The Role of Small Airway Disease in Pulmonary Fibrotic Diseases
Abstract
:1. Introduction
2. Small Airways in IPF
3. The Small Airway Disease in Other Fibrotic Diseases
4. The Small Airways in Autoimmune Interstitial Lung Disease
5. Future Directions, Limitations, and Research Gaps Regarding the Small Airways
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- Wijsenbeek, M.; Suzuki, A.; Maher, T.M. Interstitial Lung Diseases. Lancet 2022, 400, 769–786. [Google Scholar] [CrossRef] [PubMed]
- Antoniou, K.M.; Margaritopoulos, G.A.; Tomassetti, S.; Bonella, F.; Costabel, U.; Poletti, V. Interstitial Lung Disease. Eur. Respir. Rev. 2014, 23, 40–54. [Google Scholar] [CrossRef] [PubMed]
- Podolanczuk, A.J.; Wong, A.W.; Saito, S.; Lasky, J.A.; Ryerson, C.J.; Eickelberg, O. Update in Interstitial Lung Disease 2020. Am. J. Respir. Crit. Care Med. 2021, 203, 1343–1352. [Google Scholar] [CrossRef] [PubMed]
- Wijsenbeek, M.; Cottin, V. Spectrum of Fibrotic Lung Diseases. N. Engl. J. Med. 2020, 383, 958–968. [Google Scholar] [CrossRef]
- Moss, B.J.; Ryter, S.W.; Rosas, I.O. Pathogenic Mechanisms Underlying Idiopathic Pulmonary Fibrosis. Annu. Rev. Pathol. Mech. Dis. 2022, 17, 515–546. [Google Scholar] [CrossRef] [PubMed]
- Zhao, M.; Wang, L.; Wang, M.; Zhou, S.; Lu, Y.; Cui, H.; Racanelli, A.C.; Zhang, L.; Ye, T.; Ding, B.; et al. Targeting Fibrosis: Mechanisms and Clinical Trials. Signal Transduct. Target. Ther. 2022, 7, 206. [Google Scholar] [CrossRef] [PubMed]
- Wynn, T.A.; Ramalingam, T.R. Mechanisms of Fibrosis: Therapeutic Translation for Fibrotic Disease. Nat. Med. 2012, 18, 1028–1040. [Google Scholar] [CrossRef]
- Henderson, N.C.; Rieder, F.; Wynn, T.A. Fibrosis: From Mechanisms to Medicines. Nature 2020, 587, 555–566. [Google Scholar] [CrossRef]
- Beyer, C.; Schett, G.; Gay, S.; Distler, O.; Distler, J.H.W. Hypoxia. Hypoxia in the Pathogenesis of Systemic Sclerosis. Arthritis Res. Ther. 2009, 11, 220. [Google Scholar] [CrossRef]
- Frizzelli, A.; Nicolini, G.; Chetta, A. Small Airways: Not Just Air Ducts—Pathophysiological Aspects and Clinical Implications. Respiration 2022, 101, 953–958. [Google Scholar] [CrossRef]
- Graham, B.L.; Steenbruggen, I.; Miller, M.R.; Barjaktarevic, I.Z.; Cooper, B.G.; Hall, G.L.; Hallstrand, T.S.; Kaminsky, D.A.; McCarthy, K.; McCormack, M.C.; et al. Standardization of Spirometry 2019 Update. An Official American Thoracic Society and European Respiratory Society Technical Statement. Am. J. Respir. Crit. Care Med. 2019, 200, e70–e88. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Li, X.-Y.; Yuan, L.-R.; Wang, H.-L.; Pang, M. Evaluation of Small Airway Function and Its Application in Patients with Chronic Obstructive Pulmonary Disease (Review). Exp. Ther. Med. 2021, 22, 1386. [Google Scholar] [CrossRef] [PubMed]
- Constant, C.; Descalço, A.; Silva, A.M.; Pereira, L.; Barreto, C.; Bandeira, T. Implementing Nitrogen Multiple Breath Washout as a Clinical Tool—A Feasibility Study. Pulmonology 2021, 27, 569–571. [Google Scholar] [CrossRef] [PubMed]
- Broaddus, V.C.; Gotway, M.B.; Mason, R.J.; Murray, J.F.; Nadel, J.A. Murray & Nadel’s Textbook of Respiratory Medicine, 2-Volume Set, 6th ed.; Elsevier—Health Sciences Division: Philadelphia, PA, USA, 2015; ISBN 9781455733835. [Google Scholar]
- Gelb, A.F.; Klein, E. The Volume of Isoflow and Increase in Maximal Flow at 50 Percent of Forced Vital Capacity during Helium-Oxygen Breathing as Tests of Small Airway Dysfunction. Chest 1977, 71, 396–399. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Joshi, S.; Oberle, A.J.; Wong, A.-K.; Shaz, D.; Thapamagar, S.; Tan, L.; Anholm, J.D.; Giri, P.C.; Henriquez, C.; et al. Development and Evaluation of a Small Airway Disease Index Derived from Modeling the Late-Expiratory Flattening of the Flow-Volume Loop. Front. Physiol. 2022, 13, 914972. [Google Scholar] [CrossRef]
- Qi, G.-S.; Zhou, Z.-C.; Gu, W.-C.; Xi, F.; Wu, H.; Yang, W.-L.; Liu, J.-M. Detection of the Airway Obstruction Stage in Asthma Using Impulse Oscillometry System. J. Asthma 2013, 50, 45–51. [Google Scholar] [CrossRef]
- Komarow, H.D.; Myles, I.A.; Uzzaman, A.; Metcalfe, D.D. Impulse Oscillometry in the Evaluation of Diseases of the Airways in Children. Ann. Allergy Asthma Immunol. 2011, 106, 191–199. [Google Scholar] [CrossRef]
- Singh, D. Small Airway Disease in Patients with Chronic Obstructive Pulmonary Disease. Tuberc. Respir. Dis. 2017, 80, 317–324. [Google Scholar] [CrossRef]
- McNulty, W.; Usmani, O.S. Techniques of Assessing Small Airways Dysfunction. Eur. Clin. Respir. J. 2014, 1, 25898. [Google Scholar] [CrossRef]
- Hogg, J.C.; Paré, P.D.; Hackett, T.L. The Contribution of Small Airway Obstruction to the Pathogenesis of Chronic Obstructive Pulmonary Disease. Physiol. Rev. 2017, 97, 529–552. [Google Scholar] [CrossRef]
- The Outer Wall of Small Airways Is a Major Site of Remodeling in Fatal Asthma. Available online: https://oce.ovid.com/article/00004483-200905000-00024 (accessed on 8 August 2023).
- Cottini, M.; Lombardi, C.; Berti, A.; Comberiati, P. Small-Airway Dysfunction in Paediatric Asthma. Curr. Opin. Allergy Clin. Immunol. 2021, 21, 128–134. [Google Scholar] [CrossRef] [PubMed]
- Cottini, M.; Lombardi, C.; Micheletto, C. Small Airway Dysfunction and Bronchial Asthma Control: The State of the Art. Asthma Res. Pract. 2015, 1, 13. [Google Scholar] [CrossRef] [PubMed]
- Crisafulli, E.; Pisi, R.; Aiello, M.; Vigna, M.; Tzani, P.; Torres, A.; Bertorelli, G.; Chetta, A. Prevalence of Small-Airway Dysfunction among COPD Patients with Different GOLD Stages and Its Role in the Impact of Disease. Respiration 2016, 93, 32–41. [Google Scholar] [CrossRef] [PubMed]
- Pisi, R.; Aiello, M.; Zanini, A.; Tzani, P.; Paleari, D.; Marangio, E.; Spanevello, A.; Nicolini, G.; Chetta, A. Small Airway Dysfunction and Flow and Volume Bronchodilator Responsiveness in Patients with Chronic Obstructive Pulmonary Disease. Int. J. COPD 2015, 10, 1191–1197. [Google Scholar] [CrossRef]
- Postma, D.S.; Brightling, C.; Baldi, S.; Van den Berge, M.; Fabbri, L.M.; Gagnatelli, A.; Papi, A.; Van der Molen, T.; Rabe, K.F.; Siddiqui, S.; et al. Exploring the Relevance and Extent of Small Airways Dysfunction in Asthma (ATLANTIS): Baseline Data from a Prospective Cohort Study. Lancet Respir. Med. 2019, 7, 402–416. [Google Scholar] [CrossRef] [PubMed]
- Usmani, O.S.; Han, M.L.K.; Kaminsky, D.A.; Hogg, J.; Hjoberg, J.; Patel, N.; Hardin, M.; Keen, C.; Rennard, S.; Blé, F.X.; et al. Seven Pillars of Small Airways Disease in Asthma and COPD: Supporting Opportunities for Novel Therapies. Chest 2021, 160, 114–134. [Google Scholar] [CrossRef]
- Van Der Wiel, E.; Postma, D.S.; Van Der Molen, T.; Schiphof-Godart, L.; Ten Hacken, N.H.T.; Van Den Berge, M. Effects of Small Airway Dysfunction on the Clinical Expression of Asthma: A Focus on Asthma Symptoms and Bronchial Hyper-Responsiveness. Allergy 2014, 69, 1681–1688. [Google Scholar] [CrossRef]
- Manoharan, A.; Anderson, W.J.; Lipworth, J.; Ibrahim, I.; Lipworth, B.J. Small Airway Dysfunction Is Associated with Poorer Asthma Control. Eur. Respir. J. 2014, 44, 1353–1355. [Google Scholar] [CrossRef]
- Kjellberg, S.; Houltz, B.K.; Zetterström, O.; Robinson, P.D.; Gustafsson, P.M. Clinical Characteristics of Adult Asthma Associated with Small Airway Dysfunction. Respir. Med. 2016, 117, 92–102. [Google Scholar] [CrossRef]
- Lipworth, B.; Manoharan, A.; Anderson, W. Unlocking the Quiet Zone: The Small Airway Asthma Phenotype. Lancet Respir. Med. 2014, 2, 497–506. [Google Scholar] [CrossRef]
- Tzouvelekis, A.; Gomatou, G.; Bouros, E.; Trigidou, R.; Tzilas, V.; Bouros, D. Common Pathogenic Mechanisms Between Idiopathic Pulmonary Fibrosis and Lung Cancer. Chest 2019, 156, 383–391. [Google Scholar] [CrossRef] [PubMed]
- Raghu, G.; Remy-Jardin, M.; Richeldi, L.; Thomson, C.C.; Inoue, Y.; Johkoh, T.; Kreuter, M.; Lynch, D.A.; Maher, T.M.; Martinez, F.J.; et al. Idiopathic Pulmonary Fibrosis (an Update) and Progressive Pulmonary Fibrosis in Adults: An Official ATS/ERS/JRS/ALAT Clinical Practice Guideline. Am. J. Respir. Crit. Care Med. 2022, 205, e18–e47. [Google Scholar] [CrossRef] [PubMed]
- Chanda, D.; Otoupalova, E.; Smith, S.R.; Volckaert, T.; De Langhe, S.P.; Thannickal, V.J. Developmental Pathways in the Pathogenesis of Lung Fibrosis. Mol. Aspects Med. 2019, 65, 56–69. [Google Scholar] [CrossRef]
- Berend, N. Respiratory Disease and Respiratory Physiology: Putting Lung Function into Perspective Interstitial Lung Disease. Respirology 2014, 19, 952–959. [Google Scholar] [CrossRef] [PubMed]
- Ryu, J.H.; Azadeh, N.; Samhouri, B.; Yi, E. Recent Advances in the Understanding of Bronchiolitis in Adults. F1000Research 2020, 9, 568. [Google Scholar] [CrossRef]
- Daccord, C.; Maher, T.M. Recent Advances in Understanding Idiopathic Pulmonary Fibrosis. F1000Research 2016, 5, 1046. [Google Scholar] [CrossRef] [PubMed]
- Maher, T.M. Small Airways in Idiopathic Pulmonary Fibrosis: Quiet but Not Forgotten. Am. J. Respir. Crit. Care Med. 2021, 204, 1010–1011. [Google Scholar] [CrossRef]
- Verleden, S.E.; Tanabe, N.; McDonough, J.E.; Vasilescu, D.M.; Xu, F.; Wuyts, W.A.; Piloni, D.; De Sadeleer, L.; Willems, S.; Mai, C.; et al. Small Airways Pathology in Idiopathic Pulmonary Fibrosis: A Retrospective Cohort Study. Lancet Respir. Med. 2020, 8, 573–584. [Google Scholar] [CrossRef]
- Plantier, L.; Cazes, A.; Dinh-Xuan, A.-T.; Bancal, C.; Marchand-Adam, S.; Crestani, B. Physiology of the lung in idiopathic pulmonary fibrosis. Eur. Respir. Rev. 2018, 27, 170062. [Google Scholar] [CrossRef]
- Ikezoe, K.; Hackett, T.L.; Peterson, S.; Prins, D.; Hague, C.J.; Murphy, D.; LeDoux, S.; Chu, F.; Xu, F.; Cooper, J.D.; et al. Small Airway Reduction and Fibrosis Is an Early Pathologic Feature of Idiopathic Pulmonary Fibrosis. Am. J. Respir. Crit. Care Med. 2021, 204, 1048–1059. [Google Scholar] [CrossRef]
- Fulmer, J.D.; Roberts, W.C.; Von Gal, E.R.; Crystal, R.G. Small Airways in Idiopathic Pulmonary Fibrosis. Comparison of Morphologic and Physiologic Observations. J. Clin. Investig. 1977, 60, 595–610. [Google Scholar] [CrossRef] [PubMed]
- Panagopoulos, P.K.; Goules, A.V.; Georgakopoulou, V.E.; Kallianos, A.; Chatzinikita, E.; Pezoulas, V.C.; Malagari, K.; Fotiadis, D.I.; Vlachoyiannopoulos, P.; Vassilakopoulos, T.; et al. Small airways dysfunction in patients with systemic sclerosis and interstitial lung disease. Front. Med. 2022, 9, 1016898. [Google Scholar] [CrossRef]
- Duman, D.; Taştı, Ö.F.; Merve Tepetam, F. Assessment of small airway dysfunction by impulse oscillometry (IOS) in COPD and IPF patients. Eur. Rev. Med. Pharmacol. Sci. 2023, 27, 3033–3044. [Google Scholar] [CrossRef]
- Yin, C.; Xie, H.; He, X.; Zhang, Y.; Zhang, A.; Li, H. Small airway dysfunction in idiopathic pulmonary fibrosis. Front. Pharmacol. 2022, 13, 1025814. [Google Scholar] [CrossRef]
- Zhang, X.; Xie, B.; Ban, C.; Ren, Y.; Ye, Q.; Zhu, M.; Liu, Y.; Zhang, S.; Geng, J.; Jiang, D.; et al. Small airway dysfunction in Chinese patients with idiopathic pulmonary fibrosis. BMC Pulm. Med. 2022, 22, 297. [Google Scholar] [CrossRef]
- Willems, S.; Verleden, S.; McDonough, J.; Vanaudenaerde, B.; Verleden, G.; Decramer, M.; Verschakelen, J.; Hogg, J.; Wuyts, W. Changes in the small airways in idiopathic pulmonary fibrosis. Eur. Respir. J. 2013, 42 (Suppl. S57), 474. [Google Scholar]
- Fulmer, J.D.; Roberts, W.C. Small Airways and Interstitial Pulmonary Disease. Chest 1980, 77, 470–473. [Google Scholar] [CrossRef] [PubMed]
- Belloli, E.A.; Beckford, R.; Hadley, R.; Flaherty, K.R. Idiopathic Non-Specific Interstitial Pneumonia. Respirology 2016, 21, 259–268. [Google Scholar] [CrossRef] [PubMed]
- Renzoni, E.A.; Poletti, V.; Mackintosh, J.A. Disease Pathology in Fibrotic Interstitial Lung Disease: Is It All about Usual Interstitial Pneumonia? Lancet 2021, 398, 1437–1449. [Google Scholar] [CrossRef] [PubMed]
- Song, D.Y.; Zhang, S.; Zhang, L.P.; Jin, M.L.; Li, X.; Bao, N.; Ren, Y.H.; Liu, M.; Dai, H.P. Differences in Small Airway Lesions in Patients with Different Types of Idiopathic Interstitial Pneumonia. Zhonghua Yi Xue Za Zhi 2019, 99, 2325–2331. [Google Scholar] [CrossRef]
- Figueira De Mello, G.C.; Ribeiro Carvalho, C.R.; Adib Kairalla, R.; Nascimento Saldiva, P.H.; Fernezlian, S.; Ferraz Silva, L.F.; Dolhnikoff, M.; Mauad, T. Small Airway Remodeling in Idiopathic Interstitial Pneumonias: A Pathological Study. Respiration 2010, 79, 322–332. [Google Scholar] [CrossRef]
- Wang, P.; Jones, K.D.; Urisman, A.; Elicker, B.M.; Urbania, T.; Johannson, K.A.; Assayag, D.; Lee, J.; Wolters, P.J.; Collard, H.R.; et al. Pathologic Findings and Prognosis in a Large Prospective Cohort of Chronic Hypersensitivity Pneumonitis. Chest 2017, 152, 502–509. [Google Scholar] [CrossRef] [PubMed]
- Dias, O.M.; Baldi, B.G.; Ferreira, J.G.; Cardenas, L.Z.; Pennati, F.; Salito, C.; Carvalho, C.R.R.; Aliverti, A.; de Albuquerque, A.L.P. Mechanisms of Exercise Limitation in Patients with Chronic Hypersensitivity Pneumonitis. ERJ Open Res. 2018, 4, 00043–02018. [Google Scholar] [CrossRef] [PubMed]
- Raghu, G.; Remy-Jardin, M.; Ryerson, C.J.; Myers, J.L.; Kreuter, M.; Vasakova, M.; Bargagli, E.; Chung, J.H.; Collins, B.F.; Bendstrup, E.; et al. Diagnosis of Hypersensitivity Pneumonitis in Adults. An Official ATS/JRS/ALAT Clinical Practice Guideline. Am. J. Respir. Crit. Care Med. 2020, 202, e36–e69, Erratum in Am. J. Respir. Crit. Care Med. 2021, 203, 150–151; Erratum in Am. J. Respir. Crit. Care Med. 2022, 206, 518. [Google Scholar] [CrossRef]
- Fernández Pérez, E.R.; Travis, W.D.; Lynch, D.A.; Brown, K.K.; Johannson, K.A.; Selman, M.; Ryu, J.H.; Wells, A.U.; Tony Huang, Y.C.; Pereira, C.A.C.; et al. Diagnosis and Evaluation of Hypersensitivity Pneumonitis: CHEST Guideline and Expert Panel Report. Chest 2021, 160, e97–e156. [Google Scholar] [CrossRef] [PubMed]
- Guerrero Zúñiga, S.; Sánchez Hernández, J.; Mateos Toledo, H.; Mejía Ávila, M.; Gochicoa-Rangel, L.; Miguel Reyes, J.L.; Selman, M.; Torre-Bouscoulet, L. Small Airway Dysfunction in Chronic Hypersensitivity Pneumonitis. Respirology 2017, 22, 1637–1642. [Google Scholar] [CrossRef] [PubMed]
- Costabel, U.; Miyazaki, Y.; Pardo, A.; Koschel, D.; Bonella, F.; Spagnolo, P.; Guzman, J.; Ryerson, C.J.; Selman, M. Hypersensitivity Pneumonitis. Nat. Rev. Dis. Primers 2020, 6, 65. [Google Scholar] [CrossRef]
- Dalphin, J.C.; Didier, A. Environmental Causes of the Distal Airways Disease. Hypersensitivity Pneumonitis and Rare Causes. Rev. Mal. Respir. 2013, 30, 669–681. [Google Scholar] [CrossRef]
- Asai, N.; Yokoi, T.; Nishiyama, N.; Koizumi, Y.; Sakanashi, D.; Kato, H.; Hagihara, M.; Suematsu, H.; Yamagishi, Y.; Mikamo, H. Secondary Organizing Pneumonia Following Viral Pneumonia Caused by Severe Influenza B: A Case Report and Literature Reviews. BMC Infect. Dis. 2017, 17, 572. [Google Scholar] [CrossRef]
- Mengoli, M.C.; Colby, T.V.; Cavazza, A.; Zanelli, M.; De Marco, L.; Casolari, R.; Lococo, F.; Rossi, G. Incidental Iatrogenic Form of Collagenized Organizing Pneumonia. Hum. Pathol. 2018, 73, 192–193. [Google Scholar] [CrossRef]
- Kavaliunaite, E.; Aurora, P. Diagnosing and Managing Bronchiolitis Obliterans in Children. Expert Rev. Respir. Med. 2019, 13, 481–488. [Google Scholar] [CrossRef]
- Jerkic, S.P.; Brinkmann, F.; Calder, A.; Casey, A.; Dishop, M.; Griese, M.; Kurland, G.; Niemitz, M.; Nyilas, S.; Schramm, D.; et al. Postinfectious Bronchiolitis Obliterans in Children: Diagnostic Workup and Therapeutic Options: A Workshop Report. Can. Respir. J. 2020, 2020, 5852827. [Google Scholar] [CrossRef] [PubMed]
- Bergeron, A.; Cheng, G.S. Bronchiolitis Obliterans Syndrome and Other Late Pulmonary Complications After Allogeneic Hematopoietic Stem Cell Transplantation. Clin. Chest Med. 2017, 38, 607–621. [Google Scholar] [CrossRef] [PubMed]
- Grønningsæter, I.S.; Tsykunova, G.; Lilleeng, K.; Ahmed, A.B.; Bruserud, Ø.; Reikvam, H. Bronchiolitis Obliterans Syndrome in Adults after Allogeneic Stem Cell Transplantation-Pathophysiology, Diagnostics and Treatment. Expert Rev. Clin. Immunol. 2017, 13, 553–569. [Google Scholar] [CrossRef] [PubMed]
- Poletti, V.; Casoni, G.; Ravaglia, C.; Romagnoli, M.; Tomassetti, S. Bronchoalveolar Lavage. Technical Notes. Monaldi Arch. Chest Dis. 2011, 75, 42–43. [Google Scholar] [CrossRef] [PubMed]
- Colom, A.J.; Teper, A.M. Post-Infectious Bronchiolitis Obliterans. Pediatr. Pulmonol. 2019, 54, 212–219. [Google Scholar] [CrossRef] [PubMed]
- Flanagan, F.; Casey, A.; Reyes-Múgica, M.; Kurland, G. Post-Infectious Bronchiolitis Obliterans in Children. Paediatr. Respir. Rev. 2022, 42, 69–78. [Google Scholar] [CrossRef]
- Batra, K.; Adams, T.N. Imaging features of idiopathic interstitial lung diseases. J. Thorac. Imaging 2023, 38, S19–S29. [Google Scholar] [CrossRef]
- Vacchi, C.; Sebastiani, M.; Cassone, G.; Cerri, S.; Della Casa, G.; Salvarani, C.; Manfredi, A. Therapeutic Options for the Treatment of Interstitial Lung Disease Related to Connective Tissue Diseases. A Narrative Review. J. Clin. Med. 2020, 9, 407. [Google Scholar] [CrossRef]
- Jee, A.S.; Corte, T.J. Current and Emerging Drug Therapies for Connective Tissue Disease-Interstitial Lung Disease (CTD-ILD). Drugs 2019, 79, 1511–1528. [Google Scholar] [CrossRef]
- Gutsche, M.; Rosen, G.D.; Swigris, J.J. Connective Tissue Disease-Associated Interstitial Lung Disease: A Review. Curr. Respir. Care Rep. 2012, 1, 224. [Google Scholar] [CrossRef]
- Xu, L.; Sgalla, G.; Wang, F.; Zhu, M.; Li, L.; Li, P.; Xie, Q.; Lv, X.; Yu, J.; Wang, G.; et al. Monitoring Small Airway Dysfunction in Connective Tissue Disease-Related Interstitial Lung Disease: A Retrospective and Prospective Study. BMC Pulm. Med. 2023, 23, 90. [Google Scholar] [CrossRef] [PubMed]
- Rose, N.R. Prediction and Prevention of Autoimmune Disease in the 21st Century: A Review and Preview. Am. J. Epidemiol. 2016, 183, 403–406. [Google Scholar] [CrossRef]
- Wang, L.; Wang, F.-S.; Gershwin, M.E. Human Autoimmune Diseases: A Comprehensive Update. J. Intern. Med. 2015, 278, 369–395. [Google Scholar] [CrossRef]
- Stojanovich, L.; Marisavljevich, D. Stress as a Trigger of Autoimmune Disease. Autoimmun. Rev. 2008, 7, 209–213. [Google Scholar] [CrossRef] [PubMed]
- Dugowson, C.E. Rheumatoid Arthritis. In Women Health; Academic Press: Cambridge, MA, USA, 2000; pp. 674–685. [Google Scholar] [CrossRef]
- Mackie, S.; Quinn, M.; Emery, P. Rheumatoid Arthritis. In The Autoimmune Diseases, 4th ed.; Academic Press: Cambridge, MA, USA, 2006; pp. 417–436. [Google Scholar] [CrossRef]
- Conigliaro, P.; Chimenti, M.S.; Triggianese, P.; Sunzini, F.; Novelli, L.; Perricone, C.; Perricone, R. Autoantibodies in Inflammatory Arthritis. Autoimmun. Rev. 2016, 15, 673–683. [Google Scholar] [CrossRef] [PubMed]
- Saxena, A.; Raychaudhuri, S.K.; Raychaudhuri, S.P. Rheumatoid Arthritis: Disease Pathophysiology. In Inflammation, Advancing Age and Nutrition: Research and Clinical Interventions; Academic Press: Cambridge, MA, USA, 2013; pp. 215–229. [Google Scholar] [CrossRef]
- Wolff, D. Rheumatoid Arthritis. In xPharm: The Comprehensive Pharmacology Reference; Elsevier: Amsterdam, The Netherlands, 2007; pp. 1–11. [Google Scholar] [CrossRef]
- Dimitroulas, T.; Sandoo, A.; Skeoch, S.; O’Sullivan, M.; Yessirkepov, M.; Ayvazyan, L.; Gasparyan, A.Y.; Metsios, G.S.; Kitas, G.D. Rheumatoid Arthritis. In The Heart in Rheumatic, Autoimmune and Inflammatory Diseases: Pathophysiology, Clinical Aspects and Therapeutic Approaches; Academic Press: Cambridge, MA, USA, 2017; pp. 129–165. [Google Scholar] [CrossRef]
- Figus, F.A.; Piga, M.; Azzolin, I.; McConnell, R.; Iagnocco, A. Rheumatoid Arthritis: Extra-Articular Manifestations and Comorbidities. Autoimmun. Rev. 2021, 20, 102776. [Google Scholar] [CrossRef]
- Laria, A.; Lurati, A.M.; Zizzo, G.; Zaccara, E.; Mazzocchi, D.; Re, K.A.; Marrazza, M.; Faggioli, P.; Mazzone, A. Interstitial Lung Disease in Rheumatoid Arthritis: A Practical Review. Front. Med. 2022, 9, 837133. [Google Scholar] [CrossRef]
- Zohal, M.A.; Yazdi, Z.; Ghaemi, A.R.; Abbasi, M. Small Airways Involvement in Patients with Rheumatoid Arthritis. Glob. J. Health Sci. 2013, 5, 166. [Google Scholar] [CrossRef]
- Pinheiro, F.A.G.; Souza, D.C.C.; Sato, E.I. A Study of Multiple Causes of Death in Rheumatoid Arthritis. J. Rheumatol. 2015, 42, 2221–2228. [Google Scholar] [CrossRef]
- Wright, G.D.; Roberts, S.D.; Finch, M.B.; Martin, B. Long Term Follow up of Small Airways Obstruction in Patients with Rheumatoid Arthritis. Ann. Rheum. Dis. 1998, 57, 258. [Google Scholar] [CrossRef]
- Perez, T.; Remy-Jardin, M.; Cortet, B. Airways Involvement in Rheumatoid Arthritis: Clinical, Functional, and HRCT Findings. Am. J. Respir. Crit. Care Med. 1998, 157, 1658–1665. [Google Scholar] [CrossRef] [PubMed]
- Inokuma, S. Obliterative Small Airway Diseases in Rheumatoid Arthritis. Intern. Med. 1998, 37, 236–237. [Google Scholar] [CrossRef]
- Singh, R.; Krishnamurthy, P.; Deepak, D.; Sharma, B.; Prasad, A. Small Airway Disease and Its Predictors in Patients with Rheumatoid Arthritis. Respir. Investig. 2022, 60, 379–384. [Google Scholar] [CrossRef] [PubMed]
- Mori, S.; Koga, Y.; Sugimoto, M. Small Airway Obstruction in Patients with Rheumatoid Arthritis. Mod. Rheumatol. 2011, 21, 164–173. [Google Scholar] [CrossRef] [PubMed]
- Lopez Velazquez, M.; Highland, K.B. Pulmonary Manifestations of Systemic Lupus Erythematosus and Sjögren’s Syndrome. Curr. Opin. Rheumatol. 2018, 30, 449–464. [Google Scholar] [CrossRef]
- Rao, A.P.; Raghuram, J. Systemic Lupus Erythematosus. Ann. Intern. Med. 2020, 18, 313–319. [Google Scholar] [CrossRef]
- Fortuna, G.; Brennan, M.T. Systemic Lupus Erythematosus: Epidemiology, Pathophysiology, Manifestations, and Management. Dent. Clin. N. Am. 2013, 57, 631–655. [Google Scholar] [CrossRef]
- Papiris, S.A.; Maniati, M.; Constantopoulos, S.H.; Roussos, C.; Moutsopoulos, H.M.; Skopouli, F.N. Lung involvement in primary Sjogren’s syndrome is mainly related to the small airway disease. Ann. Rheum. Dis. 1999, 58, 61–64. [Google Scholar] [CrossRef]
- Kampolis, C.F.; Fragkioudaki, S.; Mavragani, C.P.; Zormpala, A.; Samakovli, A.; Moutsopoulos, H.M. Prevalence and spectrum of symptomatic pulmonary involvement in primary Sjögren’s syndrome. Clin. Exp. Rheumatol. 2018, 36 (Suppl. S112), 94–101. [Google Scholar]
- Karim, M.Y.; Miranda, L.C.; Tench, C.M.; Gordon, P.A.; D’Cruz, D.P.; Khamashta, M.A.; Hughes, G.R.V. Presentation and Prognosis of the Shrinking Lung Syndrome in Systemic Lupus Erythematosus. Semin. Arthritis Rheum. 2002, 31, 289–298. [Google Scholar] [CrossRef]
- Fisseler-Eckhoff, A.; Märker-Hermann, E. Interstitial Lung Disease Associated with Connective Tissue Disease. Die Pathol. 2021, 42, 4–10. [Google Scholar] [CrossRef] [PubMed]
- Alam, M.M.; Sarkar, S.; Ghosh, P.; Ray, B.; Mondal, R. Spirometric Evaluation in Juvenile Systemic Lupus Erythematosus. Indian Pediatr. 2014, 51, 909–911. [Google Scholar] [CrossRef] [PubMed]
- Deshwal, H.; Valeria Arrossi, A.; Parambil, J.G. Obliterative Bronchiolitis as a Systemic Manifestation of Cutaneous Lupus Erythematosus. J. Clin. Rheumatol. 2021, 27, S595–S597. [Google Scholar] [CrossRef]
- Hariri, L.P.; Unizony, S.; Stone, J.; Mino-Kenudson, M.; Sharma, A.; Matsubara, O.; Mark, E.J. Acute Fibrinous and Organizing Pneumonia in Systemic Lupus Erythematosus: A Case Report and Review of the Literature. Pathol. Int. 2010, 60, 755–759. [Google Scholar] [CrossRef]
- Wang, H.P.; Chen, C.M.; Chen, Y.Y.; Chen, W. Bronchiolitis Obliterans Organizing Pneumonia as an Initial Presentation of Systemic Lupus Erythematosus: A Rare Case Report and Literature Review. Case Rep. Med. 2016, 2016, 8431741. [Google Scholar] [CrossRef] [PubMed]
- Takada, H.; Saito, Y.; Nomura, A.; Ohga, S.; Kuwano, K.; Nakashima, N.; Aishima, S.; Tsuru, N.; Hara, T. Bronchiolitis Obliterans Organizing Pneumonia as an Initial Manifestation in Systemic Lupus Erythematosus. Pediatr. Pulmonol. 2005, 40, 257–260. [Google Scholar] [CrossRef]
- Otsuka, F.; Amano, T.; Hashimoto, N.; Takahashi, M.; Hayakawa, N.; Makino, H.; Ota, Z.; Ogura, T. Bronchiolitis Obliterans Organizing Pneumonia Associated with Systemic Lupus Erythematosus with Antiphospholipid Antibody. Intern. Med. 1996, 35, 341–344. [Google Scholar] [CrossRef]
- Johnson, D.C. Importance of Appropriately Adjusting Diffusing Capacity of the Lung for Carbon Monoxide and Diffusing Capacity of the Lung for Carbon Monoxide/Alveolar Volume Ratio for Lung Volume (4). Chest 2006, 129, 1113. [Google Scholar] [CrossRef]
- Baisya, R.; Devarasetti, P.K.; Uppin, S.G.; Narayanan, R.; Rajasekhar, L.; Sreejitha, K.S. Bronchiolitis Obliterans Organizing Pneumonia as the Pulmonary Manifestation of Lupus: A Review of Three Cases. Lupus 2020, 30, 336–341. [Google Scholar] [CrossRef]
- Gupta, S.; Ferrada, M.A.; Hasni, S.A. Pulmonary manifestations of Primary Sjögren’s syndrome: Underlying immunological mechanisms, clinical presentation, and Management. Front. Immunol. 2019, 10, 1327. [Google Scholar] [CrossRef]
- Peredo, R.A.; Beegle, S. Sjogren’s Syndrome and Pulmonary Disease. Adv. Exp. Med. Biol. 2021, 1303, 193–207. [Google Scholar] [CrossRef]
- Mahmood, F.; Ehtesham, M.; Mashhood Ali Bokhari, S.M.; Peredo-Wende, R.A. Sjögren’s syndrome and the respiratory system: A comprehensive approach. J. Lung Health Dis. 2021, 5, 19–25. [Google Scholar] [CrossRef]
- Flament, T.; Bigot, A.; Chaigne, B.; Henique, H.; Diot, E.; Marchand-Adam, S. Pulmonary manifestations of Sjögren’s syndrome. Eur. Respir. Rev. 2016, 25, 110–123. [Google Scholar] [CrossRef]
- Bartholomeo, A.; Aujla, S.; Eklund, M.; Kerrigan, C.; Riemer, E.; Gilbert, M. Pulmonary Manifestations of Childhood-Onset Primary Sjogren’s Syndrome (SS) Masquerading as Reactive Airways Disease in a Male Patient and Review of Interstitial Lung Disease Associated with SS. Pediatr. Rheumatol. 2022, 20, 101. [Google Scholar] [CrossRef]
- Lin, W.; Xin, Z.; Zhang, J.; Liu, N.; Ren, X.; Liu, M.; Su, Y.; Liu, Y.; Yang, L.; Guo, S.; et al. Interstitial Lung Disease in Primary Sjögren’s Syndrome. BMC Pulm. Med. 2022, 22, 73. [Google Scholar] [CrossRef]
- Nakanishi, M.; Fukuoka, J.; Tanaka, T.; Demura, Y.; Umeda, Y.; Ameshima, S.; Nishikawa, S.; Kitaichi, M.; Itoh, H.; Ishizaki, T. Small Airway Disease Associated with Sjögren’s Syndrome: Clinico-Pathological Correlations. Respir. Med. 2011, 105, 1931–1938. [Google Scholar] [CrossRef] [PubMed]
- Kreider, M.; Highland, K. Pulmonary Involvement in Sjögren Syndrome. Semin. Respir. Crit. Care Med. 2014, 35, 255–264. [Google Scholar] [CrossRef] [PubMed]
- Kokosi, M.; Riemer, E.C.; Highland, K.B. Pulmonary Involvement in Sjögren Syndrome. Clin. Chest Med. 2010, 31, 489–500. [Google Scholar] [CrossRef]
- Parke, A.L. Pulmonary Manifestations of Primary Sjögren’s Syndrome. Rheum. Dis. Clin. N. Am. 2008, 34, 907–920. [Google Scholar] [CrossRef] [PubMed]
- Respiratory Involvement in Patients with Sjögren’s Syndrome: Is It a Problem?—PubMed. Available online: https://pubmed.ncbi.nlm.nih.gov/3473624/ (accessed on 22 August 2023).
- Shi, J.H.; Liu, H.R.; Xu, W.B.; Feng, R.E.; Zhang, Z.H.; Tian, X.L.; Zhu, Y.J. Pulmonary Manifestations of Sjögren’s Syndrome. Respiration 2009, 78, 377–386. [Google Scholar] [CrossRef]
- Ludviksdottir, D.; Valtysdottir, S.T.; Hedenström, H.; Hällgren, R.; Gudbjörnsson, B. Eight-Year Folow up of Airway Hyperresponsiveness in Patients with Primary Sjögren’s Syndrome. Upsala J. Med. Sci. 2017, 122, 51–55. [Google Scholar] [CrossRef]
- Belperio, J.A.; Shaikh, F.; Abtin, F.G.; Fishbein, M.C.; Weigt, S.S.; Saggar, R.; Lynch, J.P., III. Diagnosis and Treatment of Pulmonary Sarcoidosis: A Review. JAMA 2022, 327, 856. [Google Scholar] [CrossRef]
- Song, M.; Manansala, M.; Parmar, P.J.; Ascoli, C.; Rubinstein, I.; Sweiss, N.J. Sarcoidosis and Autoimmunity. Curr. Opin. Pulm. Med. 2021, 27, 448–454. [Google Scholar] [CrossRef] [PubMed]
- Korsten, P.; Tampe, B.; Konig, M.F.; Nikiphorou, E. Sarcoidosis and Autoimmune Diseases: Differences, Similarities and Overlaps. Curr. Opin. Pulm. Med. 2018, 24, 504–512. [Google Scholar] [CrossRef] [PubMed]
- Huntley, C.C.; Patel, K.; Mughal, A.Z.; Coelho, S.; Burge, P.S.; Turner, A.M.; Walters, G.I. Airborne Occupational Exposures Associated with Pulmonary Sarcoidosis: A Systematic Review and Meta-Analysis. Occup. Environ. Med. 2023, 80, 580–589. [Google Scholar] [CrossRef]
- Morgenthau, A.S.; Teirstein, A.S. Sarcoidosis of the Upper and Lower Airways. Expert Rev. Respir. Med. 2011, 5, 823–833. [Google Scholar] [CrossRef] [PubMed]
- Verleden, S.E.; Vanstapel, A.; De Sadeleer, L.; Dubbeldam, A.; Goos, T.; Gyselinck, I.; Geudens, V.; Kaes, J.; Van Raemdonck, D.E.; Ceulemans, L.J.; et al. Distinct Airway Involvement in Subtypes of End-Stage Fibrotic Pulmonary Sarcoidosis. Chest 2021, 160, 562–571. [Google Scholar] [CrossRef]
- Radwan, L.; Grebska, E.; Koziorowski, A. Small Airways Function in Pulmonary Sarcoidosis. Scand. J. Respir. Dis. 1978, 59, 37–43. [Google Scholar]
- El Fakihi, S.; El Allam, A.; Tahoune, H.; Najimi, N.; Kadi, C.; Ibrahimi, A.; Bourkadi, J.-E.; Seghrouchni, F. Functional Characterization of Small and Large Alveolar Macrophages in Sarcoidosis and Idiopathic Pulmonary Fibrosis Compared with Non-Fibrosis Interstitial Lung Diseases. Hum. Antibodies 2023, 31, 59–69. [Google Scholar] [CrossRef]
Author/Ref. | Study Design | Study Population | Main Findings |
---|---|---|---|
Chen H. et al. [16] | Retrospective study | No study population; data from PFTs were used | If small airway disease is present, the flow during the late expiratory phase will significantly decrease, creating a more acute angle or a smaller ∠ABC. |
Verleden S. et al. [39] | Retrospective cohort study | Explanted lungs from patients with severe IPF (n = 11) who underwent lung transplantation were compared to a cohort of unused donor lungs—controls (n = 10). The control donor lungs had no known lung disease, comorbidities, or structural lung injury, and were considered suitable for transplantation. | Small airway disease is a feature of IPF, with significant loss of terminal bronchioles occurring within regions of minimal fibrosis. |
Ikezoe K. et al. [41] | Experimental study | Explanted lungs from patients with IPF (n = 8) and donor control subjects (n = 8) were inflated with air and frozen. | In IPF without microscopic fibrosis, terminal bronchioles decreased in number and increased in wall area. In IPF with microscopic fibrosis, terminal bronchioles had thicker airway walls and dilated airway lumens, leading to honeycomb cysts. |
Song D. et al. [51] | Experimental study | The study involved 46 patients with IIPs (19 IPF, 14 NSIP, and 13 COP). Prior to lung biopsy, pulmonary function and HRCT were assessed. Lung biopsy tissue was stained with hematoxylin–eosin to examine small airway abnormalities in pathology. The small airway abnormalities in pathology, pulmonary function, and HRCT were then compared. | The patients with IPF, NSIP, and COP had abnormal pathologic, physiological, and imaging changes in small airways. |
Figuerira de Mello G.C. et al. [52] | Experimental study | Lung biopsies from 29 patients with UIP and 8 with NSIP. Biopsies were compared with lung tissue from 13 patients with CB as positive controls and 10 normal autopsied control lungs. | The UIP, NSIP, and CB patients all were found to have increased bronchiolar inflammation, peribronchiolar inflammation, and fibrosis and decreased luminal areas. The UIP patients had thicker walls due to an increase in most airway compartments. The NSIP patients presented increased epithelial areas, whereas patients with CB had larger inner wall areas. Therefore, the small airways are indeed pathologically altered and can remodel the lungs in idiopathic interstitial pneumonias. |
Dalphin, J.C.; Didier, A. [59] | Literature review | No study population | HP is linked with bronchiole inflammation, granuloma formation, SAD pattern, and bronchial obstruction. |
Vacchi, C. et al. [71] | Literature review | No study population | ILD is one of the most severe clinical manifestations of CTDs with the heterogeneity of clinical expression of lung involvement in CTDs, and the unpredictable disease course could contribute to the difficulties in planning RCTs. |
Xu, L. et al. [73] | Two-part retrospective and prospective study | Retrospective study included patients with a diagnosis of CTD-ILD, n = 491, and a prospective study included n = 139 CTD-ILD patients. | About 50% of CTD-ILD patients had SAD. Improvement in FVC and no post-treatment improvement in SAD in CTD-ILD patients was found. |
Zohal, M.A. et al. [85] | Case–control study | Ninety-nine patients with RA. History taking, physical examination, laboratory tests, and spirometry were performed. Disease Activity Score 28 (DAS28) was used to assess RA severity. | Small airway involvement was found in patients with RA. |
Wright, G.D. et al. [87] | Retrospective study | Fifty-four RA patients had PFTs and chest radiography. The pulmonary function tests included FEV1, FVC, FEV1/FVC, FEF25–75, and TLCO. | This study confirmed the existence of a subgroup of non-smoking patients with RA who have isolated small airway obstruction. The abnormalities seemed to be progressive. |
Perez, T. et al. [88] | Prospective study | Fifty patients with RA were evaluated (nine males and forty-one females; mean age: 57.8 yr), including thirty-nine nonsmokers and eleven smokers (mean cigarette consumption: 15.3 pack-yr) without radiographic evidence of RA-related lung changes. | The data collected from this study support the concept of a high incidence of airway involvement in RA patients. Evidence of airway involvement on PFTs and/or HRCT scans was correlated with respiratory symptoms. |
Singh, R. et al. [90] | Retrospective study | Fifty consecutive patients were included and subjected to PFT and FOT. Those with features of SAD on PFT were subjected to HRCT of the chest. | SAD was present in one-third of the patients with RA, even in those with a short duration of disease, low to moderate disease activity, and no respiratory symptoms. |
Papiris, S.A. et al. [95] | Retrospective study | Sixty-one non-smoking patients were evaluated. A bronchial and/or transbronchial biopsy was performed on 13 of the patients. Physiological data were compared with that of a control group of 53 healthy non-smoking matched for age and sex subjects. | The airway epithelia seem to be the main target of the inflammatory lesion of the lung in patients with pSS. |
Karim, M.Y. et al. [97] | Retrospective/prospective study | Five patients were chosen retrospectively and two were chosen prospectively. All SLE patients. | SAD represents a rare complication of SLE. |
Lin, W. et al. [112] | Retrospective study | Data of 333 patients with newly diagnosed pSS were analyzed. | ILD involvement in pSS is a common clinical occurrence |
Shi, J. et al. [118] | Retrospective study | Fourteen pSS patients who underwent surgical lung biopsy were reviewed and histopathologic findings, radiologic findings, and lung function tests were analyzed. | The histopathologic patterns of pSS-ILD included lung interstitial involvement and small airway involvement or both. |
Ludviksdottir, D. et al. [119] | Prospective study | An eight-year study of lung function in 15 patients who fulfilled the Copenhagen criteria for pSS. Spirometry, plethysmography, diffusing capacity, and AHR to methacholine were performed. | One-third of the pSS patients developed a significant reduction in lung function. Small airway obstruction and AHR were associated with VC reduction and impaired DLCO. |
Verleden S.E. et al. [125] | Retrospective study | Airway morphology was investigated in 7 explant lungs with end-stage fibrotic sarcoidosis via CT scanning (large airways), micro-CT scanning (small airways), and histologic examination and compared with 7 unused donor lungs. | The large airways were involved differentially in subtypes of sarcoidosis, but the terminal bronchioles were universally lost. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Barkas, G.I.; Daniil, Z.; Kotsiou, O.S. The Role of Small Airway Disease in Pulmonary Fibrotic Diseases. J. Pers. Med. 2023, 13, 1600. https://doi.org/10.3390/jpm13111600
Barkas GI, Daniil Z, Kotsiou OS. The Role of Small Airway Disease in Pulmonary Fibrotic Diseases. Journal of Personalized Medicine. 2023; 13(11):1600. https://doi.org/10.3390/jpm13111600
Chicago/Turabian StyleBarkas, Georgios I., Zoe Daniil, and Ourania S. Kotsiou. 2023. "The Role of Small Airway Disease in Pulmonary Fibrotic Diseases" Journal of Personalized Medicine 13, no. 11: 1600. https://doi.org/10.3390/jpm13111600
APA StyleBarkas, G. I., Daniil, Z., & Kotsiou, O. S. (2023). The Role of Small Airway Disease in Pulmonary Fibrotic Diseases. Journal of Personalized Medicine, 13(11), 1600. https://doi.org/10.3390/jpm13111600