, R.; Sokol, S. COVID-19-induced latent relapsing hypercoagulable state in the absence of persistent viral infection. SAGE Open Med. Case Rep. 2022, 10, 2050313X221113934. [Google Scholar] [CrossRef]
- Sharma, H.; George, S. Early Left Ventricular Thrombus Formation in a COVID-19 Patient with ST-Elevation Myocardial Infarction. Case Rep. Cardiol. 2020, 2020, 8882463. [Google Scholar] [CrossRef]
- Fenton, M.; Siddavaram, S.; Sugihara, C.; Husain, S. Lessons of the month 3: ST-elevation myocardial infarction and left ventricular thrombus formation: An arterial thrombotic complication of severe COVID-19 infection. Clin. Med. 2020, 20, 437–439. [Google Scholar] [CrossRef] [PubMed]
- Iqbal, P.; Laswi, B.; Jamshaid, M.B.; Shahzad, A.; Chaudhry, H.S.; Khan, D.; Qamar, M.S.; Yousaf, Z. The Role of Anticoagulation in Post-COVID-19 Concomitant Stroke, Myocardial Infarction, and Left Ventricular Thrombus: A Case Report. Am. J. Case Rep. 2021, 22, e928852. [Google Scholar] [CrossRef] [PubMed]
- Farouji, I.; Chan, K.H.; Abanoub, R.; Guron, G.; Slim, J.; Suleiman, A. A rare case of co-occurrence of pulmonary embolism and left ventricular thrombus in a patient with COVID-19. SAGE Open Med. Case Rep. 2020, 8, 2050313X20974534. [Google Scholar] [CrossRef] [PubMed]
- Zheng, H.; Stergiopoulos, K.; Wang, L.; Chen, L.; Cao, J. COVID-19 Presenting as Major Thromboembolic Events: Virchow’s Triad Revisited and Clinical Considerations of Therapeutic Anticoagulation. Cureus 2020, 12, e10137. [Google Scholar] [CrossRef]
- Nanthatanti, N.; Phusanti, S.; Chantrathammachart, P.; Thammavaranucupt, K.; Angchaisuksiri, P.; Sungkanuparph, S. Left ventricular thrombus and pulmonary embolism: A case series of thrombosis in COVID-19 in Thai patients. Res. Pract. Thromb. Haemost. 2020, 4, 1224–1229. [Google Scholar] [CrossRef]
- Ranard, L.S.; Engel, D.J.; Kirtane, A.J.; Masoumi, A. Coronary and cerebral thrombosis in a young patient after mild COVID-19 illness: A case report. Eur. Heart J. Case Rep. 2020, 4, 1–5. [Google Scholar] [CrossRef]
- Capaccione, K.M.; Leb, J.S.; D’Souza, B.; Utukuri, P.; Salvatore, M.M. Acute myocardial infarction secondary to COVID-19 infection: A case report and review of the literature. Clin. Imaging 2021, 72, 178–182. [Google Scholar] [CrossRef]
- Gozgec, E.; Ogul, H.; Alay, H. Left Ventricular Thrombus in a Patient Infected by COVID-19. Ann. Thorac. Surg. 2021, 111, e67. [Google Scholar] [CrossRef]
- Oates, C.P.; Bienstock, S.W.; Miller, M.; Giustino, G.; Danilov, T.; Kukar, N.; Kocovic, N.; Sperling, D.; Singh, R.; Benhuri, D.; et al. Using Clinical and Echocardiographic Characteristics to Characterize the Risk of Ischemic Stroke in Patients with COVID-19. J. Stroke Cerebrovasc. Dis. 2022, 31, 106217. [Google Scholar] [CrossRef]
- Schroder, J.; Lund, M.A.V.; Vejlstrup, N.; Juul, K.; Nygaard, U. Left ventricular thrombus in multisystem inflammatory syndrome in children associated with COVID-19. Cardiol. Young 2022, 32, 138–141. [Google Scholar] [CrossRef]
- Barfuss, S.B.; Truong, D.T.; James, K.E.; Inman, C.J.; Husain, S.A.; Williams, R.V.; Minich, L.L.; Mart, C.R. Left ventricular thrombus in the multisystem inflammatory syndrome in children associated with COVID-19. Ann. Pediatr. Cardiol. 2022, 15, 90–93. [Google Scholar] [CrossRef] [PubMed]
- Jariwala, P.; Punjani, A.; Boorugu, H.; Reddy, M.A. Left ventricular thrombus in patients with COVID-19—A case series. J. Pract. Cardiovasc. Sci. 2021, 7, 69–75. [Google Scholar] [CrossRef]
- Lazaro-Garcia, A.; Martinez-Alfonzo, I.; Vidal-Laso, R.; Velasco-Rodriguez, D.; Tomas-Mallebrera, M.; Gonzalez-Rodriguez, M.; Llamas-Sillero, P. A journey through anticoagulant therapies in the treatment of left ventricular thrombus in post-COVID-19 heparin-induced thrombocytopenia: A case report. Hematology 2022, 27, 318–321. [Google Scholar] [CrossRef]
- Muhammadzai, H.Z.U.; Rosal, N.; Cheema, M.A.; Haas, D. Left ventricular outflow tract thrombus in a patient with COVID-19-a ticking time bomb: A case report. Eur. Heart J. Case Rep. 2022, 6, ytac191. [Google Scholar] [CrossRef]
- Zibaeenezhad, M.J.; Moaref, A.; Abtahi, F.; Moghadami, M.; Johari, M.K.; Ardekani, A.; Keshavarz, M. Left ventricular thrombosis and endogenous endophthalmitis in the setting of COVID-19: A case report. Clin. Case Rep. 2022, 10, e05821. [Google Scholar] [CrossRef] [PubMed]
- Karikalan, S.; Sharma, M.; Chandna, M.; Sachdev, M.; Gaalla, A.; Yasmin, F.; Shah, R.; Ratnani, I.; Surani, S. Intracardiac Thrombus in Coronavirus Disease-2019. Cureus 2022, 14, e22883. [Google Scholar] [CrossRef] [PubMed]
- Leow, A.S.; Sia, C.H.; Tan, B.Y.; Loh, J.P. A meta-summary of case reports of non-vitamin K antagonist oral anticoagulant use in patients with left ventricular thrombus. J. Thromb. Thrombolysis 2018, 46, 68–73. [Google Scholar] [CrossRef]
- Turgay Yildirim, O.; Aksit, E.; Aydin, F.; Huseyinoglu Aydin, A. Efficacy of direct oral anticoagulants on left ventricular thrombus. Blood Coagul. Fibrinolysis 2019, 30, 96–103. [Google Scholar] [CrossRef]
- Daher, J.; Da Costa, A.; Hilaire, C.; Ferreira, T.; Pierrard, R.; Guichard, J.B.; Romeyer, C.; Isaaz, K. Management of Left Ventricular Thrombi with Direct Oral Anticoagulants: Retrospective Comparative Study with Vitamin K Antagonists. Clin. Drug Investig. 2020, 40, 343–353. [Google Scholar] [CrossRef]
- Iqbal, H.; Straw, S.; Craven, T.P.; Stirling, K.; Wheatcroft, S.B.; Witte, K.K. Direct oral anticoagulants compared to vitamin K antagonist for the management of left ventricular thrombus. ESC Heart Fail. 2020, 7, 2032–2041. [Google Scholar] [CrossRef]
- Zhang, Q.; Zhang, Z.; Zheng, H.; Qu, M.; Li, S.; Yang, P.; Si, D.; Zhang, W. Rivaroxaban in heart failure patients with left ventricular thrombus: A retrospective study. Front. Pharmacol. 2022, 13, 1008031. [Google Scholar] [CrossRef]
- Tomasoni, D.; Sciatti, E.; Bonelli, A.; Vizzardi, E.; Metra, M. Direct Oral Anticoagulants for the Treatment of Left Ventricular Thrombus-A New Indication? A Meta-Summary of Case Reports. J. Cardiovasc. Pharmacol. 2020, 75, 530–534. [Google Scholar] [CrossRef]
- Abdelnabi, M.; Saleh, Y.; Fareed, A.; Nossikof, A.; Wang, L.; Morsi, M.; Eshak, N.; Abdelkarim, O.; Badran, H.; Almaghraby, A. Comparative Study of Oral Anticoagulation in Left Ventricular Thrombi (No-LVT Trial). J. Am. Coll. Cardiol. 2021, 77, 1590–1592. [Google Scholar] [CrossRef] [PubMed]
- Alcalai, R.; Butnaru, A.; Moravsky, G.; Yagel, O.; Rashad, R.; Ibrahimli, M.; Planer, D.; Amir, O.; Elbaz-Greener, G.; Leibowitz, D. Apixaban vs. warfarin in patients with left ventricular thrombus: A prospective multicentre randomized clinical trialdouble dagger. Eur. Heart J. Cardiovasc. Pharmacother. 2022, 8, 660–667. [Google Scholar] [CrossRef] [PubMed]
- Haniff, W.I.W.Y.; Niny, H.; Khairuddin, M.Y.A.; Zurkurnai, Y.; Seng, L.N.; Nadiah, W.A.; Nyi, N.N. Apixaban versus Warfarin in Patients with Left Ventricular Thrombus: A Pilot Prospective Randomized Outcome Blinded Study Investigating Size Reduction or Resolution of Left Ventricular Thrombus. J. Clin. Prev. Cardiol. 2020, 9, 150–154. [Google Scholar] [CrossRef]
- Cochran, J.M.; Jia, X.; Kaczmarek, J.; Staggers, K.A.; Rifai, M.A.; Hamzeh, I.R.; Birnbaum, Y. Direct Oral Anticoagulants in the Treatment of Left Ventricular Thrombus: A Retrospective, Multicenter Study and Meta-Analysis of Existing Data. J. Cardiovasc. Pharmacol. Ther. 2021, 26, 173–178. [Google Scholar] [CrossRef] [PubMed]
- Herald, J.; Goitia, J.; Duan, L.; Chen, A.; Lee, M.S. Safety and Effectiveness of Direct Oral Anticoagulants Versus Warfarin for Treating Left Ventricular Thrombus. Am. J. Cardiovasc. Drugs 2022, 22, 437–444. [Google Scholar] [CrossRef] [PubMed]
- Maniwa, N.; Fujino, M.; Nakai, M.; Nishimura, K.; Miyamoto, Y.; Kataoka, Y.; Asaumi, Y.; Tahara, Y.; Nakanishi, M.; Anzai, T.; et al. Anticoagulation combined with antiplatelet therapy in patients with left ventricular thrombus after first acute myocardial infarction. Eur. Heart J. 2018, 39, 201–208. [Google Scholar] [CrossRef] [Green Version]
- Carnicelli, A.P.; Hong, H.; Connolly, S.J.; Eikelboom, J.; Giugliano, R.P.; Morrow, D.A.; Patel, M.R.; Wallentin, L.; Alexander, J.H.; Cecilia Bahit, M.; et al. Direct Oral Anticoagulants Versus Warfarin in Patients With Atrial Fibrillation: Patient-Level Network Meta-Analyses of Randomized Clinical Trials With Interaction Testing by Age and Sex. Circulation 2022, 145, 242–255. [Google Scholar] [CrossRef]
- Yeh, C.H.; Fredenburgh, J.C.; Weitz, J.I. Oral direct factor Xa inhibitors. Circ. Res. 2012, 111, 1069–1078. [Google Scholar] [CrossRef] [Green Version]
- Flierl, U.; Fraccarollo, D.; Micka, J.; Bauersachs, J.; Schafer, A. The direct factor Xa inhibitor Rivaroxaban reduces platelet activation in congestive heart failure. Pharmacol. Res. 2013, 74, 49–55. [Google Scholar] [CrossRef] [PubMed]
- Varin, R.; Mirshahi, S.; Mirshahi, P.; Klein, C.; Jamshedov, J.; Chidiac, J.; Perzborn, E.; Mirshahi, M.; Soria, C.; Soria, J. Whole blood clots are more resistant to lysis than plasma clots--greater efficacy of rivaroxaban. Thromb. Res. 2013, 131, e100–e109. [Google Scholar] [CrossRef] [PubMed]
- Spinthakis, N.; Gue, Y.; Farag, M.; Srinivasan, M.; Wellsted, D.; Arachchillage, D.R.J.; Lip, G.Y.H.; Gorog, D.A. Apixaban enhances endogenous fibrinolysis in patients with atrial fibrillation. Europace 2019, 21, 1297–1306. [Google Scholar] [CrossRef] [PubMed]
- Sanda, T.; Yoshimura, M.; Hyodo, K.; Ishii, H.; Yamashita, T. Effects of Long-term Thrombin Inhibition (Dabigatran Etexilate) on Spontaneous Thrombolytic Activity during the Progression of Atherosclerosis in ApoE(−/−)-LDLR(−/−) Double-Knockout Mice. Korean Circ. J. 2020, 50, 804–816. [Google Scholar] [CrossRef] [PubMed]
- Levi, M.; van der Poll, T.; Buller, H.R. Bidirectional relation between inflammation and coagulation. Circulation 2004, 109, 2698–2704. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shi, C.; Wang, C.; Wang, H.; Yang, C.; Cai, F.; Zeng, F.; Cheng, F.; Liu, Y.; Zhou, T.; Deng, B.; et al. The Potential of Low Molecular Weight Heparin to Mitigate Cytokine Storm in Severe COVID-19 Patients: A Retrospective Cohort Study. Clin. Transl. Sci. 2020, 13, 1087–1095. [Google Scholar] [CrossRef]
- Candido, S.; Lumera, G.; Barcellona, G.; Vetri, D.; Tumino, E.; Platania, I.; Frazzetto, E.; Privitera, G.; Incognito, C.; Gaudio, A.; et al. Direct oral anticoagulant treatment of deep vein thrombosis reduces IL-6 expression in peripheral mono-nuclear blood cells. Exp. Ther. Med. 2020, 20, 237. [Google Scholar] [CrossRef]
- Jeraj, L.; Jezovnik, M.K.; Poredos, P. Rivaroxaban versus warfarin in the prevention of post-thrombotic syndrome. Thromb. Res. 2017, 157, 46–48. [Google Scholar] [CrossRef]
- Torramade-Moix, S.; Palomo, M.; Vera, M.; Jerez, D.; Moreno-Castano, A.B.; Zafar, M.U.; Rovira, J.; Diekmann, F.; Garcia-Pagan, J.C.; Escolar, G.; et al. Apixaban Downregulates Endothelial Inflammatory and Prothrombotic Phenotype in an In Vitro Model of Endothelial Dysfunction in Uremia. Cardiovasc. Drugs Ther. 2021, 35, 521–532. [Google Scholar] [CrossRef]
- Lattuca, B.; Bouziri, N.; Kerneis, M.; Portal, J.J.; Zhou, J.; Hauguel-Moreau, M.; Mameri, A.; Zeitouni, M.; Guedeney, P.; Hammoudi, N.; et al. Antithrombotic Therapy for Patients With Left Ventricular Mural Thrombus. J. Am. Coll. Cardiol. 2020, 75, 1676–1685. [Google Scholar] [CrossRef]
- Ali, Z.; Isom, N.; Dalia, T.; Sami, F.; Mahmood, U.; Shah, Z.; Gupta, K. Direct oral anticoagulant use in left ventricular thrombus. Thromb. J. 2020, 18, 29. [Google Scholar] [CrossRef] [PubMed]
- Guddeti, R.R.; Anwar, M.; Walters, R.W.; Apala, D.; Pajjuru, V.; Kousa, O.; Gujjula, N.R.; Alla, V.M. Treatment of Left Ventricular Thrombus With Direct Oral Anticoagulants: A Retrospective Observational Study. Am. J. Med. 2020, 133, 1488–1491. [Google Scholar] [CrossRef] [PubMed]
- Robinson, A.A.; Trankle, C.R.; Eubanks, G.; Schumann, C.; Thompson, P.; Wallace, R.L.; Gottiparthi, S.; Ruth, B.; Kramer, C.M.; Salerno, M.; et al. Off-label Use of Direct Oral Anticoagulants Compared With Warfarin for Left Ventricular Thrombi. JAMA Cardiol. 2020, 5, 685–692. [Google Scholar] [CrossRef] [PubMed]
- Bass, M.E.; Kiser, T.H.; Page, R.L., 2nd; McIlvennan, C.K.; Allen, L.A.; Wright, G.; Shakowski, C. Comparative effectiveness of direct oral anticoagulants and warfarin for the treatment of left ventricular thrombus. J. Thromb. Thrombolysis 2021, 52, 517–522. [Google Scholar] [CrossRef] [PubMed]
- Iskaros, O.; Marsh, K.; Papadopoulos, J.; Manmadhan, A.; Ahuja, T. Evaluation of Direct Oral Anticoagulants Versus Warfarin for Intracardiac Thromboses. J. Cardiovasc. Pharmacol. 2021, 77, 621–631. [Google Scholar] [CrossRef]
- Willeford, A.; Zhu, W.; Stevens, C.; Thomas, I.C. Direct Oral Anticoagulants Versus Warfarin in the Treatment of Left Ventricular Thrombus. Ann. Pharmacother. 2021, 55, 839–845. [Google Scholar] [CrossRef]
- Xu, Z.; Li, X.; Li, X.; Gao, Y.; Mi, X. Direct oral anticoagulants versus vitamin K antagonists for patients with left ventricular thrombus. Ann. Palliat. Med. 2021, 10, 9427–9434. [Google Scholar] [CrossRef]
- Zhang, Z.; Si, D.; Zhang, Q.; Qu, M.; Yu, M.; Jiang, Z.; Li, D.; Yang, P.; Zhang, W. Rivaroxaban versus Vitamin K Antagonists (warfarin) based on the triple therapy for left ventricular thrombus after ST-Elevation myocardial infarction. Heart Vessel. 2022, 37, 374–384. [Google Scholar] [CrossRef]
- Huang, L.Y.; Chang, T.H.; Wu, C.H.; Tsai, T.N. Warfarin-resistant left ventricular thrombus completely dissolved by rivaroxaban. Br. J. Hosp Med. 2018, 79, 648–649. [Google Scholar] [CrossRef] [PubMed]
- Adar, A.; Onalan, O.; Cakan, F. Newly developed left ventricular apical thrombus under dabigatran treatment. Blood Coagul. Fibrinolysis 2018, 29, 126–128. [Google Scholar] [CrossRef]
- Kajy, M.; Shokr, M.; Ramappa, P. Use of Direct Oral Anticoagulants in the Treatment of Left Ventricular Thrombus: Systematic Review of Current Literature. Am. J. Ther. 2020, 27, e584–e590. [Google Scholar] [CrossRef] [PubMed]
Author, Year | Sex, Age (Year) | Substrate | Antithrombotic Treatment | Thrombus Location and Size | Thrombus Outcome | Method of Confirming the Resolution of the Thrombus |
---|---|---|---|---|---|---|
Kaku et al., 2013 [64] | M, 59 y | Mid-ventricular obstructive hypertrophic cardiomyopathy and apical aneurysm, VT, ICD | Dabigatran 150 mg bid | 15 mm × 17 mm | Thrombus resolution at 3-week follow-up, thrombus absent at 4-week follow-up | TTE |
Kolekar et al., 2015 [51] | M, 61 y | Dilated phase of hypertrophic cardiomyopathy, AF, VT, HF, stroke, -CrCl = 71.31 mL/min | Dabigatran 110 mg bid | 23 mm × 11.6 mm | Thrombus resolution at 1-month follow-up | TTE |
Kaya et al., 2016 [50] | F, 60 y | Hypertrophic cardiomyopathy, AF, left atrium appendage thrombus, TIA, HF, LVEF 30% | Apixaban 5 mg bid | 30 mm × 20 mm | Thrombus resolution at 1-month follow-up | TTE |
Hamada, 2019 [54] | NR, 78 y | Hypertrophic cardiomyopathy, apical aneurysm | Apixaban | NR | Thrombus resolution | NR |
Author, Year | Sex, Age | Substrate | Antithrombotic Treatment | Thrombus Location and Size | Thrombus Outcome | Method of Confirming the Resolution of the Thrombus |
---|---|---|---|---|---|---|
Farouji et al., 2020 [93] | M, 60 y | HFrEF, LV hypertrophy | Enoxaparin 1 mg/kg bid, 7 days, then Apixaban 10 mg bid, 7 days, then 5 mg bid | LV thrombus of 30 mm × 30 mm | Reduction in size to 10 mm × 10 mm at 6-week follow-up | Recommendation of anticoagulation for 6 months, then TTE reevaluation |
Jariwala et al., 2021 [102] | M, 67 y | STEMI, small LV apical aneurysm, LVEF = 33%, DM | DAPT and Enoxaparin 1 mg/kg, bid, 7 days, then Dabigatran 150 mg bid | Apical, 40 mm × 33 mm | Resolution at 30-day follow-up | TTE |
M, 45 y | AMI, LVEF = 40%, small LV apical aneurysm, de novo DM | DAPT and Enoxaparin 1 mg/kg bid, then Apixaban 2.5 mg bid | Apical, 30 mm × 18 mm | Resolution at 30-day follow-up | NR | |
Karikalan et al., 2022 [106] | F, 43 y | HF, LVEF = 25%, HTN, DM, stroke | Antiplatelets, Heparin during hospital stay, then DOAC | Mural thrombus, 18 mm | Reduction in size to 15 mm at 1-month follow-up | TTE |
Zibaeenezhad et al., 2022 [105] | M, 66 y | HTN, normal LVEF, without regional wall motion abnormality | Enoxaparin, then Apixaban 5 mg bid | 19 mm × 11 mm attached to anterolateral papillary muscles | Reduction in size at 10-day follow-up | TTE |
Author, Year | Number of Patients on Anticoagulant Treatment | Main Outcomes DOACs vs. Warfarin | ||||
---|---|---|---|---|---|---|
A | D | E | R | W | ||
Cohort studies | ||||||
Ali, 2020 [131] | 13 | 1 | - | 18 | 60 | Rate of thrombus resolution (p = 0.85) Stroke (p = 0.33) |
Cochran, 2020 [116] | Total of 14 | 59 | Rate of thrombus resolution (p = 0.499) Stroke (p = 0.189) Bleeding (p = 1) | |||
Daher, 2020 [109] | 12 | 1 | - | 4 | 42 | Thrombus resolution (p = 0.9) Stroke or systemic embolism (p = 0.8) |
Guddeti, 2020 [132] | 15 | 2 | - | 2 | 80 | Thrombus resolution (p = 0.9) Stroke (p = 0.49) Bleeding (p = 0.96) |
Iqbal, 2020 [110] | 8 | 1 | - | 13 | 62 | Thrombus resolution (p = 0.33) Stroke (p = 0.55) Systemic embolism (p = 0.55) Clinically significant bleeding (p = 0.13) |
Robinson, 2020 [133] | 141 | 9 | - | 46 | 300 | Thrombus resolution (p = 0.64) Risk of stroke or systemic embolism was higher with DOACs vs. warfarin (p = 0.01) |
Bass, 2021 [134] | 79 | 29 | - | 77 | 769 | New onset thromboembolic stroke (p = 0.13) Stroke or systemic embolism (p = 0.53) Bleeding (p = 0.40) |
Iskaros, 2021 [135] | Total of 61 | 62 | Thrombus resolution (p = 0.298) Shorter time to thrombus resolution with DOACs vs. warfarin (p = 0.003) Stroke or systemic embolism or bleeding (p = 0.213) | |||
Jones, 2021 [21] | 15 | - | 2 | 24 | 60 | Greater and earlier LV thrombus resolution with DOAC vs. warfarin at 1 year (p = 0.0018) Major bleeding (p = 0.030) Systemic embolism (p = 0.388) |
Willeford 2021 [136] | 4 | - | - | 18 | 129 | Thrombus resolution (p = 0.37) Stroke or systemic embolism (p = 0.37) Composite outcome (thrombus persistence, stroke, or systemic embolism) (p = 0.25) Bleeding (p = 1) |
Xu, 2021 [137] | - | 9 | - | 16 | 62 | Thrombus resolution (p = 0.057) Stroke (p = 0.158) Systemic embolism (p = 0.906) Bleeding (p = 0.858) |
Zhang, 2022 [138] | - | - | - | 33 | 31 | Thrombus resolution (p = 0.096) Quicker resolution with DOAC vs. warfarin (p = 0.049 at 6 months; p = 0.044 at 12 months; p = 0.045 at 18 months) Systemic embolism (p = 0.305) Bleeding (p = 0.444) |
Randomized clinical trials | ||||||
Abdelnabi, 2021 [113] | - | - | - | 39 | 40 | Stroke (p = 0.08) Systemic embolism (p = 0.25) Bleeding (p = 0.11) |
Haniff 2021 [115] | 14 | - | - | - | 13 | Reduction in thrombus size (p = 0.816) Similar safety outcomes |
Alcalai, 2022 [114] | 18 | - | - | - | 17 | Thrombus resolution (p = 0.026 for non-inferiority) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Badescu, M.C.; Sorodoc, V.; Lionte, C.; Ouatu, A.; Haliga, R.E.; Costache, A.D.; Buliga-Finis, O.N.; Simon, I.; Sorodoc, L.; Costache, I.-I.; et al. Direct Oral Anticoagulants for Stroke and Systemic Embolism Prevention in Patients with Left Ventricular Thrombus. J. Pers. Med. 2023, 13, 158. https://doi.org/10.3390/jpm13010158
Badescu MC, Sorodoc V, Lionte C, Ouatu A, Haliga RE, Costache AD, Buliga-Finis ON, Simon I, Sorodoc L, Costache I-I, et al. Direct Oral Anticoagulants for Stroke and Systemic Embolism Prevention in Patients with Left Ventricular Thrombus. Journal of Personalized Medicine. 2023; 13(1):158. https://doi.org/10.3390/jpm13010158
Chicago/Turabian StyleBadescu, Minerva Codruta, Victorita Sorodoc, Catalina Lionte, Anca Ouatu, Raluca Ecaterina Haliga, Alexandru Dan Costache, Oana Nicoleta Buliga-Finis, Ioan Simon, Laurentiu Sorodoc, Irina-Iuliana Costache, and et al. 2023. "Direct Oral Anticoagulants for Stroke and Systemic Embolism Prevention in Patients with Left Ventricular Thrombus" Journal of Personalized Medicine 13, no. 1: 158. https://doi.org/10.3390/jpm13010158
APA StyleBadescu, M. C., Sorodoc, V., Lionte, C., Ouatu, A., Haliga, R. E., Costache, A. D., Buliga-Finis, O. N., Simon, I., Sorodoc, L., Costache, I.-I., & Rezus, C. (2023). Direct Oral Anticoagulants for Stroke and Systemic Embolism Prevention in Patients with Left Ventricular Thrombus. Journal of Personalized Medicine, 13(1), 158. https://doi.org/10.3390/jpm13010158