Comparison between Laparoscopic and Robotic Approach for Sentinel Lymph Node Biopsy in Endometrial Carcinoma Women
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Protocol and Reporting
2.2. Search Strategy and Study Selection
2.3. Risk of Bias within Studies Evaluation
2.4. Data Extraction
2.5. Data Synthesis
3. Results
3.1. Study Selection and Characteristics
3.2. Risk of Bias within Studies Assessment
- -
- “Endpoints” (unclear risk) and “Follow-up” (high risk) because they did not assess intraoperative and postoperative complications with related necessary follow-up.
- -
- “Loss to follow-up” (unclear risk) because patients lost to follow-up were more than 5% of the whole study population.
3.3. Data Synthesis
- 1.80 [95%CI: 0.35, 9.17] for overall detection (Figure 3);
- 1.12 [95%CI: 0.56, 2.23] for bilateral detection (Figure 4);
- 1.12 [95%CI: 0.45, 1.67] for unilateral detection (Figure 5);
- 1.22 [95%CI: 0.75, 1.96] for number of dissected SLN: 1 (Figure 6);
- 1.06 [95%CI: 0.76, 1.48] for number of dissected SLN: 2 (Figure 7);
- 0.99 [95%CI: 0.65, 1.51] for number of dissected SLN: 4 (Figure 8);
- 1.85 [95%CI: 0.17, 20.47] for number of dissected SLN: 6 (Figure 9);
- 0.92 [95%CI: 0.18, 4.59] for intraoperative complications (Figure 10);
- 0.37 [95%CI: 0.13, 1.07] for postoperative complications (Figure 11);
- 3.76 [95%CI: 0.79, 17.85] for conversion to laparotomy (Figure 12).
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2020. CA Cancer J Clin. 2020, 70, 7–30. [Google Scholar] [CrossRef] [PubMed]
- Raffone, A.; Raimondo, D.; Raspollini, A.; Oliviero, A.; Travaglino, A.; Santoro, A.; Renzulli, F.; Lopez, G.; Maio, C.M.D.; Casadio, P.; et al. Accuracy of cytological examination of Tao brush endometrial sampling in diagnosing endometrial premalignancy and malignancy. Int. J. Gynaecol. Obstet. 2022, 159, 615–621. [Google Scholar] [CrossRef] [PubMed]
- Raffone, A.; Travaglino, A.; Santoro, A.; Esposito, I.; Angelico, G.; Spadola, S.; Zannoni, G.F. Accuracy of One-Step Nucleic Acid Amplification in Detecting Lymph Node Metastases in Endometrial Cancer. Pathol. Oncol. Res. 2020, 26, 2049–2056. [Google Scholar] [CrossRef] [PubMed]
- Santoro, A.; Angelico, G.; Travaglino, A.; Inzani, F.; Arciuolo, D.; Valente, M.; D’Alessandris, N.; Scaglione, G.; Fiorentino, V.; Raffone, A.; et al. New Pathological and Clinical Insights in Endometrial Cancer in View of the Updated ESGO/ESTRO/ESP Guidelines. Cancers 2021, 13, 2623. [Google Scholar] [CrossRef]
- Raffone, A.; Travaglino, A.; Cerbone, M.; Gencarelli, A.; Mollo, A.; Insabato, L.; Zullo, F. Diagnostic Accuracy of Immunohistochemistry for Mismatch Repair Proteins as Surrogate of Microsatellite Instability Molecular Testing in Endometrial Cancer. Pathol. Oncol. Res. 2020, 26, 1417–1427. [Google Scholar] [CrossRef]
- National Comprehensive Cancer Network® (NCCN) Clinical Practice Guidelines in Oncology, Uterine Neoplasms. Version 3. 2021. Available online: https://www.Nccn.Org/Professionals/Physician_gls/Pdf/Uterine.Pdf (accessed on 28 September 2022).
- ASTEC Study Group; Kitchener, H.; Swart, A.M.; Qian, Q.; Amos, C.; Parmar, M.K. Efficacy of systematic pelvic lymphadenectomy in endometrial cancer (MRC ASTEC trial): A randomised study. Lancet 2009, 373, 125–136, Erratum in Lancet 2009, 373, 1764. [Google Scholar] [CrossRef] [Green Version]
- Geppert, B.; Lönnerfors, C.; Bollino, M.; Persson, J. Sentinel lymph node biopsy in endometrial cancer-Feasibility, safety and lymphatic complications. Gynecol. Oncol. 2018, 148, 491–498. [Google Scholar] [CrossRef]
- Raffone, A.; Raimondo, D.; Travaglino, A.; Rovero, G.; Maletta, M.; Raimondo, I.; Petrillo, M.; Capobianco, G.; Casadio, P.; Seracchioli, R.; et al. Sentinel Lymph Node Biopsy in Surgical Staging for High-Risk Groups of Endometrial Carcinoma Patients. Int. J. Environ. Res. Public Health 2022, 19, 3716. [Google Scholar] [CrossRef]
- Janda, M.; Gebski, V.; Brand, A.; Hogg, R.; Jobling, T.W.; Land, R.; Manolitsas, T.; McCartney, A.; Nascimento, M.; Neesham, D.; et al. Quality of life after total laparoscopic hysterectomy versus total abdominal hysterectomy for stage I endometrial cancer (LACE): A randomised trial. Lancet Oncol. 2010, 11, 772–780. [Google Scholar] [CrossRef] [Green Version]
- Walker, J.L.; Piedmonte, M.R.; Spirtos, N.M.; Eisenkop, S.M.; Schlaerth, J.B.; Mannel, R.S.; Spiegel, G.; Barakat, R.; Pearl, M.L.; Sharma, S.K. Laparoscopy compared with laparotomy for comprehensive surgical staging of uterine cancer: Gynecologic Oncology Group Study LAP2. J. Clin. Oncol. 2009, 27, 5331–5336. [Google Scholar] [CrossRef]
- Herron, D.M.; Marohn, M.; SAGES-MIRA Robotic Surgery Consensus Group. A consensus document on robotic surgery. Surg. Endosc. 2008, 22, 313–325; discussion 311–312. [Google Scholar] [CrossRef] [PubMed]
- Mendivil, A.; Holloway, R.W.; Boggess, J.F. Emergence of robotic assisted surgery in gynecologic oncology: American perspective. Gynecol. Oncol. 2009, 114 (Suppl. 2), S24–S31. [Google Scholar] [CrossRef] [PubMed]
- Nezhat, C.; Lavie, O.; Hsu, S.; Watson, J.; Barnett, O.; Lemyre, M. Robotic-assisted laparoscopic myomectomy compared with standard laparoscopic myomectomy—A retrospective matched control study. Fertil. Steril. 2009, 91, 556–559. [Google Scholar] [CrossRef] [PubMed]
- Barakat, E.E.; Bedaiwy, M.A.; Zimberg, S.; Nutter, B.; Nosseir, M.; Falcone, T. Robotic-assisted, laparoscopic, and abdominal myomectomy: A comparison of surgical outcomes. Obstet Gynecol. 2011, 117 Pt 1, 256–266. [Google Scholar] [CrossRef] [Green Version]
- Gargiulo, A.R.; Srouji, S.S.; Missmer, S.A.; Correia, K.F.; Vellinga, T.T.; Einarsson, J.I. Robot-assisted laparoscopic myomectomy compared with standard laparoscopic myomectomy. Obstet. Gynecol. 2012, 120 Pt 1, 284–291, Erratum in Obstet. Gynecol. 2012, 120, 1214; Erratum in Obstet. Gynecol. 2013, 122, 698. [Google Scholar] [CrossRef]
- Gobern, J.M.; Rosemeyer, C.J.; Barter, J.F.; Steren, A.J. Comparison of robotic, laparoscopic, and abdominal myomectomy in a community hospital. JSLS 2013, 17, 116–120. [Google Scholar] [CrossRef] [Green Version]
- Hsiao, S.M.; Lin, H.H.; Peng, F.S.; Jen, P.J.; Hsiao, C.F.; Tu, F.C. Comparison of robot-assisted laparoscopic myomectomy and traditional laparoscopic myomectomy. J. Obstet. Gynaecol. Res. 2013, 39, 1024–1029. [Google Scholar] [CrossRef]
- Cusimano, M.C.; Simpson, A.N.; Dossa, F.; Liani, V.; Kaur, Y.; Acuna, S.A.; Robertson, D.; Satkunaratnam, A.; Bernardini, M.Q.; Ferguson, S.E.; et al. Laparoscopic and robotic hysterectomy in endometrial cancer patients with obesity: A systematic review and meta-analysis of conversions and complications. Am. J. Obstet. Gynecol. 2019, 221, 410–428.e19. [Google Scholar] [CrossRef]
- Raventós-Tato, R.M.; de la Torre-Fernández de Vega, J.; Sánchez-Iglesias, J.L.; Díaz-Feijoó, B.; Sabadell, J.; Pérez-Benavente, M.A.; Gil-Moreno, A. Surgical approaches in women with endometrial cancer with a body mass index greater than 35 kg/m2. J. Obstet. Gynaecol. Res. 2019, 45, 195–202. [Google Scholar] [CrossRef] [Green Version]
- Shafa, A.; Kumar, A.; Torres, D.; McKenzie, T.J. Minimally Invasive Hysterectomy and Bariatric Surgery to Improve Endometrial Cancer Survivorship. Obstet. Gynecol. 2019, 134, 570–572. [Google Scholar] [CrossRef]
- Leitao, M.M.; Narain, W.R.; Boccamazzo, D.; Sioulas, V.; Cassella, D.; Ducie, J.A.; Eriksson, A.G.; Sonoda, Y.; Chi, D.S.; Brown, C.L.; et al. Impact of Robotic Platforms on Surgical Approach and Costs in the Management of Morbidly Obese Patients with Newly Diagnosed Uterine Cancer. Ann. Surg. Oncol. 2016, 23, 2192–2198. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Corrado, G.; Vizza, E.; Cela, V.; Mereu, L.; Bogliolo, S.; Legge, F.; Ciccarone, F.; Mancini, E.; Gallotta, V.; Baiocco, E.; et al. Laparoscopic versus robotic hysterectomy in obese and extremely obese patients with endometrial cancer: A multiinstitutional analysis. Eur. J. Surg. Oncol. 2018, 44, 1935–1941. [Google Scholar] [CrossRef] [PubMed]
- Chaowawanit, W.; Campbell, V.; Wilson, E.; Chetty, N.; Perrin, L.; Jagasia, N.; Barry, S. Comparison between laparoscopic and robotic surgery for sentinel lymph node mapping in endometrial cancer using indocyanine green and near infra-red fluorescence imaging. J. Obstet. Gynaecol. 2021, 41, 642–646. [Google Scholar] [CrossRef] [PubMed]
- Bizzarri, N.; Restaino, S.; Gueli Alletti, S.; Monterossi, G.; Gioè, A.; La Fera, E.; Gallotta, V.; Fagotti, A.; Scambia, G.; Fanfani, F. Sentinel lymph node detection in endometrial cancer with indocyanine green: Laparoscopic versus robotic approach. Facts Views Vis. ObGyn 2021, 13, 15–25. [Google Scholar] [CrossRef] [PubMed]
- Moher, D.; Shamseer, L.; Clarke, M.; Ghersi, D.; Liberati, A.; Petticrew, M.; Shekelle, P.; Stewart, L.A.; PRISMA-P Group. Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015 statement. Syst. Rev. 2015, 4, 1. [Google Scholar] [CrossRef] [Green Version]
- Slim, K.; Nini, E.; Forestier, D.; Kwiatkowski, F.; Panis, Y.; Chipponi, J. Methodological index for non-randomized studies (minors): Development and validation of a new instrument. ANZ J. Surg. 2003, 73, 712–716. [Google Scholar] [CrossRef]
- Raffone, A.; Travaglino, A.; Saccone, G.; D’Alessandro, P.; Arduino, B.; Mascolo, M.; De Placido, G.; Insabato, L.; Zullo, F. Diabetes Mellitus Is Associated with Occult Cancer in Endometrial Hyperplasia. Pathol. Oncol. Res. 2020, 26, 1377–1384. [Google Scholar] [CrossRef]
- Travaglino, A.; Raffone, A.; Saccone, G.; D’Alessandro, P.; Arduino, B.; de Placido, G.; Mascolo, M.; Insabato, L.; Zullo, F. Significant risk of occult cancer in complex non atypical endometrial hyperplasia. Arch. Gynecol. Obstet. 2019, 300, 1147–1154. [Google Scholar] [CrossRef]
- Travaglino, A.; Raffone, A.; Saccone, G.; Mascolo, M.; Guida, M.; Mollo, A.; Insabato, L.; Zullo, F. Congruence Between 1994 WHO Classification of Endometrial Hyperplasia and Endometrial Intraepithelial Neoplasia System. Am. J. Clin. Pathol. 2020, 153, 40–48. [Google Scholar] [CrossRef]
- Reynolds, R.K.; Advincula, A.P. Robot-assisted laparoscopic hysterectomy: Technique and initial experience. Am. J. Surg. 2006, 191, 555–560. [Google Scholar] [CrossRef]
- Avondstondt, A.M.; Wallenstein, M.; D’Adamo, C.R.; Ehsanipoor, R.M. Change in cost after 5 years of experience with robotic-assisted hysterectomy for the treatment of endometrial cancer. J. Robot. Surg. 2018, 12, 93–96. [Google Scholar] [CrossRef] [PubMed]
- O’Malley, D.M.; Smith, B.; Fowler, J.M. The role of robotic surgery in endometrial cancer. J. Surg. Oncol. 2015, 112, 761–768. [Google Scholar] [CrossRef] [PubMed]
- Francis, P. Evolution of robotics in surgery and implementing a perioperative robotics nurse specialist role. AORN J. 2006, 83, 630–642, 644–646, 649–650. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.; Tang, H.; Xie, Z.; Deng, S. Robotic-assisted vs. laparoscopic and abdominal myomectomy for treatment of uterine fibroids: A meta-analysis. Minim. Invasive Ther. Allied Technol. 2018, 27, 249–264. [Google Scholar] [CrossRef] [PubMed]
- Seamon, L.G.; Bryant, S.A.; Rheaume, P.S.; Kimball, K.J.; Huh, W.K.; Fowler, J.M.; Phillips, G.S.; Cohn, D.E. Comprehensive surgical staging for endometrial cancer in obese patients: Comparing robotics and laparotomy. Obstet. Gynecol. 2009, 114, 16–21. [Google Scholar] [CrossRef]
- Capozzi, V.A.; Scarpelli, E.; Armano, G.; Monfardini, L.; Celardo, A.; Munno, G.M.; Fortunato, N.; Vagnetti, P.; Schettino, M.T.; Grassini, G.; et al. Update of Robotic Surgery in Benign Gynecological Pathology: Systematic Review. Medicina 2022, 58, 552. [Google Scholar] [CrossRef]
- Wright, J.D.; Ananth, C.V.; Lewin, S.N.; Burke, W.M.; Lu, Y.S.; Neugut, A.I.; Herzog, T.J.; Hershman, D.L. Robotically assisted vs laparoscopic hysterectomy among women with benign gynecologic disease. JAMA 2013, 309, 689–698. [Google Scholar] [CrossRef]
- Sarlos, D.; Kots, L.; Stevanovic, N.; von Felten, S.; Schär, G. Robotic compared with conventional laparoscopic hysterectomy: A randomized controlled trial. Obstet. Gynecol. 2012, 120, 604–611. [Google Scholar] [CrossRef]
- Lönnerfors, C.; Reynisson, P.; Persson, J. A randomized trial comparing vaginal and laparoscopic hysterectomy vs robot-assisted hysterectomy. J. Minim. Invasive Gynecol. 2015, 22, 78–86. [Google Scholar] [CrossRef]
- Kurt, G.; Guvenc, G.; Dede, M.; Yenen, M.C.; Akyuz, A. Comparison of health-related quality of life of women undergoing robotic surgery, laparoscopic surgery or laparotomy for gynecologic conditions: A cross-sectional study. Int. J. Gynaecol. Obstet. 2022, 159, 583–591. [Google Scholar] [CrossRef]
- Nevis, I.F.; Vali, B.; Higgins, C.; Dhalla, I.; Urbach, D.; Bernardini, M.Q. Robot-assisted hysterectomy for endometrial and cervical cancers: A systematic review. J. Robot. Surg. 2017, 11, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Seamon, L.G.; Cohn, D.E.; Henretta, M.S.; Kim, K.H.; Carlson, M.J.; Phillips, G.S.; Fowler, J.M. Minimally invasive comprehensive surgical staging for endometrial cancer: Robotics or laparoscopy? Gynecol. Oncol. 2009, 113, 36–41. [Google Scholar] [CrossRef] [PubMed]
- Eriksson, A.G.; Montovano, M.; Beavis, A.; Soslow, R.A.; Zhou, Q.; Abu-Rustum, N.R.; Gardner, G.J.; Zivanovic, O.; Barakat, R.R.; Brown, C.L.; et al. Impact of Obesity on Sentinel Lymph Node Mapping in Patients with Newly Diagnosed Uterine Cancer Undergoing Robotic Surgery. Ann. Surg. Oncol. 2016, 23, 2522–2528. [Google Scholar] [CrossRef] [PubMed]
- Concin, N.; Matias-Guiu, X.; Vergote, I.; Cibula, D.; Mirza, M.R.; Marnitz, S.; Ledermann, J.; Bosse, T.; Chargari, C.; Fagotti, A.; et al. ESGO/ESTRO/ESP guidelines for the management of patients with endometrial carcinoma. Int. J. Gynecol. Cancer 2021, 31, 12–39. [Google Scholar] [CrossRef]
Study | Setting | Study Design | Study Period | Sample Size | Laparoscopic Surgery | Robotic Surgery |
---|---|---|---|---|---|---|
2020 Chaowawanit | Mater Hospital, Brisbane, Queensland, Australia | Retrospective, observational, cohort study | January 2017–May 2019 | 111 | 78 | 33 |
2021 Bizzarri | Fondazione Policlinico Agostino Gemelli IRCCS, Rome, Italy | Retrospective, observational, cohort study | January 2015–December 2019 | 549 | 286 | 263 |
Total | 660 | 364 | 296 |
Study | Surgergical Approach | Age [Years] Mean ± SD (Range) | BMI [Kg/m2] Mean ± SD (Range) | Intraoperative Complications n (%) | Post Operative Complications n (%) | Prior Pelvic surgery n (%) | Deep Myometrial Invasion n (%) | FIGO Grade n (%) | FIGO Stage n (%) | Non-Endometrioid Histotype n (%) | LVSI n (%) | Identification Time [min] Mean (Range) | Dissection Time [min] Mean (Range) | Number of Lymph Nodes Median (Range) | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | I | II | III | IV | |||||||||||||
2020 Chaowawanit | Laparoscopic | 62 ± 12 | 32.5 ± 7.1 | nr | nr | 39 (50) | 19 (24.4) | 51 (65.4) | 11 (14.1) | 7 (90) | 68 (87.1) | 1 (1.3) | 8 (10.3) | 1 (1.3) | 9 (11.6) | 16 (20.5) | 36.4 (10–69) | 18.5 (9–32) | 1 (1–4) |
Robotic | 63 ± 11 | 33.4 ± 7.5 | nr | nr | 18 (54.5) | 7 (21.2) | 22 (66.7) | 5 (15.2) | 3 (9.1) | 31 (94.0) | 2 (6.0) | 0 (0) | 0 (0) | 3 (9.1) | 7 (21.2) | 40.9 (18–78) | 15.9 (8–25) | 1 (1–2) | |
2021 Bizzarri | Laparoscopic | 61 (28–88) | 26.0 (16.7–50) | 3 (1.0) | 5 (1.7) | nr | nr | 38 (13.9) | 162 (59.1) | 74 (27.0) | 227 (79.3) | 19 (6.6) | 37 (12.8) | 3 (1.0) | 57 (19.9) | 77 (28) | nr | nr | 2 (1–6) |
Robotic | 64 (25–84) | 34.8 (18.7–64.1) | 3 (1.1) | 12 (4.6) | nr | nr | 21 (8.1) | 190 (73.6) | 47 (18.2) | 204 (77.5) | 20 (7.6) | 37 (21.7) | 2 (0.8) | 35 (13.3) | 76 (31.3) | nr | nr | 2 (1–6) | |
Total | Laparoscopic | 28–88 | 16.7–50 | 3 (1.0) | 5 (1.7) | 39 (50) | 19 (24.4) | 89 (25.9) | 173 (50.5) | 81 (23.6) | 295 (81.0) | 20 (5.5) | 45 (12.4) | 4 (1.1) | 66 (18.1) | 93 (25.5) | 36.4 (10–69) | 18.5 (9–32) | 3 (1–6) |
Robotic | 25–84 | 18.7–64.1 | 3 (1.1) | 12 (4.6) | 18 (54.5) | 7 (21.2) | 43 (14.9) | 195 (67.7) | 50 (17.4) | 235 (79.4) | 22 (7.4) | 37 (12.5) | 2 (0.7) | 38 (12.8) | 83 (28.0) | 40.9 (18–78) | 15.9 (8–25) | 3 (1–6) |
Study | Route of Surgery | ICG Injection | Identification Time [min] Mean (Range) | SLN Robotic Detection n (%) | Site of Mapping of Robotic First SLN n (%) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Concentration [mg/mL] | Dose [mL] | Site | Deepness [mm] | Unilateral | Bilateral | No Detection | External Iliac | Obturator | Internal Iliac | Common Iliac | Parametrial | Infra-mesenteric Para-Aortic | Presacral | |||
2020 Chaowawanit | Laparoscopy | 1.25 | 4 | h 3 and h 9 | 10-4 | 36.1 (10–69) | 11 (3.9) | 65 (83.3) | 2 (2.6) | 81 (57.4) | 31 (22.0) | 9 (6.5) | 16 (11.3) | 1 (0.7) | 2 (1.4) | 1 (0.7) |
Robotic-assisted | 40.9 (18–78) | 5 (4.5) | 24 (72.7) | 4 (3.6) | 37 (69.8) | 7 (13.2) | 1 (1.9) | 8 (15.1) | 0 (0) | 0 (0) | 0 (0) | |||||
2021 Bizzarri | Laparoscopy | 1.25 | 1 | h 3 and h 9 | nr | 10–15 | 56 (22.0) | 198 (78.0) | 32 (11.2) | 297 (55.0) | 181 (33.5) | 34 (6.3) | 18 (3.3) | nr | 4 (0.7) | 6 (1.1) |
Robotic-assisted | 46 (19.6) | 189 (80.4) | 28 (10.6) | 287 (59.9) | 126 (26.3) | 30 (6.3) | 30 (6.3) | nr | 2 (0.4) | 4 (0.8) | ||||||
Total | Laparoscopy | 1.25 | 1-4 | h 3 and h 9 | 10-4 | nr | 67 (18.4) | 263 (72.3) | 34 (9.3) | 378 (55.5) | 212 (31.2) | 43 (6.3) | 34 (5.0) | 1 (0.1) | 6 (0.9) | 7 (1.0) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Raffone, A.; Raimondo, D.; Raspollini, A.; Oliviero, A.; Travaglino, A.; Renzulli, F.; Rovero, G.; Del Forno, S.; Vullo, G.; Laganà, A.S.; et al. Comparison between Laparoscopic and Robotic Approach for Sentinel Lymph Node Biopsy in Endometrial Carcinoma Women. J. Pers. Med. 2023, 13, 29. https://doi.org/10.3390/jpm13010029
Raffone A, Raimondo D, Raspollini A, Oliviero A, Travaglino A, Renzulli F, Rovero G, Del Forno S, Vullo G, Laganà AS, et al. Comparison between Laparoscopic and Robotic Approach for Sentinel Lymph Node Biopsy in Endometrial Carcinoma Women. Journal of Personalized Medicine. 2023; 13(1):29. https://doi.org/10.3390/jpm13010029
Chicago/Turabian StyleRaffone, Antonio, Diego Raimondo, Arianna Raspollini, Alessia Oliviero, Antonio Travaglino, Federica Renzulli, Giulia Rovero, Simona Del Forno, Gabriella Vullo, Antonio Simone Laganà, and et al. 2023. "Comparison between Laparoscopic and Robotic Approach for Sentinel Lymph Node Biopsy in Endometrial Carcinoma Women" Journal of Personalized Medicine 13, no. 1: 29. https://doi.org/10.3390/jpm13010029
APA StyleRaffone, A., Raimondo, D., Raspollini, A., Oliviero, A., Travaglino, A., Renzulli, F., Rovero, G., Del Forno, S., Vullo, G., Laganà, A. S., Chiantera, V., Seracchioli, R., Casadio, P., & Mollo, A. (2023). Comparison between Laparoscopic and Robotic Approach for Sentinel Lymph Node Biopsy in Endometrial Carcinoma Women. Journal of Personalized Medicine, 13(1), 29. https://doi.org/10.3390/jpm13010029