Long-Term Impact of the Great Chinese Famine on the Risks of Specific Arrhythmias and Severe Hypertension in the Offspring at an Early Stage of Aging
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subjects
2.2. Measurements
2.3. Statisticsh
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Frasch, M.G.; Giussani, D.A. Impact of Chronic Fetal Hy poxia and Inflammation on Cardiac Pacemaker Cell Development. Cells 2020, 9, 733. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shirakabe, A.; Ikeda, Y.; Sciarretta, S.; Zablocki, D.K.; Sadoshima, J. Aging and Autophagy in the Heart. Circ. Res. 2016, 118, 1563–1576. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, M.; Shah, A.M. Age-associated pro-inflammatory remodeling and functional phenotype in the heart and large arteries. J. Mol. Cell. Cardiol. 2015, 83, 101–111. [Google Scholar] [CrossRef] [Green Version]
- Wu, L.; Feng, X.; He, A.; Ding, Y.; Zhou, X.; Xu, Z. Prenatal exposure to the Great Chinese Famine and mid-age hypertension. PLoS ONE 2017, 12, e0176413. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Z.; Li, C.; Yang, Z.; Zou, Z.; Ma, J. Infant exposure to Chinese famine increased the risk of hypertension in adulthood: Results from the China Health and Retirement Longitudinal Study. BMC Public Health 2016, 16, 435. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, L.; Yang, L.; Wang, C.; Yuan, T.; Zhang, D.; Wei, H.; Li, J.; Lei, Y.; Sun, L.; Li, X.; et al. Individual and combined association analysis of famine exposure and serum uric acid with hypertension in the mid-aged and older adult: A population-based cross-sectional study. BMC Cardiovasc. Disord. 2021, 21, 420. [Google Scholar] [CrossRef]
- Zhang, L.; Yang, L.; Wang, C.; Yuan, T.; Zhang, D.; Wei, H.; Li, J.; Lei, Y.; Sun, L.; Li, X.; et al. Combined Effect of Famine Exposure and Obesity Parameters on Hypertension in the Midaged and Older Adult: A Population-Based Cross-Sectional Study. Biomed. Res. Int. 2021, 2021, 5594718. [Google Scholar] [CrossRef]
- Du, R.; Zheng, R.; Xu, Y.; Zhu, Y.; Yu, X.; Li, M.; Tang, X.; Hu, R.; Su, Q.; Wang, T.; et al. Early-Life Famine Exposure and Risk of Cardiovascular Diseases in Later Life: Findings from the REACTION Study. J. Am. Heart Assoc. 2020, 9, e014175. [Google Scholar] [CrossRef]
- Heusch, G. Coronary blood flow in heart failure: Cause, consequence and bystander. Basic Res. Cardiol. 2022, 117, 1. [Google Scholar] [CrossRef]
- Li, Y.; Li, Y.; Gurol, M.E.; Liu, Y.; Yang, P.; Shi, J.; Zhuang, S.; Forman, M.R.; Wu, S.; Gao, X. In utero exposure to the Great Chinese Famine and risk of intracerebral hemorrhage in midlife. Neurology 2020, 94, e1996–e2004. [Google Scholar] [CrossRef]
- Shi, Z.; Nicholls, S.J.; Taylor, A.W.; Magliano, D.J.; Appleton, S.; Zimmet, P. Early life exposure to Chinese famine modifies the association between hypertension and cardiovascular disease. J. Hypertens. 2018, 36, 54–60. [Google Scholar] [CrossRef] [PubMed]
- Bleker, L.S.; de Rooij, S.R.; Painter, R.C.; Ravelli, A.C.; Roseboom, T.J. Cohort profile: The Dutch famine birth cohort (DFBC)—A prospective birth cohort study in the Netherlands. BMJ Open 2021, 11, e042078. [Google Scholar] [CrossRef] [PubMed]
- Ekamper, P.; van Poppel, F.; Stein, A.D.; Bijwaard, G.E.; Lumey, L.H. Prenatal famine exposure and adult mortality from cancer, cardiovascular disease, and other causes through age 63 years. Am. J. Epidemiol. 2015, 181, 271–279. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hult, M.; Tornhammar, P.; Ueda, P.; Chima, C.; Bonamy, A.K.; Ozumba, B.; Norman, M. Hypertension, diabetes and overweight: Looming legacies of the Biafran famine. PLoS ONE 2010, 5, e13582. [Google Scholar] [CrossRef] [Green Version]
- Ravelli, A.C.J.; van der Meulen, J.H.P.; Michels, R.P.J.; Osmond, C.; Barker, D.J.P.; Hales, C.N.; Bleker, O.P. Glucose tolerance in adults after prenatal exposure to famine. Lancet 1998, 351, 173–177. [Google Scholar] [CrossRef]
- Zhang, X.; Li, Z.L.; Eirin, A.; Ebrahimi, B.; Pawar, A.S.; Zhu, X.Y.; Lerman, A.; Lerman, L.O. Cardiac metabolic alterations in hypertensive obese pigs. Hypertension 2015, 66, 430–436. [Google Scholar] [CrossRef] [Green Version]
- Urbieta Caceres, V.H.; Lin, J.; Zhu, X.Y.; Favreau, F.D.; Gibson, M.E.; Crane, J.A.; Lerman, A.; Lerman, L.O. Early experimental hypertension preserves the myocardial microvasculature but aggravates cardiac injury distal to chronic coronary artery obstruction. Am. J. Physiol. Heart Circ. Physiol. 2011, 300, H693–H701. [Google Scholar] [CrossRef]
- Strait, J.B.; Lakatta, E.G. Aging-associated cardiovascular changes and their relationship to heart failure. Heart Fail. Clin. 2012, 8, 143–164. [Google Scholar] [CrossRef] [Green Version]
- Piccini, J.P.; Hammill, B.G.; Sinner, M.F.; Jensen, P.N.; Hernandez, A.F.; Heckbert, S.R.; Benjamin, E.J.; Curtis, L.H. Incidence and prevalence of atrial fibrillation and associated mortality among Medicare beneficiaries, 1993–2007. Circ. Cardiovasc. Qual. Outcomes 2012, 5, 85–93. [Google Scholar] [CrossRef] [Green Version]
- Roger, V.L.; Go, A.S.; Lloyd-Jones, D.M.; Benjamin, E.J.; Berry, J.D.; Borden, W.B.; Bravata, D.M.; Dai, S.; Ford, E.S.; Fox, C.S.; et al. Heart disease and stroke statistics--2012 update: A report from the American Heart Association. Circulation 2012, 125, e2–e220. [Google Scholar] [CrossRef]
- Chugh, S.S.; Jui, J.; Gunson, K.; Stecker, E.C.; John, B.T.; Thompson, B.; Ilias, N.; Vickers, C.; Dogra, V.; Daya, M.; et al. Current burden of sudden cardiac death: Multiple source surveillance versus retrospective death certificate-based review in a large U.S. community. J. Am. Coll. Cardiol. 2004, 44, 1268–1275. [Google Scholar] [CrossRef] [Green Version]
- Gardner, D.S.; Pearce, S.; Dandrea, J.; Walker, R.; Ramsay, M.M.; Stephenson, T.; Symonds, M.E. Peri-implantation undernutrition programs blunted angiotensin II evoked baroreflex responses in young adult sheep. Hypertension 2004, 43, 1290–1296. [Google Scholar] [CrossRef] [Green Version]
- Melamed, N.; Baschat, A.; Yinon, Y.; Athanasiadis, A.; Mecacci, F.; Figueras, F.; Berghella, V.; Nazareth, A.; Tahlak, M.; McIntyre, H.D.; et al. FIGO (international Federation of Gynecology and obstetrics) initiative on fetal growth: Best practice advice for screening, diagnosis, and management of fetal growth restriction. Int. J. Gynaecol. Obs. 2021, 152 (Suppl. 1), 3–57. [Google Scholar] [CrossRef]
- Silva, F.C.; de Menezes, R.C.; Chianca, D.A., Jr. The implication of protein malnutrition on cardiovascular control systems in rats. Front. Physiol. 2015, 6, 246. [Google Scholar] [CrossRef] [Green Version]
- Kalisch-Smith, J.I.; Ved, N.; Szumska, D.; Munro, J.; Troup, M.; Harris, S.E.; Rodriguez-Caro, H.; Jacquemot, A.; Miller, J.J.; Stuart, E.M.; et al. Maternal iron deficiency perturbs embryonic cardiovascular development in mice. Nat. Commun. 2021, 12, 3447. [Google Scholar] [CrossRef]
- Kislal, S.; Shook, L.L.; Edlow, A.G. Perinatal exposure to maternal obesity: Lasting cardiometabolic impact on offspring. Prenat. Diagn. 2020, 40, 1109–1125. [Google Scholar] [CrossRef]
- Gopalakrishnan, G.S.; Gardner, D.S.; Dandrea, J.; Langley-Evans, S.C.; Pearce, S.; Kurlak, L.O.; Walker, R.M.; Seetho, I.W.; Keisler, D.H.; Ramsay, M.M.; et al. Influence of maternal pre-pregnancy body composition and diet during early-mid pregnancy on cardiovascular function and nephron number in juvenile sheep. Br. J. Nutr. 2005, 94, 938–947. [Google Scholar] [CrossRef] [Green Version]
- Yokoyama, M.; Saito, I.; Ueno, M.; Kato, H.; Yoshida, A.; Kawamura, R.; Maruyama, K.; Takata, Y.; Osawa, H.; Tanigawa, T.; et al. Low birthweight is associated with type 2 diabetes mellitus in Japanese adults: The Toon Health Study. J. Diabetes Investig. 2020, 11, 1643–1650. [Google Scholar] [CrossRef] [Green Version]
- Zhong, P.; Quan, D.; Huang, Y.; Huang, H. CaMKII Activation Promotes Cardiac Electrical Remodeling and Increases the Susceptibility to Arrhythmia Induction in High-fat Diet-Fed Mice with Hyperlipidemia Conditions. J. Cardiovasc. Pharm. 2017, 70, 245–254. [Google Scholar] [CrossRef] [Green Version]
- Klop, B.; Elte, J.W.; Cabezas, M.C. Dyslipidemia in obesity: Mechanisms and potential targets. Nutrients 2013, 5, 1218–1240. [Google Scholar] [CrossRef]
- Egan, B.M.; Li, J.; Davis, R.A.; Fiscella, K.A.; Tobin, J.N.; Jones, D.W.; Sinopoli, A. Differences in primary cardiovascular disease prevention between the 2013 and 2016 cholesterol guidelines and impact of the 2017 hypertension guideline in the United States. J. Clin. Hypertens. 2018, 20, 991–1000. [Google Scholar] [CrossRef] [Green Version]
- Dudenbostel, T.; Siddiqui, M.; Oparil, S.; Calhoun, D.A. Refractory Hypertension: A Novel Phenotype of Antihypertensive Treatment Failure. Hypertension 2016, 67, 1085–1092. [Google Scholar] [CrossRef]
- Almeida, J.F.Q.; Shults, N.; de Souza, A.M.A.; Ji, H.; Wu, X.; Woods, J.; Sandberg, K. Short-term very low caloric intake causes endothelial dysfunction and increased susceptibility to cardiac arrhythmias and pathology in male rats. Exp. Physiol. 2020, 105, 1172–1184. [Google Scholar] [CrossRef]
- De Souza, A.M.A.; Almeida, J.F.Q.; Shults, N.; Ji, H.; Li, J.; Sandberg, K. Susceptibility of female rats to cardiac arrhythmias following refeeding after severe food restriction. Biol. Sex Differ. 2022, 13, 11. [Google Scholar] [CrossRef]
- Crescioli, C. The Role of Estrogens and Vitamin D in Cardiomyocyte Protection: A Female Perspective. Biomolecules 2021, 11, 1815. [Google Scholar] [CrossRef]
- Guivarc’h, E.; Buscato, M.; Guihot, A.L.; Favre, J.; Vessieres, E.; Grimaud, L.; Wakim, J.; Melhem, N.J.; Zahreddine, R.; Adlanmerini, M.; et al. Predominant Role of Nuclear Versus Membrane Estrogen Receptor alpha in Arterial Protection: Implications for Estrogen Receptor alpha Modulation in Cardiovascular Prevention/Safety. J. Am. Heart Assoc. 2018, 7, e008950. [Google Scholar] [CrossRef]
Non-Exposure to GCF | Fetal Exposure to GCF | p Value | |||||
---|---|---|---|---|---|---|---|
Range | % | Mean ± SD | Range | % | Mean ± SD | ||
Sex (male%) | - | - | - | - | - | - | 0.445 |
Male | - | 53.42 | - | - | 54.19 | - | - |
Female | - | 46.58 | - | - | 45.81 | - | - |
Age (years) | 52–55 | - | 52.97 ± 0.84 | 52–55 | - | 52.94 ± 0.86 | 0.082 |
SP (mmHg) | 80–192 | - | 128.3 ± 16.8 | 86–217 | - | 129.1 ± 17.3 | 0.035 |
DP (mmHg) | 45–131 | - | 80.11 ± 11.59 | 48–138 | - | 82.51 ± 12.13 | <0.001 |
MAP (mmHg) | 56.67–155.00 | - | 96.17 ± 12.60 | 62.33–159.67 | - | 98.03 ± 13.16 | <0.001 |
BMI (kg/m2) | 15.72–35.01 | - | 24.62 ± 2.97 | 15.80–36.95 | - | 24.53 ± 2.97 | 0.268 |
<24 | 15.72–23.99 | 42.99 | - | 15.82–23.99 | 43.82 | - | - |
≥24 | 24.00–35.01 | 57.01 | - | 24.00–36.95 | 56.18 | - | - |
Total cholesterol (mmol/L) | 2.22–9.42 | - | 4.96 ± 0.87 | 2.81–9.87 | - | 5.00 ± 0.83 | 0.017 |
<5.2 mmol/L | 2.22–5.19 | 59.88 | - | 2.23–5.19 | 63.23 | - | - |
≥5.2 mmol/L | 5.20–9.42 | 40.12 | - | 5.20–9.87 | 36.77 | - | - |
Triglyceride (mmol/L) | 0.26–9.70 | - | 1.78 ± 1.53 | 0.60–9.43 | - | 1.74 ± 1.55 | 0.189 |
Height (cm) | 138.6–188.4 | - | 165.90 ± 7.53 | 152.8–192.0 | - | 166.10 ± 7.67 | 0.359 |
Blood glucose (mmol/L) | 3.23–20.67 | - | 5.43 ± 1.33 | 4.80–21.47 | - | 5.41 ± 1.16 | 0.457 |
Heart Rate (bpm) | 46–150 | - | 75.91 ± 10.87 | 48–150 | - | 77.04 ± 11.08 | <0.001 |
Non-Exposure (%) | Exposure (%) | OR | 95%Cl | p Value | |
---|---|---|---|---|---|
Borderline hypertension | 20.48 | 19.62 | 1.029 | 0.921–1.150 | 0.614 |
Grade 1 hypertension | 22.80 | 23.42 | 1.103 | 0.992–1.226 | 0.069 |
Grade 2 hypertension | 5.19 | 8.33 | 1.724 | 1.441–2.064 | <0.001 |
Grade 3 hypertension | 1.37 | 1.88 | 1.480 | 1.050–2.086 | 0.025 |
Bradycardia (ECG) | 5.18 | 7.02 | 1.383 | 1.154–1.657 | <0.001 |
Tachycardia (ECG) | 0.87 | 1.25 | 1.450 | 0.946–2.222 | 0.086 |
Premature beat (ECG) | 0.95 | 1.29 | 1.360 | 0.901–2.054 | 0.142 |
Pre-excitation syndrome (ECG) | 0.06 | 0.07 | 1.317 | 0.241–7.195 | 0.750 |
Myocardial ischemia (ECG) | 9.91 | 12.51 | 1.301 | 1.135–1.490 | <0.001 |
Atrial fibrillation (ECG) | 0.36 | 0.76 | 1.931 | 1.033–3.610 | 0.039 |
Atrioventricular block (ECG) | 2.52 | 3.61 | 1.333 | 1.034–1.719 | 0.027 |
VPB (AUSC) | 0.26 | 0.32 | 1.230 | 0.547–2.762 | 0.616 |
Other arrhythmias (AUSC) | 0.35 | 0.17 | 0.487 | 0.205–1.157 | 0.096 |
p-Value | Grade 2 Hypertension | Grade 3 Hypertension | Bradycardia | Myocardial Ischemia | Atrial Fibrillation | Atrioventricular Block |
---|---|---|---|---|---|---|
Sex | ||||||
Men | <0.001 | 0.041 | 0.013 | 0.012 | 0.988 | 0.015 |
Women | <0.010 | 0.372 | 0.606 | 0.582 | 0.910 | 0.361 |
BMI | ||||||
<24 | 0.435 | 0.256 | 0.151 | 0.443 | 0.728 | 0.738 |
≥24 | 0.325 | 0.173 | <0.005 | <0.001 | 0.531 | 0.736 |
Total cholesterol | ||||||
<5.2 mmol/L | <0.001 | 0.597 | 0.247 | 0.858 | 0.838 | 0.211 |
≥5.2 mmol/L | <0.001 | 0.011 | 0.023 | <0.001 | 0.473 | 0.026 |
Diabetes Mellitus | ||||||
Yes | <0.001 | 0.187 | 0.338 | 0.049 | 0.850 | 0.653 |
No | <0.001 | 0.093 | 0.415 | 0.019 | 0.853 | 0.505 |
Metabolic syndrome | ||||||
Yes | <0.001 | <0.005 | <0.001 | 0.011 | 0.687 | 0.506 |
No | <0.001 | 0.183 | 0.036 | 0.094 | 0.804 | 0.775 |
Hypertension | ||||||
Yes | - | - | 0.035 | 0.026 | 0.449 | 0.320 |
No | - | - | 0.927 | 0.969 | 0.550 | 0.546 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zheng, Q.; Pu, J.; Rui, C.; Zhang, Y.; Li, N.; He, Y.; Gu, Y.; Ye, Y.; Zhou, X.; Xu, Z. Long-Term Impact of the Great Chinese Famine on the Risks of Specific Arrhythmias and Severe Hypertension in the Offspring at an Early Stage of Aging. J. Pers. Med. 2023, 13, 163. https://doi.org/10.3390/jpm13020163
Zheng Q, Pu J, Rui C, Zhang Y, Li N, He Y, Gu Y, Ye Y, Zhou X, Xu Z. Long-Term Impact of the Great Chinese Famine on the Risks of Specific Arrhythmias and Severe Hypertension in the Offspring at an Early Stage of Aging. Journal of Personalized Medicine. 2023; 13(2):163. https://doi.org/10.3390/jpm13020163
Chicago/Turabian StyleZheng, Qiutong, Jianhong Pu, Can Rui, Yumeng Zhang, Na Li, Yun He, Ying Gu, Yang Ye, Xiuwen Zhou, and Zhice Xu. 2023. "Long-Term Impact of the Great Chinese Famine on the Risks of Specific Arrhythmias and Severe Hypertension in the Offspring at an Early Stage of Aging" Journal of Personalized Medicine 13, no. 2: 163. https://doi.org/10.3390/jpm13020163
APA StyleZheng, Q., Pu, J., Rui, C., Zhang, Y., Li, N., He, Y., Gu, Y., Ye, Y., Zhou, X., & Xu, Z. (2023). Long-Term Impact of the Great Chinese Famine on the Risks of Specific Arrhythmias and Severe Hypertension in the Offspring at an Early Stage of Aging. Journal of Personalized Medicine, 13(2), 163. https://doi.org/10.3390/jpm13020163