Rare Variants of Obesity-Associated Genes in Young Adults with Abdominal Obesity
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Clinical Examination
2.3. Criteria for Inclusion in Genetic Study
2.4. Blood Chemistry
2.5. DNA Extraction and Target Panel Design
2.6. Bioinformatics Analysis
2.7. Statistical Analyses
3. Results
3.1. Variants in ADIPOQ
3.2. Variants in RETN
3.3. Variants in LEP
3.4. Variants in APLN
3.5. Variants in APLNR
3.6. Variants in ADRB3
3.7. Variants in GCG
3.8. Variants in GIP
3.9. Variants in PPY and PYY
3.10. Variants in SCT
3.11. Variants in NAMPT
3.12. Variants in GHRL
3.13. Variants in INS
3.14. Variants in FTO
3.15. Variants in GLP1R
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Inoue, Y.; Qin, B.; Poti, J.; Sokol, R.; Gordon-Larsen, P. Epidemiology of Obesity in Adults: Latest Trends. Curr. Obes. Rep. 2018, 7, 276–288. [Google Scholar] [CrossRef] [PubMed]
- Singh, R.K.; Kumar, P.; Mahalingam, K. Molecular genetics of human obesity: A comprehensive review. Comptes Rendus Biol. 2017, 340, 87–108. [Google Scholar] [CrossRef]
- Lin, X.; Li, H. Obesity: Epidemiology, Pathophysiology, and Therapeutics. Front. Endocrinol. 2021, 12, 706978. [Google Scholar] [CrossRef] [PubMed]
- Hurtado, A.M.D.; Acosta, A. Precision Medicine and Obesity. Gastroenterol. Clin. N. Am. 2021, 50, 127–139. [Google Scholar] [CrossRef] [PubMed]
- Hebebrand, J.; Hinney, A.; Knoll, N.; Volckmar, A.-L.; Scherag, A. Molecular Genetic Aspects of Weight Regulation. Dtsch. Arztebl. Int. 2013, 110, 338–344. [Google Scholar] [CrossRef] [PubMed]
- Muñoz, C.; Garcia-Vargas, G.G.; Morales, R.P. Monogenic, Polygenic and Multifactorial Obesity in Children: Genetic and Environmental Factor. Austin J. Nutr. Metab. 2017, 4, 1052. [Google Scholar]
- Mahmoud, R.; Kimonis, V.; Butler, M.G. Genetics of Obesity in Humans: A Clinical Review. Int. J. Mol. Sci. 2022, 23, 11005. [Google Scholar] [CrossRef] [PubMed]
- Littleton, S.H.; Berkowitz, R.I.; Grant, S.F.A. Genetic Determinants of Childhood Obesity. Mol. Diagn. Ther. 2020, 24, 653–663. [Google Scholar] [CrossRef]
- Salum, K.C.R.; Rolando, J.d.M.; Zembrzuski, V.M.; Carneiro, J.R.I.; Mello, C.B.; Maya-Monteiro, C.M.; Bozza, P.T.; Kohlrausch, F.B.; da Fonseca, A.C.P. When Leptin Is Not There: A Review of What Nonsyndromic Monogenic Obesity Cases Tell Us and the Benefits of Exogenous Leptin. Front. Endocrinol. 2021, 12, 722441. [Google Scholar] [CrossRef]
- Vourdoumpa, A.; Paltoglou, G.; Charmandari, E. The Genetic Basis of Childhood Obesity: A Systematic Review. Nutrients 2023, 15, 1416. [Google Scholar] [CrossRef]
- Regan, J.A.; Shah, S.H. Obesity Genomics and Metabolomics: A Nexus of Cardiometabolic Risk. Curr. Cardiol. Rep. 2020, 22, 174. [Google Scholar] [CrossRef] [PubMed]
- Horwitz, A.; Birk, R. Adipose Tissue Hyperplasia and Hypertrophy in Common and Syndromic Obesity—The Case of BBS Obesity. Nutrients 2023, 15, 3445. [Google Scholar] [CrossRef] [PubMed]
- Gugliucci, A. Biomarkers of dysfunctional visceral fat. Adv. Clin. Chem. 2022, 109, 1–30. [Google Scholar] [CrossRef]
- Ahmed, B.; Sultana, R.; Greene, M.W. Adipose tissue and insulin resistance in obese. Biomed. Pharmacother. 2021, 137, 111315. [Google Scholar] [CrossRef]
- Crewe, C.; An, Y.A.; Scherer, P.E. The ominous triad of adipose tissue dysfunction: Inflammation, fibrosis, and impaired angiogenesis. J. Clin. Investig. 2017, 127, 74–82. [Google Scholar] [CrossRef] [PubMed]
- Field, B.C.; Gordillo, R.; Scherer, P.E. The role of ceramides in diabetes and cardio-vascular disease regulation of ceramides by Adipokines. Front. Endocrinol. 2020, 11, 569250. [Google Scholar] [CrossRef]
- Jura, M.; Kozak, L. Obesity and related consequences to ageing. AGE 2016, 38, 23. [Google Scholar] [CrossRef]
- Reyes-Farias, M.; Fos-Domenech, J.; Serra, D.; Herrero, L.; Sánchez-Infantes, D. White adipose tissue dysfunction in obesity and aging. Biochem. Pharmacol. 2021, 192, 114723. [Google Scholar] [CrossRef]
- Dedov, I.I.; Shestakova, M.V.; Melnichenko, G.A.; Mazurina, N.V.; Andreeva, E.N.; Bondarenko, I.Z.; Gusova, Z.R.; Dzgoeva, F.K.; Eliseev, M.S.; Ershova, E.V.; et al. Interdisciplinary Clinical Practice Guidelines “Management of Obesity and Its Comorbidities”. Obes. Metab. 2021, 18, 5–99. [Google Scholar] [CrossRef]
- Yumuk, V.; Tsigos, C.; Fried, M.; Schindler, K.; Busetto, L.; Micic, D.; Toplak, H. Obesity Management Task Force of the European Association for the Study of Obesity. European Guidelines for Obesity Management in Adults. Obes. Facts 2015, 8, 402–424. [Google Scholar] [CrossRef]
- Sambrook, J.; Russel, D.W. Purification of nucleic acids by extraction with phenol: Chloroform. Cold Spring Harb. Protoc. 2006, 1, pdb.prot4455. [Google Scholar]
- Bairqdar, A.; Ivanoshchuk, D.; Shakhtshneider, E. Functionally Significant Variants in Genes Associated with Abdominal Obesity: A Review. J. Pers. Med. 2023, 13, 460. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Durbin, R. Fast and accurate short read alignment with Burrows—Wheeler transform. Bioinformatics 2009, 25, 1754–1760. [Google Scholar] [CrossRef]
- McKenna, A.; Hanna, M.; Banks, E.; Sivachenko, A.; Cibulskis, K.; Kernytsky, A.; Garimella, K.; Altshuler, D.; Gabriel, S.; Daly, M.; et al. The Genome Analysis Toolkit: A MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 2010, 20, 1297–1303. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.; Li, M.; Hakonarson, H. ANNOVAR: Functional annotation of genetic variants from next-generation sequencing data. Nucleic Acids Res. 2010, 38, e164. [Google Scholar] [CrossRef]
- Richards, S.; Aziz, N.; Bale, S.; Bick, D.; Das, S.; Gastier-Foster, J.; Grody, W.W.; Hegde, M.; Lyon, E.; Spector, E.; et al. Standards and guidelines for the interpretation of sequence variants: A joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Anesth. Analg. 2015, 17, 405–423. [Google Scholar] [CrossRef]
- Ragino, Y.I.; Khudyakova, A.D.; Striukova, E.V.; Denisova, D.V.; Shcherbakova, L.V. Prevalence of diseases and pathological conditions in young people under 45 years of age with abdominal obesity in Siberia. Bull. Sib. Med. 2021, 20, 39–48. [Google Scholar] [CrossRef]
- Landrum, M.J.; Lee, J.M.; Benson, M.; Brown, G.R.; Chao, C.; Chitipiralla, S.; Gu, B.; Hart, J.; Hoffman, D.; Jang, W.; et al. ClinVar: Improving access to variant interpretations and supporting evidence. Nucleic Acids Res. 2018, 46, D1062–D1067. [Google Scholar] [CrossRef]
- Fokkema, I.F.A.C.; Taschner, P.E.M.; Schaafsma, G.C.; Celli, J.; Laros, J.F.; den Dunnen, J.T. LOVD v.2.0: The next generation in gene variant databases. Hum. Mutat. 2011, 32, 557–563. [Google Scholar] [CrossRef]
- Cristofoli, F.; Sorrentino, E.; Guerri, G.; Miotto, R.; Romanelli, R.; Zulian, A.; Cecchin, S.; Paolacci, S.; Miertus, J.; Bertelli, M.; et al. Variant Selection and Interpretation: An Example of Modified VarSome Classifier of ACMG Guidelines in the Diagnostic Setting. Genes 2021, 12, 1885. [Google Scholar] [CrossRef]
- Lee, B.P.; Lloyd-Laney, H.O.; Locke, J.M.; McCulloch, L.J.; Knight, B.; Yaghootkar, H.; Cory, G.; Kos, K.; Frayling, T.M.; Harries, L.W. Functional characterisation of ADIPOQ variants using individuals recruited by genotype. Mol. Cell. Endocrinol. 2016, 428, 49–57. [Google Scholar] [CrossRef]
- Spracklen, C.N.; Iyengar, A.K.; Vadlamudi, S.; Raulerson, C.K.; Jackson, A.U.; Brotman, S.M.; Wu, Y.; Cannon, M.E.; Davis, J.P.; Crain, A.T.; et al. Adiponectin GWAS loci harboring extensive allelic heterogeneity exhibit distinct molecular consequences. PLoS Genet. 2020, 16, e1009019. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Liu, Z.; Meng, K.; Zhang, L. Association of Adiponectin Gene (ADIPOQ) rs2241766 Polymorphism with Obesity in Adults: A Meta-Analysis. PLoS ONE 2014, 9, e95270. [Google Scholar] [CrossRef] [PubMed]
- Pogozheva, A.V.; Sorokina, E.Y. Association of rs266729 and rs16861194 polymorphisms of the ADIPOQ gene with the risk of obesity in residents of the Moscow region. Alm. Clin. Med. 2021, 49, 315–322. [Google Scholar] [CrossRef]
- Leon-Cachon, R.B.R.; Salinas-Santander, M.A.; Aguilar-Tamez, D.A.; MarianaValdez-Ortiz, P.; Rios-Ibarra, C.P.; Cepeda-Nieto, A.C.; Suarez-Valencia, V.d.J.; Morlett-Chavez, J.A. ADIPOQ-rs2241766 polymorphism is associated with changes in cholesterol levels of Mexican adolescents. J. Appl. Biomed. 2022, 20, 146–153. [Google Scholar] [CrossRef] [PubMed]
- Aller, R.; Izaola, O.; Primo, D.; de Luis, D.A. The effect of single-nucleotide polymorphisms at the ADIPOQ gene locus rs1501299 on metabolic parameters after 9 mo of a high-protein/low-carbohydrate versus a standard hypocaloric diet. Nutrition 2019, 65, 44–49. [Google Scholar] [CrossRef]
- Al-Nbaheen, M.S. Effect of Genetic Variations in the ADIPOQ Gene on Susceptibility to Type 2 Diabetes Mellitus. Diabetes Metab. Syndr. Obes. Targets Ther. 2022, 15, 2753–2761. [Google Scholar] [CrossRef]
- Corbi, G.; Polito, R.; Monaco, M.L.; Cacciatore, F.; Scioli, M.; Ferrara, N.; Daniele, A.; Nigro, E. Adiponectin Expression and Genotypes in Italian People with Severe Obesity Undergone a Hypocaloric Diet and Physical Exercise Program. Nutrients 2019, 11, 2195. [Google Scholar] [CrossRef]
- Vasseur, F.; Helbecque, N.; Dina, C.; Lobbens, S.; Delannoy, V.; Gaget, S.; Boutin, P.; Vaxillaire, M.; Leprêtre, F.; Dupont, S.; et al. Single-nucleotide polymorphism haplotypes in the both proximal promoter and exon 3 of the APM1 gene modulate adipocyte-secreted adiponectin hormone levels and contribute to the genetic risk for type 2 diabetes in French Caucasians. Hum. Mol. Genet. 2002, 11, 2607–2614. [Google Scholar] [CrossRef]
- Avzaletdinova, D.S.; Sharipova, L.F.; Kochetova, O.V.; Morugova, T.V.; Mustafina, O.E. Association of adiponectin gene alleles with type 2 diabetes mellitus in residents of Bashkortostan. Probl. Endocrinol. 2019, 65, 31–38. [Google Scholar] [CrossRef]
- Bueno, A.C.; Sun, K.; Martins, C.S.; Junior, J.E.; Miranda, W.; Tao, C.; Foss-Freitas, M.C.; Barbieri, M.A.; Bettiol, H.; de Castro, M.; et al. A Novel ADIPOQ Mutation (p.M40K) Impairs Assembly of High-Molecular-Weight Adiponectin and Is Associated With Early-Onset Obesity and Metabolic Syndrome. J. Clin. Endocrinol. Metab. 2014, 99, E683–E693. [Google Scholar] [CrossRef] [PubMed]
- Apalasamy, Y.D.; Rampal, S.; Salim, A.; Moy, F.M.; Bulgiba, A.; Mohamed, Z. Association of ADIPOQ gene with obesity and adiponectin levels in Malaysian Malays. Mol. Biol. Rep. 2014, 41, 2917–2921. [Google Scholar] [CrossRef]
- Ogundele, O.E.; Adekoya, K.O.; Osinubi, A.A.; Awofala, A.A.; Oboh, B.O. Association of adiponectin gene (ADIPOQ) polymorphisms with measures of obesity in Nigerian young adults. Egypt. J. Med. Hum. Genet. 2018, 19, 123–127. [Google Scholar] [CrossRef]
- Siitonen, N.; Pulkkinen, L.; Lindström, J.; Kolehmainen, M.; Eriksson, J.G.; Venojärvi, M.; Ilanne-Parikka, P.; Keinänen-Kiukaanniemi, S.; Tuomilehto, J.; Uusitupa, M. Association of ADIPOQ gene variants with body weight, type 2 diabetes and serum adiponectin concentrations: The Finnish Diabetes Prevention Study. BMC Med. Genet. 2011, 12, 5. [Google Scholar] [CrossRef]
- Palit, S.P.; Patel, R.; Jadeja, S.D.; Rathwa, N.; Mahajan, A.; Ramachandran, A.V.; Dhar, M.K.; Sharma, S.; Begum, R. A genetic analysis identifies a haplotype at adiponectin locus: Association with obesity and type 2 diabetes. Sci. Rep. 2020, 10, 2904. [Google Scholar] [CrossRef] [PubMed]
- Abbas, A.; Hoidy, W. Association of ADIPOQ (rs 2241766) Gene Polymorphism with Type 2 Diabetes Mellitus Patients A Case-Control Study. Biomed. Chem. Sci. 2022, 1, 88–92. [Google Scholar] [CrossRef]
- Hammad, S.S.; Eck, P.; Sihag, J.; Chen, X.; Connelly, P.W.; Lamarche, B.; Couture, P.; Guay, V.; Maltais-Giguère, J.; West, S.G.; et al. Common Variants in Lipid Metabolism–Related Genes Associate with Fat Mass Changes in Response to Dietary Monounsaturated Fatty Acids in Adults with Abdominal Obesity. J. Nutr. 2019, 149, 1749–1756. [Google Scholar] [CrossRef]
- Nascimento, H.; Vieira, E.; Coimbra, S.; Catarino, C.; Costa, E.; Bronze-Da-Rocha, E.; Rocha-Pereira, P.; Carvalho, M.; Mansilha, H.F.; Rêgo, C.; et al. Adipokine Gene Single-Nucleotide Polymorphisms in Portuguese Obese Adolescents: Associations with Plasma Concentrations of Adiponectin, Resistin, IL-6, IL-1β, and TNF-α. Child. Obes. 2016, 12, 300–313. [Google Scholar] [CrossRef]
- Sahan, K.A.; Aziz, I.H.; Dawood, S.N.; Al Qazzaz, H. The role of resistin gene polymorphism in Iraqi breast cancer patients. Biomedicine 2022, 42, 1296–1300. [Google Scholar] [CrossRef]
- Hivert, M.-F.; Manning, A.K.; McAteer, J.B.; Dupuis, J.; Fox, C.S.; Cupples, L.A.; Meigs, J.B.; Florez, J.C. Association of Variants in RETN With Plasma Resistin Levels and Diabetes-Related Traits in the Framingham Offspring Study. Diabetes 2009, 58, 750–756. [Google Scholar] [CrossRef]
- Asano, H.; Izawa, H.; Nagata, K.; Nakatochi, M.; Kobayashi, M.; Hirashiki, A.; Shintani, S.; Nishizawa, T.; Tanimura, D.; Naruse, K.; et al. Plasma resistin concentration determined by common variants in the resistin gene and associated with metabolic traits in an aged Japanese population. Diabetologia 2010, 53, 234–246. [Google Scholar] [CrossRef] [PubMed]
- National Center for Biotechnology Information. ClinVar; [VCV000004884.3]. Available online: https://www.ncbi.nlm.nih.gov/clinvar/variation/VCV000004884.3 (accessed on 4 September 2023).
- National Center for Biotechnology Information. ClinVar; [VCV000724209.8]. Available online: https://www.ncbi.nlm.nih.gov/clinvar/variation/VCV000724209.8 (accessed on 4 September 2023).
- Zhong, J.-C.; Zhang, Z.-Z.; Wang, W.; McKinnie, S.M.K.; Vederas, J.C.; Oudit, G.Y. Targeting the apelin pathway as a novel therapeutic approach for cardiovascular diseases. Biochim. Biophys. Acta (BBA) Mol. Basis Dis. 2017, 1863, 1942–1950. [Google Scholar] [CrossRef] [PubMed]
- Galon-Tilleman, H.; Yang, H.; Bednarek, M.A.; Spurlock, S.M.; Paavola, K.J.; Ko, B.; To, C.; Luo, J.; Tian, H.; Jermutus, L.; et al. Apelin-36 Modulates Blood Glucose and Body Weight Independently of Canonical APJ Receptor Signaling. J. Biol. Chem. 2017, 292, 1925–1933. [Google Scholar] [CrossRef] [PubMed]
- Yoshikawa, M.; Asaba, K.; Nakayama, T. The APLNR gene polymorphism rs7119375 is associated with an increased risk of development of essential hypertension in the Chinese population: A meta-analysis. Medicine 2020, 99, e22418. [Google Scholar] [CrossRef] [PubMed]
- Available online: https://www.ncbi.nlm.nih.gov/gene/155 (accessed on 4 September 2023).
- Damavandi, N.; Soleymaniniya, A.; Zadegan, S.B.; Aref, M.H.S.; Zeinali, S. Development of a genetic risk score for obesity predisposition evaluation. Mol. Genet. Genom. 2022, 297, 1495–1503. [Google Scholar] [CrossRef] [PubMed]
- Xie, C.; Hua, W.; Zhao, Y.; Rui, J.; Feng, J.; Chen, Y.; Liu, Y.; Liu, J.; Yang, X.; Xu, X. The ADRB3rs4994 polymorphism increases risk of childhood and adolescent overweight/obesity for East Asia’s population: An evidence-based meta-analysis. Adipocyte 2020, 9, 77–86. [Google Scholar] [CrossRef]
- Kadowaki, H.; Yasuda, K.; Iwamoto, K.; Otabe, S.; Shimokawa, K.; Silver, K.; Walston, J.; Yoshinaga, H.; Kosaka, K.; Yamada, N.; et al. A Mutation in the β3-Adrenergic Receptor Gene Is Associated with Obesity and Hyperinsulinemia in Japanese Subjects. Biochem. Biophys. Res. Commun. 1995, 215, 555–560. [Google Scholar] [CrossRef]
- Diniz, I.G.; Della Noce, R.R.; Pereira, A.P.; da Silva, A.N.L.M.; Sacuena, E.R.P.; Lemes, R.B.; Cardoso-Costa, G.d.L.; Araújo, G.S.; Machado, J.L.P.; Figueiredo, F.A.d.P.L.; et al. Common BMI and diabetes-related genetic variants: A pilot study among indigenous people in the Brazilian Amazon. Genet. Mol. Biol. 2022, 45, e20210153. [Google Scholar] [CrossRef]
- Luo, Z.; Zhang, T.; Wang, S.; He, Y.; Ye, Q.; Cao, W. The Trp64Arg Polymorphism in B3 Adrenergic Receptor (ADRB3) Gene Is Associated with Adipokines and Plasma Lipids: A Systematic Review, Meta-Analysis, and Meta-Regression. Lipids Health Dis. 2020, 19, 99. [Google Scholar] [CrossRef]
- Zhong, J.; Yu, Q.; Zheng, N.; Su, J.; Zheng, X.; Zheng, L.; Chen, X. Gene polymorphisms of insulin secretion signaling pathway associated with clopidogrel resistance in Han Chinese population. J. Clin. Lab. Anal. 2021, 35, e23970. [Google Scholar] [CrossRef]
- Ma, X.; Huang, J.; Lu, D.; Gu, N.; Lu, R.; Zhang, J.; Zhang, H.; Li, J.; Zhang, J.; Guo, X. Genetic Variability of the Glucose-Dependent Insulinotropic Peptide Gene Is Involved in the Premature Coronary Artery Disease in a Chinese Population with Type 2 Diabetes. J. Diabetes Res. 2018, 2018, 6820294. [Google Scholar] [CrossRef]
- Laurila, S.; Sun, L.; Lahesmaa, M.; Schnabl, K.; Laitinen, K.; Klén, R.; Li, Y.; Balaz, M.; Wolfrum, C.; Steiger, K.; et al. Secretin activates brown fat and induces satiation. Nat. Metab. 2021, 3, 798–809. [Google Scholar] [CrossRef]
- Fagerberg, L.; Hallström, B.M.; Oksvold, P.; Kampf, C.; Djureinovic, D.; Odeberg, J.; Habuka, M.; Tahmasebpoor, S.; Danielsson, A.; Edlund, K.; et al. Analysis of the Human Tissue-specific Expression by Genome-wide Integration of Transcriptomics and Antibody-based Proteomics. Mol. Cell. Proteom. 2014, 13, 397–406. [Google Scholar] [CrossRef]
- Jiao, Z.-T.; Luo, Q. Molecular Mechanisms and Health Benefits of Ghrelin: A Narrative Review. Nutrients 2022, 14, 4191. [Google Scholar] [CrossRef]
- Gueorguiev, M.; Lecoeur, C.; Meyre, D.; Benzinou, M.; Mein, C.A.; Hinney, A.; Vatin, V.; Weill, J.; Heude, B.; Hebebrand, J.; et al. Association Studies on Ghrelin and Ghrelin Receptor Gene Polymorphisms With Obesity. Obesity 2009, 17, 745–754. [Google Scholar] [CrossRef] [PubMed]
- Ando, T.; Komaki, G.; Naruo, T.; Okabe, K.; Takii, M.; Kawai, K.; Konjiki, F.; Takei, M.; Oka, T.; Takeuchi, K.; et al. Possible role of preproghrelin gene polymorphisms in susceptibility to bulimia nervosa. Am. J. Med. Genet. Part B Neuropsychiatr. Genet. 2006, 141B, 929–934. [Google Scholar] [CrossRef]
- Imaizumi, T.; Ando, M.; Nakatochi, M.; Yasuda, Y.; Honda, H.; Kuwatsuka, Y.; Kato, S.; Kondo, T.; Iwata, M.; Nakashima, T.; et al. Effect of dietary energy and polymorphisms in BRAP and GHRL on obesity and metabolic traits. Obes. Res. Clin. Pract. 2018, 12 (Suppl. 2), 39–48. [Google Scholar] [CrossRef]
- Krishnan, M.; Shelling, A.N.; Wall, C.R.; Mitchell, E.A.; Murphy, R.; McCowan, L.M.; Thompson, J.M. Children of SCOPE Study Group. Gene-by-environment interactions of the CLOCK, PEMT, and GHRELIN loci with average sleep duration in relation to obesity traits using a cohort of 643 New Zealand European children. Sleep Med. 2017, 37, 19–26. [Google Scholar] [CrossRef] [PubMed]
- Kilpeläinen, T.; Lakka, T.; Laaksonen, D.; Mager, U.; Salopuro, T.; Kubaszek, A.; Todorova, B.; Laukkanen, O.; Lindström, J.; Eriksson, J.; et al. Interaction of single nucleotide polymorphisms in ADRB2, ADRB3, TNF, IL6, IGF1R, LIPC, LEPR, and GHRL with physical activity on the risk of type 2 diabetes mellitus and changes in characteristics of the metabolic syndrome: The Finnish Diabetes Prevention Study. Metabolism 2008, 57, 428–436. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.; Weiss, M.A.; Arunagiri, A.; Yong, J.; Rege, N.; Sun, J.; Haataja, L.; Kaufman, R.J.; Arvan, P. Biosynthesis, structure, and folding of the insulin precursor protein. Diabetes, Obes. Metab. 2018, 20, 28–50. [Google Scholar] [CrossRef] [PubMed]
- Arneth, B. Insulin gene mutations and posttranslational and translocation defects: Associations with diabetes. Endocrine 2020, 70, 488–497. [Google Scholar] [CrossRef]
- Wang, S.; Flibotte, S.; Camunas-Soler, J.; MacDonald, P.E.; Johnson, J.D. A New Hypothesis for Type 1 Diabetes Risk: The At-Risk Allele at rs3842753 Associates With Increased Beta-Cell INS Messenger RNA in a Meta-Analysis of Single-Cell RNA-Sequencing Data. Can. J. Diabetes 2021, 45, 775–784.e2. [Google Scholar] [CrossRef] [PubMed]
- Massarenti, L.; Aniol-Nielsen, C.; Enevold, C.; Toft-Hansen, H.; Nielsen, C.H. Influence of Insulin Receptor Single Nucleotide Polymorphisms on Glycaemic Control and Formation of Anti-Insulin Antibodies in Diabetes Mellitus. Int. J. Mol. Sci. 2022, 23, 6481. [Google Scholar] [CrossRef] [PubMed]
- Ayabe, T.; Fukami, M.; Ogata, T.; Kawamura, T.; Urakami, T.; Kikuchi, N.; Yokota, I.; Ihara, K.; Takemoto, K.; Mukai, T.; et al. Variants associated with autoimmune Type 1 diabetes in Japanese children: Implications for age-specific effects of cis-regulatory haplotypes at 17q12-q21. Diabet. Med. 2016, 33, 1717–1722. [Google Scholar] [CrossRef]
- Krischer, J.P.; Lynch, K.F.; Lernmark, Å.; Hagopian, W.A.; Rewers, M.J.; She, J.-X.; Toppari, J.; Ziegler, A.-G.; Akolkar, B.; the TEDDY Study Group. Genetic and Environmental Interactions Modify the Risk of Diabetes-Related Autoimmunity by 6 Years of Age: The TEDDY Study. Diabetes Care 2017, 40, 1194–1202. [Google Scholar] [CrossRef]
- Wei, J.; Liu, F.; Lu, Z.; Fei, Q.; Ai, Y.; He, P.C.; Shi, H.; Cui, X.; Su, R.; Klungland, A.; et al. Differential m6A, m6Am, and m1A Demethylation Mediated by FTO in the Cell Nucleus and Cytoplasm. Mol. Cell 2018, 71, 973–985.e5. [Google Scholar] [CrossRef]
- GLP1R Glucagon Like Peptide 1 Receptor [Homo sapiens (Human)]. Available online: https://www.ncbi.nlm.nih.gov/gene/2740 (accessed on 4 September 2023).
- El Eid, L.; Reynolds, C.A.; Tomas, A.; Jones, B. Biased agonism and polymorphic variation at the GLP-1 receptor: Implications for the development of personalised therapeutics. Pharmacol. Res. 2022, 184, 106411. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Yang, Z.; Ren, S.; Shen, B.; Zhang, Y.; Zong, H.; Li, Y. Association between GLP-1R gene polymorphism and dyslipidemia in Chinese patients with type 2 diabetes mellitus: A case-control study. Gene 2023, 878, 147589. [Google Scholar] [CrossRef] [PubMed]
- Jensterle, M.; Pirš, B.; Goričar, K.; Dolžan, V.; Janež, A. Genetic variability in GLP-1 receptor is associated with inter-individual differences in weight lowering potential of liraglutide in obese women with PCOS: A pilot study. Eur. J. Clin. Pharmacol. 2015, 71, 817–824. [Google Scholar] [CrossRef]
- Yu, M.; Wang, K.; Liu, H.; Cao, R. GLP1R variant is associated with response to exenatide in overweight Chinese Type 2 diabetes patients. Pharmacogenomics 2019, 20, 273–277. [Google Scholar] [CrossRef]
- Li, W.; Li, P.; Li, R.; Yu, Z.; Sun, X.; Ji, G.; Yang, X.; Zhu, L.; Zhu, S. GLP1R Single-Nucleotide Polymorphisms rs3765467 and rs10305492 Affect β Cell Insulin Secretory Capacity and Apoptosis Through GLP-1. DNA Cell Biol. 2020, 39, 1700–1710. [Google Scholar] [CrossRef]
- Nishiya, Y.; Daimon, M.; Mizushiri, S.; Murakami, H.; Tanabe, J.; Matsuhashi, Y.; Yanagimachi, M.; Tokuda, I.; Sawada, K.; Ihara, K. Nutrient consumption-dependent association of a glucagon-like peptide-1 receptor gene polymorphism with insulin secretion. Sci. Rep. 2020, 10, 16382. [Google Scholar] [CrossRef]
- de Luis, D.A.; Aller, R.; de la Fuente, B.; Primo, D.; Conde, R.; Izaola, O.; Sagrado, M.G. Relation of the rs6923761 Gene Variant in Glucagon-Like Peptide 1 Receptor with Weight, Cardiovascular Risk Factor, and Serum Adipokine Levels in Obese Female Subjects. J. Clin. Lab. Anal. 2015, 29, 100–105. [Google Scholar] [CrossRef]
- Dorsey-Trevino, E.G.; Kaur, V.; Mercader, J.M.; Florez, J.C.; Leong, A. Association of GLP1R Polymorphisms with the Incretin Response. J. Clin. Endocrinol. Metab. 2022, 107, 2580–2588. [Google Scholar] [CrossRef] [PubMed]
- Xu, T.; Liu, M.; Liu, Q.; Wang, B.; Wang, M.; Qu, M.; Chen, X.; Wu, J. Associations of TCF7L2 rs11196218 (A/G) and GLP-1R rs761386 (C/T) Gene Polymorphisms with Obesity in Chinese Population. Diabetes Metab. Syndr. Obes. Targets Ther. 2021, 14, 2465–2472. [Google Scholar] [CrossRef] [PubMed]
- Guan, Z.; Du, Y.; Li, R.; Zhang, S.; Xu, Y.; Zhang, X.; Zhang, F.; Yin, Y.; Wu, K.; Li, X.; et al. Association between glucagon-like peptide-1 receptor gene polymorphism and treatment response to GLP1R agonists in Chinese patients with type 2 diabetes: A prospective cohort study. Eur. J. Clin. Pharmacol. 2022, 78, 793–799. [Google Scholar] [CrossRef] [PubMed]
- Nordang, G.B.; Busk, L.; Tveten, K.; Hanevik, H.I.; Fell, A.K.M.; Hjelmesæth, J.; Holla, L.; Hertel, J.K. Next-generation sequencing of the monogenic obesity genes LEP, LEPR, MC4R, PCSK1 and POMC in a Norwegian cohort of patients with morbid obesity and normal weight controls. Mol. Genet. Metab. 2017, 121, 51–56. [Google Scholar] [CrossRef]
- Manco, L.; Pereira, J.; Fidalgo, T.; Cunha, M.; Pinto-Gouveia, J.; Padez, C.; Palmeira, L. Next-generation sequencing of 12 obesity genes in a Portuguese cohort of patients with overweight and obesity. Eur. J. Med. Genet. 2023, 66, 104728. [Google Scholar] [CrossRef]
- Tchernof, A.; Després, J.-P. Pathophysiology of Human Visceral Obesity: An Update. Physiol. Rev. 2013, 93, 359–404. [Google Scholar] [CrossRef]
- Iwabu, M.; Okada-Iwabu, M.; Yamauchi, T.; Kadowaki, T. Adiponectin/AdipoR Research and Its Implications for Lifestyle-Related Diseases. Front. Cardiovasc. Med. 2019, 6, 116. [Google Scholar] [CrossRef]
- Warren, L.L.; Li, L.; Nelson, M.R.; Ehm, M.G.; Shen, J.; Fraser, D.J.; Aponte, J.L.; Nangle, K.L.; Slater, A.J.; Woollard, P.M.; et al. Deep Resequencing Unveils Genetic Architecture of ADIPOQ and Identifies a Novel Low-Frequency Variant Strongly Associated With Adiponectin Variation. Diabetes 2012, 61, 1297–1301. [Google Scholar] [CrossRef] [PubMed]
- Bomba, L.; Walter, K.; Soranzo, N. The impact of rare and low-frequency genetic variants in common disease. Genome Biol. 2017, 18, 77. [Google Scholar] [CrossRef] [PubMed]
- Claussnitzer, M.; Dankel, S.N.; Kim, K.-H.; Quon, G.; Meuleman, W.; Haugen, C.; Glunk, V.; Sousa, I.S.; Beaudry, J.L.; Puviindran, V.; et al. FTO Obesity Variant Circuitry and Adipocyte Browning in Humans. N. Engl. J. Med. 2015, 373, 895–907. [Google Scholar] [CrossRef] [PubMed]
- Mayendraraj, A.; Rosenkilde, M.M.; Gasbjerg, L.S. GLP-1 and GIP receptor signaling in beta cells—A review of receptor interactions and co-stimulation. Peptides 2022, 151, 170749. [Google Scholar] [CrossRef]
- Landgren, S.; Simms, J.A.; Thelle, D.S.; Strandhagen, E.; Bartlett, S.E.; Engel, J.A.; Jerlhag, E. The Ghrelin Signalling System Is Involved in the Consumption of Sweets. PLoS ONE 2011, 6, e18170. [Google Scholar] [CrossRef]
- Kokkorakis, M.; Katsarou, A.; Katsiki, N.; Mantzoros, C.S. Milestones in the journey towards addressing obesity; Past trials and triumphs, recent breakthroughs, and an exciting future in the era of emerging effective medical therapies and integration of effective medical therapies with metabolic surgery. Metab. Clin. Exp. 2023, 148, 155689. [Google Scholar] [CrossRef]
- Reyes-Barrera, J.; Sainz-Escárrega, V.H.; Medina-Urritia, A.X.; Jorge-Galarza, E.; Osorio-Alonso, H.; Torres-Tamayo, M.; Leal-Escobar, G.; Posadas-Romero, C.; Torre-Villalvazo, I.; Juárez-Rojas, J.G. Dysfunctional adiposity index as a marker of adipose tissue morpho-functional abnormalities and metabolic disorders in apparently healthy subjects. Adipocyte 2021, 10, 142–152. [Google Scholar] [CrossRef]
- Dashti, H.S.; Miranda, N.; Cade, B.E.; Huang, T.; Redline, S.; Karlson, E.W.; Saxena, R. Interaction of obesity polygenic score with lifestyle risk factors in an electronic health record biobank. BMC Med. 2022, 20, 5. [Google Scholar] [CrossRef]
Population Aged 25–44 Years | AO+ Aged 25–44 Years | p | |
---|---|---|---|
Number of subjects, n | 1512 | 203 | - |
Males/Females, % | 44.4/55.6 | 43.3/56.7 | 0.660 |
Age, years | 36.15 ± 6.038 | 38.67 ± 0.36 | 0.712 |
TC, mg/dL | 194.3 ± 38.6 | 207.44 ± 2.92 | 0.001 |
HDL-C, mg/dL | 51.5 ± 12.4 | 47.95 ± 0.94 | 0.001 |
LDL-C, mg/dL | 121.8 ± 33.9 | 130.08 ± 2.44 | 0.001 |
TGs, mg/dL | 104.3 ± 75.2 | 147.08 ± 8.33 | 0.01 |
Glucose, mMol/L | 5.6 ± 0.8 | 5.91 ± 0.08 | 0.066 |
Body mass index, kg/m2 | 26.05 ± 5.5 | 30.47 ± 0.33 | 0.001 |
Leptin, ng/mL | 6845.5 ± 7507.1 | 10172 ± 0.653 | 0.001 |
Adiponectin, μg/mL | 83.6 ± 113.6 | 61.6 ± 5.76 | 0.051 |
dbSNP ID | Nucleotide Changes (NM_004797.4) | Minor Allele Frequency (gnomAD v3.1.2) | Minor Allele Frequency (RUSeq) | Associated Phenotype * | Database (ClinVar [28], LOVD [29], VarSome [30]) |
---|---|---|---|---|---|
rs17366653 | NM_004797.4:c.-8-24T>C | 0.0131 | 0.0134 | ADIPOQ levels [31,32] | VarSome (benign) |
rs199668131 | NM_004797.4:c.-8-12T>G | 0.00004708 | 0.003028 | - | VarSome (Uncertain Significance) |
rs2241766 | NM_004797.4:c.45T>G | 0.1130 | 0.08606 | T2DM, BMI [33,34,35] | LOVD (likely pathogenic) VarSome (likely benign) |
rs143606172 | NM_004797.4:c.164G>A | 0.00008643 | - | - | VarSome (Uncertain Significance) |
rs1501299 | NM_004797.4:c.214+62G>C | 0.2978 | - | T2DM, ADIPOQ levels [36,37] | VarSome (likely benign) |
rs62625753 | NM_004797.4:c.268G>A | 0.004572 | 0.003604 | T2DM, ADIPOQ levels [38] | ClinVar (likely benign) VarSome (benign) |
rs17366743 | NM_004797.4:c.331T>C | 0.02859 | 0.01540 | T2DM [39,40] | VarSome (benign) |
rs4068 | NM_004797.4:c.*65C>T | 0.007772 | 0.006316 | - | VarSome (likely benign) |
dbSNP ID | Nucleotide Changes (NM_020415.4) | Minor Allele Frequency (gnomADv3.1.2) | Minor Allele Frequency (RUSeq) | Associated Phenotype * | Database Record (ClinVar, LOVD, VarSome) |
---|---|---|---|---|---|
rs3219177 | NM_020415.4:c.118+39C>T | 0.2107 | 0.2011 | Higher RETN levels [48] | VarSome (benign) |
rs34788323 | NM_020415.4:c.196+30C>T | 0.07987 | 0.06572 | Higher RETN levels [49] | VarSome (benign) |
rs377473014 | NM_020415.4:c.196+47C>A | 0.001605 | - | T2DM, BMI [33,34,35] | VarSome (likely benign) |
rs377473014 | NM_020415.4:c.196+47C>T | 0.0006830 | - | - | - |
rs10402265 | NM_020415.4:c.197-16G>C | 0.8341 | 0.8316 | Higher RETN and glucose levels [50] | VarSome (Uncertain Significance) |
rs3745368 | NM_020415.4:c.*62G>A | 0.03681 | 0.03670 | Lower RETN levels [51] | ClinVar (risk factor) VarSome (benign) |
dbSNP ID | Nucleotide Changes (NM_000230.3) | Minor Allele Frequency (gnomADv3.1.2) | Minor Allele Frequency (RUSeq) | Associated Phenotype * | Database (Clin-Var, LOVD, VarSome) |
---|---|---|---|---|---|
rs17151914 | NM_000230.3:c.145-50C>T | 0.01003 | 0.02392 | - | ClinVar (benign) VarSome (likely benign) |
rs138908051 | NM_000230.3:c.165G>A | 0.0001781 | 0.000 | - | ClinVar (Conflicting interpretations) VarSome (likely benign) |
rs62481073 | NM_000230.3:c.*33C>T | 0.004656 | 0.004636 | - | ClinVar (Uncertain significance) VarSome (likely benign) |
dbSNP ID | Nucleotide Changes (NM_017413.5) | Minor Allele Frequency (gnomADv3.1.2) | Minor Allele Frequency (RUSeq) | Associated Phenotype * | Database (ClinVar, LOVD, VarSome) |
---|---|---|---|---|---|
rs3115758 | NM_017413.5:c.*36G>T | 0.07277 | 0.06532 | - | VarSome (benign) |
rs909656 | NM_017413.5:c.*5+36C>A | 0. 001327 | 0.005335 | - | VarSome (likely benign) |
rs375839749 | NM_017413.5:c.67+8C>T | 0. 001129 | 0.0009200 | - | VarSome (benign) |
dbSNP ID | Nucleotide Changes (NM_005161.6) | Minor Allele Frequency (gnomADv3.1.2) | Minor Allele Frequency (RUSeq) | Associated Phenotype * | Database (ClinVar, LOVD, VarSome) |
---|---|---|---|---|---|
rs199589565 | NM_005161.6:c.707G>A | 0.0005580 | 0.000 | - | VarSome (likely benign) |
rs753649420 | NM_005161.6:c.513G>A | 0.00003533 | 0.0005587 | - | VarSome (likely benign) |
rs948847 | NM_005161.6:c.135C>A | 0.5531 | 0. 05842 | - | VarSome (likely benign) |
rs368731106 | NM_005161.6:c.-44G>C | 0.0007431 | 0.004958 | - | VarSome (likely benign) |
dbSNP ID | Nucleotide Changes (NM_000025.3) | Minor Allele Frequency (gnomADv3.1.2) | Minor Allele Frequency (RUSeq) | Associated Phenotype * | Database (ClinVar, LOVD, VarSome) |
---|---|---|---|---|---|
rs4997 | NM_000025.3:c.1205+14G>T | 0.07794 | 0.08712 | ClinVar/benign | VarSome (benign) |
rs746415961 | NM_000025.3:c.1196G>T | 0.000 | - | - | VarSome (likely benign) |
rs549473233 | NM_000025.3:c.783C>T | 0.00003139 | 0.0006127 | - | VarSome (likely benign) |
rs200163984 | NM_000025.3:c.578C>T | 0.0001841 | 0.0005952 | - | VarSome (likely benign) |
rs4994 | NM_000025.3:c.190T>C | 0.07938 | 0.08967 | T2DM, obesity [22,58,59] | ClinVar (benign) VarSome (benign) |
dbSNP ID | Nucleotide Changes (NM_002054.5) | Minor Allele Frequency (gnomADv3.1.2) | Minor Allele Frequency (RUSeq) | Associated Phenotype * | Database (ClinVar, LOVD, VarSome) |
---|---|---|---|---|---|
rs150179526 | NM_002054.5:c.472A>G | 0.008273 | 0.004592 | - | ClinVar (benign) VarSome (benign) |
rs5649 | NM_002054.5:c.254+5G>A | 0.001003 | 0.01075 | - | ClinVar (benign) VarSome (benign) |
rs5646 | NM_002054.5:c.92+12G>A | 0.0007661 | 0.0005760 | - | VarSome (likely benign) |
rs5645 | NM_002054.5:c.15C>T | 0.02221 | 0.02813 | resistance to clopidogrel [63] | VarSome (benign) |
dbSNP ID | Nucleotide Changes (NM_004123.3) | Minor Allele Frequency (gnomADv3.1.2) | Minor Allele Frequency (RUSeq) | Associated Phenotype * | Database (ClinVar, LOVD, VarSome) |
---|---|---|---|---|---|
rs55936433 | NM_004123.3:c.*27G>T | 0.2771 | 0.3020 | - | VarSome (benign) |
rs72833611 | NM_004123.3:c.*26G>C | 0.1320 | 0.1150 | - | VarSome (benign) |
rs6504587 | NM_004123.3:c.351-42A>G | 0.9999 | 1.000 | - | VarSome (likely benign) |
rs117649535 | NM_004123.3:c.351-45C>T | 0.007840 | 0.007528 | - | VarSome (benign) |
rs2291725 | NM_004123.3:c.307A>G | 0.5242 | 0.5188 | higher risk of CAD [64] | VarSome (likely benign) |
rs62078384 | NM_004123.3:c.86+46G>A | 0.5203 | 0.5129 | - | VarSome (benign) |
dbSNP ID | Nucleotide Changes (NM_002722.5) | Minor Allele Frequency (gnomADv3.1.2) | Minor Allele Frequency (RUSeq) | Associated Phenotype * | Database (ClinVar, LOVD, VarSome) |
---|---|---|---|---|---|
rs231473 | NM_002722.5:c.263+40A>G | 0.5485 | 0.6235 | - | VarSome (benign) |
rs771706654 | NM_002722.5:c.230C>T | 0.0001059 | 0.0005747 | - | VarSome (benign) |
dbSNP ID | Nucleotide Changes (NM_001394028.1) | Minor Allele Frequency (gnomADv3.1.2) | Minor Allele Frequency (RUSeq) | Associated Phenotype * | Database (ClinVar, LOVD, VarSome) |
---|---|---|---|---|---|
rs1058046 | NM_001394028.1:c.215C>G | 0.5485 | 0.6859 | - | VarSome (benign) |
rs229969 | NM_001394028.1:c.109C>G | 1.000 | - | - | VarSome (likely benign) |
dbSNP ID | Nucleotide Changes NM_021920.4 | Minor Allele Frequency (gnomADv3.1.2) | Minor Allele Frequency (RUSeq) | Associated Phenotype * | Database (ClinVar, LOVD, VarSome) |
---|---|---|---|---|---|
rs376423879 | NM_021920.4:c.355C>T | 0.0002084 | - | - | VarSome (likely benign) |
rs187861364 | NM_021920.4:c.267-5T>C | 0.004106 | - | - | VarSome (benign) |
rs780568458 | NM_021920.4:c.71+31C>G | 0.0002752 | - | - | VarSome (benign) |
dbSNP ID | Nucleotide Changes (NM_005746.3) | Minor Allele Frequency (gnomADv3.1.2) | Minor Allele Frequency (RUSeq) | Associated Phenotype * | Database (ClinVar, LOVD, VarSome) |
---|---|---|---|---|---|
rs70937087 | NM_005746.3:c.1366-8T>C | 0.004980 | 0.009050 | - | ClinVar (benign) VarSome (benign) |
rs144888107 | NM_005746.3:c.969+49C>G | 0.01429 | 0.008333 | - | VarSome (likely benign) |
rs2302559 | NM_005746.3:c.903A>G | 0.6349 | 0.6588 | - | VarSome (likely benign) |
rs778300482 | NM_005746.3:c.744-28A>G | 0.000 | - | - | VarSome (benign) |
rs41430346 | NM_005746.3:c.319-51G>C | 0.01897 | - | - | VarSome (benign) |
dbSNP ID | Nucleotide Changes (NM_016362.5) | Minor Allele Frequency (gnomADv3.1.2) | Minor Allele Frequency (RUSeq) | Associated Phenotype * | Database (ClinVar, LOVD, VarSome) |
---|---|---|---|---|---|
rs369305953 | NM_016362.5:c.*3G>A | 0.0002712 | 0.0.0002966 | - | VarSome (likely benign) |
rs4684677 | NM_016362.5:c.269A>T | 0.06311 | 0.05895 | Obesity [68] | CliVar (benign) VarSome (benign) |
rs139997338 | NM_016362.5:c.224G>A | 0.00006977 | 0.0002962 | - | VaSome (likely benign) |
rs696217 | NM_016362.5:c.214C>A | 0.08006 | 0.07464 | Obesity, Bulimia nervosa [69] | ClinVar (benign) VarSome (benign) |
rs760055038 | NM_016362.5:c.148C>T | 0.0001085 | 0.0002969 | - | VarSome (likely benign) |
rs183593317 | NM_016362.5:c.-29-7C>T | 0.007265 | 0.007517 | - | VarSome (benign) |
rs139684563 | NM_016362.5:c.-786G>A | 0.006755 | 0.003019 | - | VarSome (benign) |
dbSNP ID | Nucleotide Changes (NM_000207.3) | Minor Allele Frequency (gnomADv3.1.2) | Minor Allele Frequency (RUSeq) | Associated Phenotype * | Database (ClinVar, LOVD, VarSome) |
---|---|---|---|---|---|
rs3842753 | NM_000207.3:c.*22A>C | 0.7202 | 0.7458 | Insulin expression [75] | ClinVar (Benign) VarSome (likely benign) |
rs3842752 | NM_000207.3:c.*9C>T | 0.2173 | 0.1997 | Protective against T1D [76] | ClinVar (Benign-Likely benign) VarSome (benign) |
rs41275198 | NM_000207.3:c.188-10G>A | 0.003191 | 0.000 | - | ClinVar (Benign-Likely benign) VarSome (benign) |
rs201659391 | NM_000207.3:c.188-11C>T | 0.001440 | 0.008113 | - | VarSome (benign) |
rs5506 | NM_000207.3:c.187+11T>C | 0.9993 | 1.000 | - | ClinVar (Benign-Likely benign) VarSome (likely benign) |
rs11564720 | NM_000207.3:c.63A>G | 0.0002312 | 0.0005931 | - | ClinVar (Benign-Likely benign) VarSome (benign) |
rs5505 | NM_000207.3:c.-9C>T | 0.01101 | 0.008662 | - | ClinVar (Benign-Likely benign) VarSome (benign) |
rs689 | NM_000207.3:c.-17-6T>A | 0.7214 | 0.7450 | protective against T1DM/T2DM and IAA [76,77,78] | ClinVar (Benign) VarSome (likely benign) |
dbSNP ID | Nucleotide Changes (NM_001080432.3) | Minor Allele Frequency (gnomADv3.1.2) | Minor Allele Frequency (RUSeq) | Associated Phenotype * | Database (ClinVar, LOVD, VarSome) |
---|---|---|---|---|---|
rs375031347 | 0.0007271 | 0.002438 | - | ClinVar (uncertain significance) VarSome (likely benign) | |
rs184850472 | NM_001080432.3:c.45+29C>A | 0.0004910 | 0.000 | - | VarSome(likely benign) |
rs116753298 | NM_001080432.3:c.99C>T | 0.0002557 | - | - | ClinVar (Benign-Likely benign) VarSome (benign) |
rs145884431 | NM_001080432.3:c.487G>A | 0.002617 | 0.002372 | ClinVar (conflicting interpretation) VarSome (benign) | |
rs150450891 | NM_001080432.3:c.601G>A | 0.001038 | 0.007701 | - | Clinvar (uncertain significance) VarSome (likely benign) |
rs62033438 | NM_001080432.3:c.895+37A>G | 0.3711 | 0.3715 | - | VarSome (benign) |
rs11076004 | NM_001080432.3:c.1119+31G>A | 0.4150 | 0.3984 | - | VarSome (benign) |
rs144587536 | NM_001080432.3:c.1120-45A>G | 0.0007203 | 0.0005949 | - | VarSome (likely benign) |
rs117546833 | NM_001080432.3:c.1239+24G>A | 0.0001861 | 0.0005935 | - | VarSome (benign) |
rs370874825 | NM_001080432.3:c.1239+32T>G | 0.000 | 0.0005938 | - | VarSome (likely benign) |
rs144100465 | NM_001080432.3:c.1239+22454G>A | 0.004061 | 0.003961 | - | VarSome (likely benign) |
rs2287142 | NM_001080432.3:c.1239+22488G>A | 0.02829 | 0.02925 | - | VarSome (benign) |
rs567718105 | NM_001080432.3:c.125A>G | 0.0006077 | 0.003189 | - | ClinVar (uncertain significance) VarSome (likely benign) |
dbSNP ID | Nucleotide Changes (NM_002062.5) | Minor Allele Frequency (gnomADv3.1.2) | Minor Allele Frequency (RUSeq) | Associated Phenotype * | Database (ClinVar, LOVD, VarSome) |
---|---|---|---|---|---|
rs10305420 | NM_002062.5:c.20C>T | 0.3921 | 0.3250 | Dyslipidemia [82], resistance to liraglutide [83] and exenatide [84] | VarSome (benign) |
rs201068918 | NM_002062.5:c.283+34G>A | 0.007481 | 0.007514 | - | VarSome (benign) |
rs3765468 | NM_002062.5:c.390G>A | 0.1047 | 0.1104 | - | VarSome (benign) |
rs3765467 | NM_002062.5:c.392G>A | 0.002684 | 0.01510 | Metabolic syndrome/T2DM [85], insulin levels [86] | VarSome (benign) |
rs6918287 | NM_002062.5:c.399A>G | 0.9887 | 0.9760 | VarSome (Likely benign) | |
rs61754624 | NM_002062.5:c.501C>T | 0.0006594 | 0.005028 | - | ClinVar (Likely benign) VarSome (benign) |
rs6923761 | NM_002062.5:c.502G>A | 0.3301 | 0.2931 | BMI and metabolic parameters [87] | LOVD (Uncertain significant) VarSome (benign) |
rs10305457 | NM_002062.5:c.509+16C>T | 0.09757 | 0.1026 | - | VarSome (Likely benign) |
rs2235868 | NM_002062.5:c.526A>C | 0.5176 | - | - | VarSome (benign) |
rs200132876 | NM_002062.5:c.774G>A | 0.000007744 | 0.0005537 | - | VarSome (Likely benign) |
rs1042044 | NM_002062.5:c.780A>C | 0.5577 | 0.5742 | VarSome (benign) | |
rs761387 | NM_002062.5:c.884+43A>G | 0.1013 | 0.1421 | GLP-1 and glucose levels [88], | VarSome(benign) |
rs10305492 | NM_002062.5:c.946G>A | 0.01591 | 0.01657 | Insulin secretion-, T2DM, glucose levels [85] | VarSome (benign) |
rs761386 | NM_002062.5:c.955-17C>T | 0.03038 | 0.05365 | Obesity [89] | VarSome (Uncertain significant) |
rs10305494 | NM_002062.5:c.1044-37G>T | 0.001031 | 0.007190 | - | VarSome (benign) |
rs12212036 | NM_002062.5:c.1122C>T | 0.005851 | 0.004860 | - | ClinVar (Benign) VarSome (benign) |
rs1126476 | NM_002062.5:c.1200A>C | 0.4744 | 0.5135 | - | VarSome (benign) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bairqdar, A.; Shakhtshneider, E.; Ivanoshchuk, D.; Mikhailova, S.; Kashtanova, E.; Shramko, V.; Polonskaya, Y.; Ragino, Y. Rare Variants of Obesity-Associated Genes in Young Adults with Abdominal Obesity. J. Pers. Med. 2023, 13, 1500. https://doi.org/10.3390/jpm13101500
Bairqdar A, Shakhtshneider E, Ivanoshchuk D, Mikhailova S, Kashtanova E, Shramko V, Polonskaya Y, Ragino Y. Rare Variants of Obesity-Associated Genes in Young Adults with Abdominal Obesity. Journal of Personalized Medicine. 2023; 13(10):1500. https://doi.org/10.3390/jpm13101500
Chicago/Turabian StyleBairqdar, Ahmad, Elena Shakhtshneider, Dinara Ivanoshchuk, Svetlana Mikhailova, Elena Kashtanova, Viktoriya Shramko, Yana Polonskaya, and Yuliya Ragino. 2023. "Rare Variants of Obesity-Associated Genes in Young Adults with Abdominal Obesity" Journal of Personalized Medicine 13, no. 10: 1500. https://doi.org/10.3390/jpm13101500
APA StyleBairqdar, A., Shakhtshneider, E., Ivanoshchuk, D., Mikhailova, S., Kashtanova, E., Shramko, V., Polonskaya, Y., & Ragino, Y. (2023). Rare Variants of Obesity-Associated Genes in Young Adults with Abdominal Obesity. Journal of Personalized Medicine, 13(10), 1500. https://doi.org/10.3390/jpm13101500