RNA Expression Signatures of Intracranial Aneurysm Growth Trajectory Identified in Circulating Whole Blood
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patient Enrollment
2.2. Whole Blood Collection and RNA Processing
2.3. RNA Sequencing Analysis
2.4. Differential Expression Analysis
2.5. Bioinformatics Analysis
2.6. Classification Model Generation
3. Results
3.1. Study Population
3.2. Differentially Expressed Genes between High Growth and Low Growth Cases
3.3. Bioinformatics Analysis
3.4. A Classification Model of IA Growth Trajectory
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ronne Engström, E.; Baldvinsdóttir, B.; Aineskog, H.; Alpkvist, P.; Enblad, P.; Eneling, J.; Fridriksson, S.; Hillman, J.; Klurfan, P.; Kronvall, E.; et al. The impact of previous health on the mortality after aneurysmal subarachnoid hemorrhage: Analysis of a prospective Swedish multicenter study. Acta Neurochir. 2023, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Villablanca, J.P.; Duckwiler, G.R.; Jahan, R.; Tateshima, S.; Martin, N.A.; Frazee, J.; Gonzalez, N.R.; Sayre, J.; Vinuela, F.V. Natural History of Asymptomatic Unruptured Cerebral Aneurysms Evaluated at CT Angiography: Growth and Rupture Incidence and Correlation with Epidemiologic Risk Factors. Radiology 2013, 269, 258–265. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mehan, W.A.; Romero, J.M.; Hirsch, J.A.; Sabbag, D.J.; Gonzalez, R.G.; Heit, J.J.; Schaefer, P.W. Unruptured intracranial aneurysms conservatively followed with serial CT angiography: Could morphology and growth predict rupture? J. NeuroInterv. Surg. 2014, 6, 761. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Inoue, T.; Shimizu, H.; Fujimura, M.; Saito, A.; Tominaga, T. Annual rupture risk of growing unruptured cerebral aneurysms detected by magnetic resonance angiography: Clinical article. J. Neurosurg. JNS 2012, 117, 20–25. [Google Scholar] [CrossRef]
- Brinjikji, W.; Zhu, Y.Q.; Lanzino, G.; Cloft, H.J.; Murad, M.H.; Wang, Z.; Kallmes, D.F. Risk Factors for Growth of Intracranial Aneurysms: A Systematic Review and Meta-Analysis. Am. J. Neuroradiol. 2016, 37, 615. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- van der Kamp, L.T.; Rinkel, G.J.E.; Verbaan, D.; van den Berg, R.; Vandertop, W.P.; Murayama, Y.; Ishibashi, T.; Lindgren, A.; Koivisto, T.; Teo, M.; et al. Risk of Rupture After Intracranial Aneurysm Growth. JAMA Neurol. 2021, 78, 1228–1235. [Google Scholar] [CrossRef]
- Juvela, S. Growth and rupture of unruptured intracranial aneurysms. J. Neurosurg. JNS 2019, 131, 843–851. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Etminan, N.; de Sousa, D.A.; Tiseo, C.; Bourcier, R.; Desal, H.; Lindgren, A.; Koivisto, T.; Netuka, D.; Peschillo, S.; Lémeret, S.; et al. European Stroke Organisation (ESO) guidelines on management of unruptured intracranial aneurysms. Eur. Stroke J. 2022, 7, V. [Google Scholar] [CrossRef] [PubMed]
- Poppenberg, K.E.; Li, L.; Waqas, M.; Paliwal, N.; Jiang, K.; Jarvis, J.N.; Sun, Y.; Snyder, K.V.; Levy, E.I.; Siddiqui, A.H.; et al. Whole blood transcriptome biomarkers of unruptured intracranial aneurysm. PLoS ONE 2020, 15, e0241838. [Google Scholar] [CrossRef]
- Poppenberg, K.E.; Tutino, V.M.; Li, L.; Waqas, M.; June, A.; Chaves, L.; Jiang, K.; Jarvis, J.N.; Sun, Y.; Snyder, K.V.; et al. Classification models using circulating neutrophil transcripts can detect unruptured intracranial aneurysm. J. Transl. Med. 2020, 18, 392. [Google Scholar] [CrossRef]
- Tutino, V.M.; Lu, Y.; Ishii, D.; Poppenberg, K.E.; Rajabzadeh-Oghaz, H.; Siddiqui, A.H.; Hasan, D.M. Aberrant Whole Blood Gene Expression in the Lumen of Human Intracranial Aneurysms. Diagnostics 2021, 11, 1442. [Google Scholar] [CrossRef]
- Tutino, V.M.; Poppenberg, K.E.; Damiano, R.J.; Patel, T.R.; Waqas, M.; Dmytriw, A.A.; Snyder, K.V.; Siddiqui, A.H.; Jarvis, J.N. Characterization of Long Non-coding RNA Signatures of Intracranial Aneurysm in Circulating Whole Blood. Mol. Diagn. Ther. 2020, 24, 723–736. [Google Scholar] [CrossRef] [PubMed]
- Tutino, V.M.; Poppenberg, K.E.; Jiang, K.; Jarvis, J.N.; Sun, Y.; Sonig, A.; Siddiqui, A.H.; Snyder, K.V.; Levy, E.I.; Kolega, J.; et al. Circulating neutrophil transcriptome may reveal intracranial aneurysm signature. PLoS ONE 2018, 13, e0191407. [Google Scholar] [CrossRef] [PubMed]
- Tutino, V.M.; Poppenberg, K.E.; Li, L.; Shallwani, H.; Jiang, K.; Jarvis, J.N.; Sun, Y.; Snyder, K.V.; Levy, E.I.; Siddiqui, A.H.; et al. Biomarkers from circulating neutrophil transcriptomes have potential to detect unruptured intracranial aneurysms. J. Transl. Med. 2018, 16, 373. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Poppenberg, K.E.; Chien, A.; Santo, B.A.; Chaves, L.; Veeturi, S.S.; Waqas, M.; Monteiro, A.; Dmytriw, A.A.; Burkhardt, J.-K.; Mokin, M.; et al. Profiling of Circulating Gene Expression Reveals Molecular Signatures Associated with Intracranial Aneurysm Rupture Risk. Mol. Diagn. Ther. 2022, 1–13. [Google Scholar] [CrossRef]
- Foreman, P.M.; Hendrix, P.; Harrigan, M.R.; Fisher, W.S.; Vyas, N.A.; Lipsky, R.H.; Walters, B.C.; Tubbs, R.S.; Shoja, M.M.; Griessenauer, C.J. PHASES score applied to a prospective cohort of aneurysmal subarachnoid hemorrhage patients. J. Clin. Neurosci. 2018, 53, 69–73. [Google Scholar] [CrossRef]
- Neyazi, B.; Sandalcioglu, I.E.; Maslehaty, H. Evaluation of the risk of rupture of intracranial aneurysms in patients with aneurysmal subarachnoid hemorrhage according to the PHASES score. Neurosurg. Rev. 2019, 42, 489–492. [Google Scholar] [CrossRef]
- Pagiola, I.; Mihalea, C.; Caroff, J.; Ikka, L.; Chalumeau, V.; Iacobucci, M.; Ozanne, A.; Gallas, S.; Marques, M.; Nalli, D.; et al. The PHASES score: To treat or not to treat? Retrospective evaluation of the risk of rupture of intracranial aneurysms in patients with aneurysmal subarachnoid hemorrhage. J. Neuroradiol. 2020, 47, 349–352. [Google Scholar] [CrossRef]
- Feghali, J.; Gami, A.; Xu, R.; Jackson, C.M.; Tamargo, R.J.; McDougall, C.G.; Huang, J.; Caplan, J.M. Application of unruptured aneurysm scoring systems to a cohort of ruptured aneurysms: Are we underestimating rupture risk? Neurosurg. Rev. 2021, 44, 3487–3498. [Google Scholar] [CrossRef]
- Chien, A.; Callender, R.A.; Yokota, H.; Salamon, N.; Colby, G.P.; Wang, A.C.; Szeder, V.; Jahan, R.; Tateshima, S.; Villablanca, J.; et al. Unruptured intracranial aneurysm growth trajectory: Occurrence and rate of enlargement in 520 longitudinally followed cases. J. Neurosurg. 2019, 132, 1077–1087. [Google Scholar] [CrossRef]
- Satija, R.; Farrell, J.A.; Gennert, D.; Schier, A.F.; Regev, A. Spatial reconstruction of single-cell gene expression data. Nat. Biotechnol. 2015, 33, 495–502. [Google Scholar] [CrossRef] [Green Version]
- McInnes, L.; Healy, J.; Melville, J. Umap: Uniform manifold approximation and projection for dimension reduction. arXiv 2018, arXiv:1802.03426. [Google Scholar]
- Wiebers, D.O.; Whisnant, J.P.; Huston, J., 3rd; Meissner, I.; Brown, R.D., Jr.; Piepgras, D.G.; Forbes, G.S.; Thielen, K.; Nichols, D.; O’Fallon, W.M.; et al. Unruptured intracranial aneurysms: Natural history, clinical outcome, and risks of surgical and endovascular treatment. Lancet 2003, 362, 103–110. [Google Scholar] [CrossRef]
- Graffeo, C.S.; Tanweer, O.; Nieves, C.F.; Belmont, H.M.; Izmirly, P.M.; Becske, T.; Huang, P.P. Rapid aneurysm growth and rupture in systemic lupus erythematosus. Surg. Neurol. Int. 2015, 6, 9. [Google Scholar] [CrossRef]
- Lee, J.H.; Lee, S.W.; Choi, C.H.; Ko, J.K. Does Systemic Lupus Erythematosus Increase the Risk of Procedure-Related Complication in Endovascular Treatment of Intracranial Aneurysm? Yonsei Med. J. 2020, 61, 441–444. [Google Scholar] [CrossRef]
- Meng, H.; Tutino, V.M.; Xiang, J.; Siddiqui, A. High WSS or low WSS? Complex interactions of hemodynamics with intracranial aneurysm initiation, growth, and rupture: Toward a unifying hypothesis. AJNR Am. J. Neuroradiol. 2014, 35, 1254–1262. [Google Scholar] [CrossRef] [Green Version]
- Korostynski, M.; Piechota, M.; Morga, R.; Hoinkis, D.; Golda, S.; Zygmunt, M.; Dziedzic, T.; Moskala, M.; Slowik, A.; Pera, J. Systemic response to rupture of intracranial aneurysms involves expression of specific gene isoforms. J. Transl. Med. 2019, 17, 141. [Google Scholar] [CrossRef] [PubMed]
- Nakajima, N.; Nagahiro, S.; Sano, T.; Satomi, J.; Satoh, K. Phenotypic modulation of smooth muscle cells in human cerebral aneurysmal walls. Acta Neuropathol. 2000, 100, 475–480. [Google Scholar] [CrossRef]
- Starke, R.M.; Chalouhi, N.; Ding, D.; Raper, D.M.S.; McKisic, M.S.; Owens, G.K.; Hasan, D.M.; Medel, R.; Dumont, A.S. Vascular Smooth Muscle Cells in Cerebral Aneurysm Pathogenesis. Transl. Stroke Res. 2014, 5, 338–346. [Google Scholar] [CrossRef] [PubMed]
- Sawyer, D.M.; Pace, L.A.; Pascale, C.L.; Kutchin, A.C.; O’Neill, B.E.; Starke, R.M.; Dumont, A.S. Lymphocytes influence intracranial aneurysm formation and rupture: Role of extracellular matrix remodeling and phenotypic modulation of vascular smooth muscle cells. J. Neuroinflammation 2016, 13, 185. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tulamo, R.; Frösen, J.; Hernesniemi, J.; Niemelä, M. Inflammatory changes in the aneurysm wall: A review. J. Neurointerv. Surg. 2018, 10, i58–i67. [Google Scholar] [CrossRef]
- Gencer, S.; van der Vorst, E.P.C.; Aslani, M.; Weber, C.; Döring, Y.; Duchene, J. Atypical Chemokine Receptors in Cardiovascular Disease. Thromb. Haemost. 2019, 119, 534–541. [Google Scholar] [CrossRef] [Green Version]
- Kleinloog, R.; Verweij Bon, H.; van der Vlies, P.; Deelen, P.; Swertz Morris, A.; de Muynck, L.; Van Damme, P.; Giuliani, F.; Regli, L.; van der Zwan, A.; et al. RNA Sequencing Analysis of Intracranial Aneurysm Walls Reveals Involvement of Lysosomes and Immunoglobulins in Rupture. Stroke 2016, 47, 1286–1293. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tutino, V.M.; Zebraski, H.R.; Rajabzadeh-Oghaz, H.; Chaves, L.; Dmytriw, A.A.; Siddiqui, A.H.; Kolega, J.; Poppenberg, K.E. RNA Sequencing Data from Human Intracranial Aneurysm Tissue Reveals a Complex Inflammatory Environment Associated with Rupture. Mol. Diagn. Ther. 2021, 25, 775–790. [Google Scholar] [CrossRef] [PubMed]
- Kadirvel, R.; Ding, Y.H.; Dai, D.; Lewis, D.A.; Kallmes, D.F. Differential expression of genes in elastase-induced saccular aneurysms with high and low aspect ratios. Neurosurgery 2010, 66, 578. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ujiie, H.; Tamano, Y.; Sasaki, K.; Hori, T. Is the Aspect Ratio a Reliable Index for Predicting the Rupture of a Saccular Aneurysm? Neurosurgery 2001, 48, 495–503. [Google Scholar] [CrossRef]
- Andresen, S.; Fantone, K.; Chapla, D.; Rada, B.; Moremen, K.W.; Pierce, M.; Szymanski, C.M. Human Intelectin-1 Promotes Cellular Attachment and Neutrophil Killing of Streptococcus pneumoniae in a Serotype-Dependent Manner. Infect. Immun. 2022, 90, e0068221. [Google Scholar] [CrossRef]
- Tian, Q.; Han, S.; Zhang, W.; Gong, P.; Xu, Z.; Chen, Q.; Li, M. Bioinformatic Identification of Differentially Expressed Genes and Pathways in Intracranial Aneurysm. Austin J. Cerebrovasc. Dis. Stroke 2021, 8, 1087. [Google Scholar]
- Sharma, T.; Datta, K.K.; Kumar, M.; Dey, G.; Khan, A.A.; Mangalaparthi, K.K.; Saharan, P.; Chinnapparaj, S.; Aggarwal, A.; Singla, N.; et al. Intracranial Aneurysm Biomarker Candidates Identified by a Proteome-Wide Study. OMICS A J. Integr. Biol. 2020, 24, 483–492. [Google Scholar] [CrossRef]
- Tutino, V.M.; Zebraski, H.R.; Rajabzadeh-Oghaz, H.; Waqas, M.; Jarvis, J.N.; Bach, K.; Mokin, M.; Snyder, K.V.; Siddiqui, A.H.; Poppenberg, K.E. Identification of Circulating Gene Expression Signatures of Intracranial Aneurysm in Peripheral Blood Mononuclear Cells. Diagnostics 2021, 11, 1092. [Google Scholar] [CrossRef]
- Behrens, A.L.; Dihlmann, S.; Grond-Ginsbach, C.; Peters, A.S.; Dorweiler, B.; Böckler, D.; Erhart, P. Gene Expression Profiling in Abdominal Aortic Aneurysms. J. Clin. Med. 2022, 11, 3260. [Google Scholar] [CrossRef]
- Duan, Y.; Xie, E.; Liu, C.; Sun, J.; Deng, J. Establishment of a Combined Diagnostic Model of Abdominal Aortic Aneurysm with Random Forest and Artificial Neural Network. Biomed. Res. Int. 2022, 2022, 7173972. [Google Scholar] [CrossRef] [PubMed]
- Biagioli, M.; Pinto, M.; Cesselli, D.; Zaninello, M.; Lazarevic, D.; Roncaglia, P.; Simone, R.; Vlachouli, C.; Plessy, C.; Bertin, N.; et al. Unexpected expression of alpha- and beta-globin in mesencephalic dopaminergic neurons and glial cells. Proc. Natl. Acad. Sci. USA 2009, 106, 15454–15459. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saha, D.; Patgaonkar, M.; Shroff, A.; Ayyar, K.; Bashir, T.; Reddy, K.V. Hemoglobin expression in nonerythroid cells: Novel or ubiquitous? Int. J. Inflam. 2014, 2014, 803237. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Raaymakers, T.W.M.; Rinkel, G.J.E.; Limburg, M.; Algra, A. Mortality and Morbidity of Surgery for Unruptured Intracranial Aneurysms. Stroke 1998, 29, 1531–1538. [Google Scholar] [CrossRef] [Green Version]
- IJpma, A.; te Riet, L.; van de Luijtgaarden, K.M.; van Heijningen, P.M.; Burger, J.; Majoor-Krakauer, D.; Rouwet, E.V.; Essers, J.; Verhagen, H.J.M.; van der Pluijm, I. Inflammation and TGF-β Signaling Differ between Abdominal Aneurysms and Occlusive Disease. J. Cardiovasc. Dev. Dis. 2019, 6, 38. [Google Scholar] [CrossRef] [Green Version]
- Gäbel, G.; Northoff, B.H.; Weinzierl, I.; Ludwig, S.; Hinterseher, I.; Wilfert, W.; Teupser, D.; Doderer, S.A.; Bergert, H.; Schönleben, F.; et al. Molecular Fingerprint for Terminal Abdominal Aortic Aneurysm Disease. J. Am. Heart Assoc. 2017, 6, e006798. [Google Scholar] [CrossRef]
Characteristic | Training Dataset (n = 46) | Testing Dataset (n = 20) | p-Value |
---|---|---|---|
Age (average years ± s.d.) | 57.2 ± 12.2 | 58.9 ± 13.5 | 0.62 |
Female (n/ntotal) | 36/46 (78.3%) | 13/20 (65.0%) | 0.26 |
Smoking (n/ntotal) | 12/46 (26.1%) | 3/20 (15.0%) | 0.32 |
Hypertension (n/ntotal) | 19/46 (41.3%) | 11/20 (55.0%) | 0.30 |
Family history of IA (n/ntotal) | 8/46 (17.4%) | 0/20 (0.0%) | 0.05 |
Patients with multiple IAs (n/ntotal) | 8/46 (17.4%) | 5/20 (25.0%) | 0.48 |
IA location (n/ntotal) | |||
ACA/ACom | 7/59 (11.9%) | 2/26 (7.7%) | 0.56 |
BA/BT | 5/59 (8.5%) | 2/26 (7.7%) | 0.90 |
ICA | 27/59 (45.8%) | 15/26 (57.7%) | 0.31 |
MCA | 10/59 (16.9%) | 2/26 (7.7%) | 0.26 |
PCA/PCom | 10/59 (16.9%) | 5/26 (19.2%) | 0.80 |
Name | Gene ID | Log2(F-C) | q-Value |
---|---|---|---|
ENSG00000115155.16 | OTOF | −1.52 | 1.00 × 10−10 |
ENSG00000206047.2 | DEFA1 | −1.30 | 2.06 × 10−3 |
ENSG00000206127.10 | GOLGA8O | −1.22 | 2.19 × 10−3 |
ENSG00000175445.14 | LPL | −1.14 | 7.92 × 10−5 |
ENSG00000076864.19 | RAP1GAP | −0.96 | 2.59 × 10−3 |
ENSG00000137959.15 | IFI44L | −0.93 | 7.39 × 10−9 |
ENSG00000165949.12 | IFI27 | −0.87 | 6.56 × 10−5 |
ENSG00000224940.8 | PRRT4 | −0.86 | 6.32 × 10−4 |
ENSG00000147689.16 | FAM83A | −0.75 | 2.76 × 10−3 |
ENSG00000121933.17 | ADORA3 | −0.74 | 4.21 × 10−2 |
ENSG00000100320.22 | RBFOX2 | −0.59 | 7.27 × 10−3 |
ENSG00000144648.14 | ACKR2 | 0.59 | 3.45 × 10−2 |
ENSG00000165895.17 | ARHGAP42 | 0.59 | 4.09 × 10−8 |
ENSG00000143479.15 | DYRK3 | 0.59 | 6.97 × 10−9 |
ENSG00000183111.11 | ARHGEF37 | 0.60 | 6.90 × 10−4 |
ENSG00000181856.14 | SLC2A4 | 0.61 | 6.72 × 10−3 |
ENSG00000154114.12 | TBCEL | 0.62 | 2.26 × 10−11 |
ENSG00000188175.9 | HEPACAM2 | 0.62 | 3.50 × 10−7 |
ENSG00000108309.12 | RUNDC3A | 0.63 | 1.02 × 10−3 |
ENSG00000162543.5 | UBXN10 | 0.63 | 3.89 × 10−9 |
ENSG00000122644.12 | ARL4A | 0.66 | 3.01 × 10−9 |
ENSG00000152484.13 | USP12 | 0.66 | 7.20 × 10−11 |
ENSG00000102904.14 | TSNAXIP1 | 0.67 | 9.05 × 10−4 |
ENSG00000196407.11 | THEM5 | 0.67 | 2.28 × 10−2 |
ENSG00000134184.12 | GSTM1 | 0.69 | 2.86 × 10−4 |
ENSG00000165061.14 | ZMAT4 | 0.72 | 3.47 × 10−2 |
ENSG00000111339.10 | ART4 | 0.75 | 2.49 × 10−9 |
ENSG00000198892.6 | SHISA4 | 0.78 | 6.50 × 10−3 |
ENSG00000163827.12 | LRRC2 | 0.80 | 9.63 × 10−11 |
ENSG00000188582.8 | PAQR9 | 0.80 | 1.78 × 10−5 |
ENSG00000066468.20 | FGFR2 | 0.88 | 2.91 × 10−2 |
ENSG00000179914.4 | ITLN1 | 1.09 | 7.95 × 10−7 |
ENSG00000176641.10 | RNF152 | 1.18 | 2.88 × 10−13 |
ENSG00000145423.4 | SFRP2 | 1.40 | 2.44 × 10−13 |
ENSG00000188536.12 | HBA2 | 1.45 | 5.37 × 10−6 |
ENSG00000276345.1 | AC004556.1 | 1.54 | 2.16 × 10−6 |
ENSG00000206172.8 | HBA1 | 1.68 | 2.23 × 10−4 |
ENSG00000249992.1 | TMEM158 | 1.69 | 2.08 × 10−14 |
ENSG00000180537.12 | RNF182 | 1.78 | 5.49 × 10−17 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Poppenberg, K.E.; Chien, A.; Santo, B.A.; Baig, A.A.; Monteiro, A.; Dmytriw, A.A.; Burkhardt, J.-K.; Mokin, M.; Snyder, K.V.; Siddiqui, A.H.; et al. RNA Expression Signatures of Intracranial Aneurysm Growth Trajectory Identified in Circulating Whole Blood. J. Pers. Med. 2023, 13, 266. https://doi.org/10.3390/jpm13020266
Poppenberg KE, Chien A, Santo BA, Baig AA, Monteiro A, Dmytriw AA, Burkhardt J-K, Mokin M, Snyder KV, Siddiqui AH, et al. RNA Expression Signatures of Intracranial Aneurysm Growth Trajectory Identified in Circulating Whole Blood. Journal of Personalized Medicine. 2023; 13(2):266. https://doi.org/10.3390/jpm13020266
Chicago/Turabian StylePoppenberg, Kerry E., Aichi Chien, Briana A. Santo, Ammad A. Baig, Andre Monteiro, Adam A. Dmytriw, Jan-Karl Burkhardt, Maxim Mokin, Kenneth V. Snyder, Adnan H. Siddiqui, and et al. 2023. "RNA Expression Signatures of Intracranial Aneurysm Growth Trajectory Identified in Circulating Whole Blood" Journal of Personalized Medicine 13, no. 2: 266. https://doi.org/10.3390/jpm13020266
APA StylePoppenberg, K. E., Chien, A., Santo, B. A., Baig, A. A., Monteiro, A., Dmytriw, A. A., Burkhardt, J. -K., Mokin, M., Snyder, K. V., Siddiqui, A. H., & Tutino, V. M. (2023). RNA Expression Signatures of Intracranial Aneurysm Growth Trajectory Identified in Circulating Whole Blood. Journal of Personalized Medicine, 13(2), 266. https://doi.org/10.3390/jpm13020266