Lung Dysfunction and Chronic Kidney Disease: A Complex Network of Multiple Interactions
Abstract
:1. Introduction
2. Chronic Obstructive Pulmonary Disease (COPD) and CKD
3. Pulmonary Hypertension in CKD
4. Sleep-Related Breathing Disorders in CKD
- -
- Obstructive sleep apnoea (OSA) occurs due to intermittent closure of the upper airway during sleep.
- -
- Central sleep apnoea (CSA) occurs due to intermittent loss of respiratory drive.
5. Microalbuminuria (MAB) in Chronic Lower Respiratory Diseases (CLRDS)
6. Fluid Overload and Lung Congestion in CKD
7. Imaging of Pulmonary Dysfunction in CKD
7.1. Pulmonary Fluid Overload—Conventional Radiology
7.2. Pulmonary Fluid Overload—Ultrasound (US)
7.3. Imaging of COPD in CKD
- -
- Centrilobular emphysema, strongly associated with cigarette smoking, is associated with the loss of pulmonary bronchioles, relative sparing of distal alveolar walls and is usually localised in the upper lobes of the lungs (particularly the posterior regions).
- -
- Panlobular emphysema is associated with the extensive loss of alveolar septa, is found predominantly in the lower lobes of the lungs and is associated with Alpha-1-antitrypsin.
- -
- Paraseptal emphysema typically affects the subpleural alveolar spaces and shows a characteristic peripheral pattern in the upper lung. It is associated with spontaneous pneumothorax.
- -
- Paracicatricial emphysema involves the air spaces around the scarred lung and is characterised by the distorted scar expansion of the air spaces [135].
7.4. Imaging of Pulmonary Hypertension in CKD
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hill, N.R.; Fatoba, S.T.; Oke, J.L.; Hirst, J.A.; O’Callaghan, C.A.; Lasserson, D.S.; Hobbs, F.D. Global Prevalence of Chronic Kidney Disease—A Systematic Review and Meta-Analysis. PLoS ONE 2016, 11, e0158765. [Google Scholar] [CrossRef] [PubMed]
- Bush, A.; Gabriel, R. The lungs in uraemia: A review. J. R. Soc. Med. 1985, 78, 849–855. [Google Scholar] [CrossRef] [PubMed]
- Navaneethan, S.D.; Mandayam, S.; Arrigain, S.; Rahman, M.; Winkelmayer, W.C.; Schold, J.D. Obstructive and Restrictive Lung Function Measures and CKD: National Health and Nutrition Examination Survey (NHANES) 2007–2012. Am. J. Kidney Dis. 2016, 68, 414–421. [Google Scholar] [CrossRef] [PubMed]
- Sidhu, J.; Ahuja, G.; Aulakh, B.; Narang, A.; Whig, J.; Sidhu, U. Changes in pulmonary function in patients with chronic renal failure after successful renal transplantation. Scand. J. Urol. Nephrol. 2007, 41, 155–160. [Google Scholar] [CrossRef]
- Prezant DJ: Effect of uremia and its treatment on pulmonary function. Lung 1990, 168, 1–14. [CrossRef] [PubMed]
- Webster, A.C.; Nagler, E.V.; Morton, R.L.; Masson, P. Chronic kidney disease. Lancet 2017, 389, 1238–1252. [Google Scholar] [CrossRef] [PubMed]
- Adeloye, D.; Chua, S.; Lee, C.; Basquill, C.; Papana, A.; Theodoratou, E.; Nair, H.; Gasevic, D.; Sridhar, D.; Campbell, H.; et al. Global and regional estimates of COPD prevalence: Systematic review and meta-analysis. J. Glob. Health 2015, 5, 020415. [Google Scholar] [CrossRef]
- Haroun, M.K.; Jaar, B.G.; Hoffman, S.C.; Comstock, G.W.; Klag, M.J.; Coresh, J. Risk factors for chronic kidney disease: A prospective study of 23,534 men and women in Washington County, Maryland. J. Am. Soc. Nephrol. 2003, 14, 2934–2941. [Google Scholar] [CrossRef]
- Okyay, G.U.; Er, R.E.; Tekbudak, M.Y.; Paşaoğlu, Ö.; Inal, S.; Öneç, K.; Paşaoğlu, H.; Altok, K.; Derici, Ü.; Erten, Y. Novel inflammatory marker in dialysis patients: YKL-40. Ther. Apher. Dial. 2013, 17, 193–201. [Google Scholar] [CrossRef]
- Gembillo, G.; Visconti, L.; Giusti, M.A.; Siligato, R.; Gallo, A.; Santoro, D.; Mattina, A. Cardiorenal Syndrome: New Pathways and Novel Biomarkers. Biomolecules 2021, 11, 1581. [Google Scholar] [CrossRef]
- Chandra, D.; Stamm, J.A.; Palevsky, P.M.; Leader, J.K.; Fuhrman, C.R.; Zhang, Y.; Bon, J.; Duncan, S.R.; Branch, R.A.; Weissfeld, J.; et al. The relationship between pulmonary emphysema and kidney function in smokers. Chest 2012, 142, 655–662. [Google Scholar] [CrossRef] [PubMed]
- Incalzi, R.A.; Corsonello, A.; Pedone, C.; Battaglia, S.; Paglino, G.; Bellia, V. Extrapulmonary Consequences of COPD in the Elderly Study Investigators. Chronic renal failure: A neglected comorbidity of COPD. Chest 2010, 137, 831–837. [Google Scholar] [CrossRef] [PubMed]
- Gjerde, B.; Bakke, P.S.; Ueland, T.; Hardie, J.A.; Eagan, T.M. The prevalence of undiagnosed renal failure in a cohort of COPD patients in western Norway. Respir. Med. 2012, 106, 361–366. [Google Scholar] [CrossRef] [PubMed]
- Elmahallawy, I.I.; Qora, M.A. Prevalence of chronic renal failure in COPD patients. Egypt J. Chest Dis. Tuberc. 2013, 62, 221–227. [Google Scholar] [CrossRef]
- Mapel, D.W.; Marton, J.P. Prevalence of renal and hepatobiliary disease, laboratory abnormalities, and potentially toxic medication exposures among persons with COPD. Int. J. Chronic Obstr. Pulm. Dis. 2013, 8, 127–134. [Google Scholar] [CrossRef]
- Yoshizawa, T.; Okada, K.; Furuichi, S.; Ishiguro, T.; Yoshizawa, A.; Akahoshi, T.; Gon, Y.; Akashiba, T.; Hosokawa, Y.; Hashimoto, S. Prevalence of chronic kidney diseases in patients with chronic obstructive pulmonary disease: Assessment based on glomerular filtration rate estimated from creatinine and cystatin C levels. Int. J. Chronic Obstr. Pulm. Dis. 2015, 10, 1283–1289. [Google Scholar] [CrossRef]
- Chen, C.Y.; Liao, K.M. Chronic Obstructive Pulmonary Disease is associated with risk of Chronic Kidney Disease: A Nationwide Case-Cohort Study. Sci. Rep. 2016, 6, 25855. [Google Scholar] [CrossRef]
- AbdelHalim, H.A.; AboElNaga, H.H. Is Renal Impairment an Anticipated COPD Comorbidity? Respir. Care 2016, 61, 1201–1206. [Google Scholar] [CrossRef]
- Sumida, K.; Kwak, L.; Grams, M.E.; Yamagata, K.; Punjabi, N.M.; Kovesdy, C.P.; Coresh, J.; Matsushita, K. Lung Function and Incident Kidney Disease: The Atherosclerosis Risk in Communities (ARIC) Study. Am. J. Kidney Dis. 2017, 70, 675–685. [Google Scholar] [CrossRef]
- Yu, D.; Chen, T.; Cai, Y.; Zhao, Z.; Simmons, D. Association between pulmonary function and renal function: Findings from China and Australia. BMC Nephrol. 2017, 18, 143. [Google Scholar] [CrossRef] [Green Version]
- Kim, S.K.; Bae, J.C.; Baek, J.H.; Hur, K.Y.; Lee, M.K.; Kim, J.H. Is decreased lung function associated with chronic kidney disease? A retrospective cohort study in Korea. BMJ Open 2018, 8, e018928. [Google Scholar] [CrossRef] [PubMed]
- Zaigham, S.; Christensson, A.; Wollmer, P.; Engström, G. Low lung function and the risk of incident chronic kidney disease in the Malmö Preventive Project cohort. BMC Nephrol. 2020, 21, 124. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, N.; Matsuki, E.; Araumi, A.; Ashitomi, S.; Watanabe, S.; Kudo, K.; Ichikawa, K.; Inoue, S.; Watanabe, M.; Ueno, Y.; et al. Association among chronic kidney disease, airflow limitation, and mortality in a community-based population: The Yamagata (Takahata) study. Sci. Rep. 2020, 10, 5570. [Google Scholar] [CrossRef] [PubMed]
- Pelaia, C.; Pastori, D.; Armentaro, G.; Miceli, S.; Cassano, V.; Barbara, K.; Pelaia, G.; Perticone, M.; Maio, R.; Pignatelli, P.; et al. Predictors of Renal Function Worsening in Patients with Chronic Obstructive Pulmonary Disease (COPD): A Multicenter Observational Study. Nutrients 2021, 13, 2811. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.H.; Kim, H.S.; Min, H.K.; Lee, S.W. Obstructive spirometry pattern and the risk of chronic kidney disease: Analysis from the community-based prospective Ansan-Ansung cohort in Korea. BMJ Open 2021, 11, e043432. [Google Scholar] [CrossRef]
- Boiko, O.; Rodionova, V.; Shevchenko, L. Features of Kidney Function in Patients With Comorbidity of Arterial Hypertension and Chronic Obstructive Pulmonary Disease. Cureus 2022, 14, e31828. [Google Scholar] [CrossRef]
- de Souza Rezende, P.; Porcher Andrade, F.; Ferraro Dos Santos Borba, C.; Eidt Rovedder, P.M. Pulmonary function, muscle strength, and quality of life have differed between chronic kidney disease patients and healthy individuals. Ther. Apher. Dial. 2022, 26, 337–344. [Google Scholar] [CrossRef] [PubMed]
- Nickel, N.P.; Yuan, K.; Dorfmuller, P.; Provencher, S.; Lai, Y.C.; Bonnet, S.; Austin, E.D.; Koch, C.D.; Morris, A.; Perros, F.; et al. Beyond the Lungs: Systemic Manifestations of Pulmonary Arterial Hypertension. Am. J. Respir. Crit. Care Med. 2020, 201, 148–157. [Google Scholar] [CrossRef]
- Humbert, M.; Kovacs, G.; Hoeper, M.M.; Badagliacca, R.; Berger, R.M.F.; Brida, M.; Carlsen, J.; Coats, A.J.S.; Escribano-Subias, P.; Ferrari, P.; et al. ESC/ERS Scientific Document Group. 2022 ESC/ERS Guidelines for the diagnosis and treatment of pulmonary hypertension. Eur. Respir. J. 2022, 61, 2200879. [Google Scholar] [CrossRef]
- Galie, N.; Humbert, M.; Vachiéry, J.-L.; Gibbs, S.; Lang, I.M.; Torbicki, A.; Simonneau, G.; Peacock, A.; Noordegraaf, A.V.; Beghetti, M.; et al. 2015 ESC/ERS Guidelines for the diagnosis and treatment of pulmonary hypertension. Eur. Heart J. 2016, 37, 67–119. [Google Scholar] [CrossRef]
- Ralph, T.S.; Hossein, A.G.; Martin, R.W.; Friedrich, G. Mechanisms of disease: Pulmonary arterial hypertension. Nat. Rev. Cardiol. 2011, 8, 443. [Google Scholar]
- Nickel, N.; O’Leary, J.; Brittain, E.; Fessel, J.; Zamanian, R.; West, J.; Austin, E. Kidney dysfunction in patients with pulmonary arterial hypertension. Pulm. Circ. 2017, 7, 38–54. [Google Scholar] [CrossRef] [PubMed]
- Guazzi, A.M.; Borlaug, A.B. Pulmonary Hypertension Due to Left Heart Disease. Circulation 2012, 126, 975–990. [Google Scholar] [CrossRef]
- Guazzi, M.; Naeije, R. Pulmonary Hypertension in Heart Failure: Pathophysiology, Pathobiology, and Emerging Clinical Perspectives. J. Am. Coll. Cardiol. 2017, 69, 1718–1734. [Google Scholar] [CrossRef] [PubMed]
- Seeger, W.; Adir, Y.; Barberà, J.A.; Navaneethan, S.D. Pulmonary Hypertension in Chronic Lung Diseases. J. Am. Coll. Cardiol. 2013, 62, D109–D116. [Google Scholar] [CrossRef]
- Simonneau, G.; Torbicki, A.; Dorfmüller, P.; Kim, N. The pathophysiology of chronic thromboembolic pulmonary hypertension. Eur. Respir. Rev. 2017, 26, 160112. [Google Scholar] [CrossRef]
- Navaneethan, S.D.; Roy, J.; Tao, K.; Brecklin, C.S.; Chen, J.; Deo, R.; Flack, J.M.; Ojo, A.O.; Plappert, T.J.; Raj, D.S.; et al. Prevalence, Predictors, and Outcomes of Pulmonary Hypertension in CKD. J. Am. Soc. Nephrol. JASN 2016, 27, 877–886. [Google Scholar] [CrossRef]
- Zhang, Q.; Wang, L.; Zeng, H.; Lv, Y.; Huang, Y. Epidemiology and risk factors in CKD patients with pulmonary hypertension: A retrospective study. BMC Nephrol. 2018, 19, 70. [Google Scholar] [CrossRef]
- Bolignano, D.; Pisano, A.; Coppolino, G.; Tripepi, G.L.; D’Arrigo, G. Pulmonary Hypertension Predicts Adverse Outcomes in Renal Patients: A Systematic Review and Meta-Analysis. Ther. Apher. Dial. 2019, 23, 369–384. [Google Scholar] [CrossRef]
- Navaneethan, S.D.; Walther, C.P.; Gregg, L.P.; Bansal, S.; Winkelmayer, W.C.; Nambi, V.; Niu, J. Mortality, Kidney Failure, and Hospitalization Among Medicare Beneficiaries With CKD and Pulmonary Hypertension. Am. J. Kidney Dis. 2021, 78, 700–708. [Google Scholar] [CrossRef]
- Edmonston, D.L.; Parikh, K.S.; Rajagopal, S.; Shaw, L.K.; Abraham, D.; Grabner, A.; Sparks, M.A.; Wolf, M. Pulmonary Hypertension Subtypes and Mortality in CKD. Am. J. Kidney Dis. 2020, 75, 713–724. [Google Scholar] [CrossRef] [PubMed]
- Kawar, B.; Ellam, T.; Jackson, C.; Kiely, D.G. Pulmonary Hypertension in Renal Disease: Epidemiology, Potential Mechanisms and Implications. Am. J. Nephrol. 2013, 37, 281–290. [Google Scholar] [CrossRef] [PubMed]
- Kumbar, L.; Fein, P.A.; Rafiq, M.A.; Borawski, C.; Chattopadhyay, J.; Avram, M.M. Pulmonary hypertension in peritoneal dialysis patients. Adv. Perit. Dial. 2007, 23, 127–131. [Google Scholar]
- Lash, J.P.; Go, A.S.; Appel, L.J.; He, J.; Ojo, A.; Rahman, M.; Townsend, R.R.; Xie, D.; Cifelli, D.; Cohan, J.; et al. Chronic Renal Insufficiency Cohort (CRIC) Study Group. Chronic Renal Insufficiency Cohort (CRIC) Study: Baseline characteristics and associations with kidney function. Clin. J. Am. Soc. Nephrol. 2009, 4, 1302–1311. [Google Scholar] [CrossRef]
- Yılmaz, S.; Yildirim, Y.; Yilmaz, Z.; Kara, A.V.; Taylan, M.; Demir, M.; Coskunsel, M.; Kadiroglu, A.K.; Yilmaz, M.E. Pulmonary Function in Patients with End-Stage Renal Disease: Effects of Hemodialysis and Fluid Overload. Med. Sci. Monit. 2016, 22, 2779–2784. [Google Scholar] [CrossRef]
- Tang, M.; Batty, J.; Lin, C.; Fan, X.; Chan, K.E.; Kalim, S. Pulmonary Hypertension, Mortality, and Cardiovascular Disease in CKD and ESRD Patients: A Systematic Review and Meta-analysis. Am. J. Kidney Dis. 2018, 72, 75–83. [Google Scholar] [CrossRef] [PubMed]
- Yigla, M.; Banderski, R.; Azzam, Z.S.; Reisner, S.A.; Nakhoul, F. Arterio-venous access in end-stage renal disease patients and pulmonary hypertension. Ther. Adv. Respir. Dis. 2008, 2, 49–53. [Google Scholar] [CrossRef]
- Abdelwhab, S.; Elshinnawy, S. Pulmonary hypertension in chronic renal failure patients. Am. J. Nephrol. 2008, 28, 990–997. [Google Scholar] [CrossRef] [PubMed]
- Kiykim, A.A.; Horoz, M.; Ozcan, T.; Yildiz, I.; Sari, S.; Genctoy, G. Pulmonary hypertension in hemodialysis patients without arteriovenous fistula: The effect of dialyzer composition. Ren. Fail. 2010, 32, 1148–1152. [Google Scholar] [CrossRef] [PubMed]
- Walther, C.P.; Nambi, V.; Hanania, N.; Navaneethan, S. Diagnosis and Management of Pulmonary Hypertension in Patients With CKD. Am. J. Kidney Dis. 2020, 75, 935–945. [Google Scholar] [CrossRef]
- Brinza, C.; Covic, A.; Stefan, A.E.; Floria, M.; Popa, I.V.; Scripcariu, D.V.; Burlacu, A. Pulmonary Arterial Hypertension and Adverse Outcomes after Kidney Transplantation: A Systematic Review and Meta-Analysis. J. Clin. Med. 2022, 11, 1944. [Google Scholar] [CrossRef] [PubMed]
- Lyons, M.M.; Bhatt, N.Y.; Pack, A.I.; Magalang, U.J. Global burden of sleep-disordered breathing and its implications. Respirology 2020, 25, 690–702. [Google Scholar] [CrossRef] [PubMed]
- Benjafield, A.V.; Ayas, N.T.; Eastwood, P.R.; Heinzer, R.; Ip, M.S.M.; Morrell, M.J.; Nunez, C.M.; Patel, S.R.; Penzel, T.; Pépin, J.L.; et al. Estimation of the global prevalence and burden of obstructive sleep apnoea: A literature-based analysis. Lancet Respir. Med. 2019, 7, 687–698. [Google Scholar] [CrossRef]
- Pevernagie, D.A.; Gnidovec-Strazisar, B.; Grote, L.; Heinzer, R.; McNicholas, W.T.; Penzel, T.; Randerath, W.; Schiza, S.; Verbraecken, J.; Arnardottir, E.S. On the rise and fall of the apnea-hypopnea index: A historical review and critical appraisal. J. Sleep Res. 2020, 29, e13066. [Google Scholar] [CrossRef] [PubMed]
- Sateia, M.J. International classification of sleep disorders-third edition: Highlights and modifications. Chest 2014, 146, 1387–1394. [Google Scholar] [CrossRef] [PubMed]
- Merlino, G.; Piani, A.; Dolso, P.; Adorati, M.; Cancelli, I.; Valente, M.; Gigli, G.L. Sleep disorders in patients with end-stage renal disease undergoing dialysis therapy. Nephrol. Dial. Transplant. 2006, 21, 184–190. [Google Scholar] [CrossRef]
- Huang, Z.; Tang, X.; Zhang, T.; Qiu, S.; Xia, Z.; Fu, P. Prevalence of sleep apnoea in non-dialysis chronic kidney disease patients: A systematic review and meta-analysis. Nephrology 2019, 24, 1041–1049. [Google Scholar] [CrossRef]
- Hanly, P. Sleep disorders and end-stage renal disease. Curr. Opin. Pulm. Med. 2008, 14, 543–550. [Google Scholar] [CrossRef]
- White, L.H.; Bradley, T.D. Role of nocturnal rostral fluid shift in the pathogenesis of obstructive and central sleep apnoea. J. Physiol. 2013, 591, 1179–1193. [Google Scholar] [CrossRef]
- Beecroft, J.; Duffin, J.; Pierratos, A.; Chan, C.T.; McFarlane, P.; Hanly, P.J. Enhanced chemoresponsiveness in patients with sleep apnoea and endstage renal disease. Eur. Respir. J. 2006, 28, 151–158. [Google Scholar] [CrossRef]
- Sakaguchi, Y.; Shoji, T.; Kawabata, H.; Niihata, K.; Suzuki, A.; Kaneko, T.; Okada, N.; Isaka, Y.; Rakugi, H.; Tsubakihara, Y. High prevalence of obstructive sleep apnea and its association with renal function among nondialysis chronic kidney disease patients in Japan: A cross-sectional study. Clin. J. Am. Soc. Nephrol 2011, 6, 995–1000. [Google Scholar] [CrossRef] [PubMed]
- Langevin, B.; Fouque, D.; Leger, P.; Robert, D. Sleep apnea syndrome and end-stage renal disease. Cure after renal transplantation. Chest 1993, 103, 1330–1335. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Evans, R.G.; Goddard, D.; Eppel, G.A.; O’Connor, P.M. Factors that render the kidney susceptible to tissue hypoxia in hypoxemia. Am. J. Physiol. Integr. Comp. Physiol. 2011, 300, R931–R940. [Google Scholar] [CrossRef]
- Sun, W.; Yin, X.; Wang, Y.; Tan, Y.; Cai, L.; Wang, B.; Cai, J.; Fu, Y. Intermittent hypoxia-induced renal antioxidants and oxidative damage in male mice: Hormetic dose response. Dose Response 2012, 11, 385–400. [Google Scholar] [CrossRef]
- Brooks, D.; Horner, R.L.; Kozar, L.F.; Render-Teixeira, C.L.; A Phillipson, E. Obstructive sleep apnea as a cause of systemic hypertension. Evidence from a canine model. J. Clin. Investig. 1997, 99, 106–109. [Google Scholar] [CrossRef]
- Carpagnano, G.E.; Kharitonov, S.A.; Resta, O.; Foschino-Barbaro, M.P.; Gramiccioni, Z.; Barnes, P. 8-Isoprostane, a marker of oxidative stress, is increased in exhaled breath condensate of patients with obstructive sleep apnea after night and is reduced by continuous positive airway pressure therapy. Chest 2003, 124, 1386–1392. [Google Scholar] [CrossRef]
- Fine, L.G.; Norman, J.T. Chronic hypoxia as a mechanism of progression of chronic kidney diseases: From hypothesis to novel therapeutics. Kidney Int. 2008, 74, 867–872. [Google Scholar] [CrossRef]
- Lin, C.H.; Lurie, R.C.; Lyons, O.D. Sleep apnea and chronic kidney disease: A state-of-the-art review. Chest 2020, 157, 673–685. [Google Scholar] [CrossRef]
- Poonit, N.-D.; Zhang, Y.-C.; Ye, C.-Y.; Cai, H.-L.; Yu, C.-Y.; Li, T.; Cai, X.-H. Chronic intermittent hypoxia exposure induces kidney injury in growing rats. Sleep Breath. 2018, 22, 453–461. [Google Scholar] [CrossRef]
- Small, D.M.; Coombes, J.S.; Bennett, N.; Johnson, D.W.; Gobe, G.C. Oxidative stress, anti-oxidant therapies and chronic kidney disease. Nephrology 2012, 17, 311–321. [Google Scholar] [CrossRef] [PubMed]
- Galle, J. Oxidative stress in chronic renal failure. Nephrol. Dial. Transplant. 2001, 16, 2135–2137. [Google Scholar] [CrossRef] [PubMed]
- Gembillo, G.; Cernaro, V.; Siligato, R.; Curreri, F.; Catalano, A.; Santoro, D. Protective Role of Vitamin D in Renal Tubulopathies. Metabolites 2020, 10, 115. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abuyassin, B.; Badran, M.; Ayas, N.T.; Laher, I. Intermittent hypoxia causes histological kidney damage and increases growth factor expression in a mouse model of obstructive sleep apnea. PLoS ONE 2018, 13, e0192084. [Google Scholar] [CrossRef] [PubMed]
- Nangaku, M. Chronic hypoxia and tubulointerstitial injury: A final common pathway to end-stage renal failure. J. Am. Soc. Nephrol. 2006, 17, 17–25. [Google Scholar] [CrossRef]
- Zalucky, A.A.; Nicholl, D.D.M.; Hanly, P.J.; Poulin, M.J.; Turin, T.C.; Walji, S.; Handley, G.B.; Raneri, J.K.; Sola, D.Y.; Ahmed, S.B. Nocturnal hypoxemia severity and renin-angiotensin system activity in obstructive sleep apnea. Am. J. Respir. Crit. Care Med. 2015, 192, 873–880. [Google Scholar] [CrossRef]
- Cernaro, V.; Loddo, S.; Macaione, V.; Ferlazzo, V.T.; Cigala, R.M.; Crea, F.; De Stefano, C.; Genovese, A.R.R.; Gembillo, G.; Bolignano, D.; et al. RAS inhibition modulates kynurenine levels in a CKD population with and without type 2 diabetes mellitus. Int. Urol. Nephrol. 2020, 52, 1125–1133. [Google Scholar] [CrossRef] [PubMed]
- Lopez-Novoa, J.M.; Martinez-Salgado, C.; Rodriguez-Pena, A.B.; Lopez-Hernandez, F.J. Common pathophysiological mechanisms of chronic kidney disease: Therapeutic perspectives. Pharmacol. Ther. 2010, 128, 61–81. [Google Scholar] [CrossRef] [PubMed]
- Peppard, P.E.; Young, T.; Palta, M.; Skatrud, J. Prospective study of the association between sleep-disordered breathing and hypertension. New Engl. J. Med. 2000, 342, 1378–1384. [Google Scholar] [CrossRef]
- Somers, V.K.; Dyken, M.E.; Clary, M.P.; Abboud, F.M. Sympathetic neural mechanisms in obstructive sleep apnea. J. Clin. Investig. 1995, 96, 1897–1904. [Google Scholar] [CrossRef]
- Horner, R.L.; Brooks, D.; Kozar, L.F.; Tse, S.; Phillipson, E.A. Immediate effects of arousal from sleep on cardiac autonomic outflow in the absence of breathing in dogs. J. Appl. Physiol. 1995, 79, 151–162. [Google Scholar] [CrossRef]
- Sedaghat, S.; Mattace-Raso, F.U.; Hoorn, E.J.; Uitterlinden, A.G.; Hofman, A.; Ikram, M.A.; Franco, O.H.; Dehghan, A. Arterial stiffness and decline in kidney function. Clin. J. Am. Soc. Nephrol. 2015, 10, 2190–2197. [Google Scholar] [CrossRef] [PubMed]
- Peralta, C.A.; Jacobs, D.R.; Katz, R.; Ix, J.H.; Madero, M.; Duprez, D.A.; Sarnak, M.J.; Criqui, M.H.; Kramer, H.; Palmas, W.; et al. Association of pulse pressure, arterial elasticity, and endothelial function with kidney function decline among adults with estimated GFR >60 mL/min/1. 73 m(2): The Multi-Ethnic Study of Atherosclerosis (MESA). Am. J. Kidney Dis. 2012, 59, 41–49. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tarasuik, A.; Heimer, D.; Bark, H. Effect of chronic renal failure on skeletal and diaphragmatic muscle contraction. Am. Rev. Respir. Dis. 1992, 146, 1383–1388. [Google Scholar] [CrossRef] [PubMed]
- Ozkok, A.; Kanbay, A.; Odabas, A.R.; Covic, A.; Kanbay, M. Obstructive sleep apnea syndrome and chronic kidney disease: A new cardiorenal risk factor. Clin. Exp. Hypertens. 2014, 36, 211–216. [Google Scholar] [CrossRef]
- Sekercioglu, N.; Curtis, B.; Murphy, S.; Barrett, B. Sleep quality and its correlates in patients with chronic kidney disease: A cross-sectional design. Ren. Fail. 2015, 37, 757–762. [Google Scholar] [CrossRef]
- Stepanski, E.; Faber, M.; Zorick, F.; Basner, R.; Roth, T. Sleep disorders in patients on continuous ambulatory peritoneal dialysis. J. Am. Soc. Nephrol. 1995, 6, 192–197. [Google Scholar] [CrossRef]
- Kimmel, P.; Miller, G.; Mendelson, W. Sleep apnea syndrome in chronic renal disease. Am. J. Med. 1989, 86, 308–314. [Google Scholar] [CrossRef]
- Nicholl, D.D.M.; Ahmed, S.B.; Loewen, A.H.S.; Hemmelgarn, B.R.; Sola, D.Y.; Beecroft, J.M.; Turin, T.C.; Hanly, P.J. Declining kidney function increases the prevalence of sleep apnea and nocturnal hypoxia. Chest 2012, 141, 1422–1430. [Google Scholar] [CrossRef]
- Hanly, P.J.; Pierratos, A. Improvement of sleep apnea in patients with chronic renal failure who undergo nocturnal hemodialysis. New Engl. J. Med. 2001, 344, 102–107. [Google Scholar] [CrossRef] [PubMed]
- Tang, S.C.W.; Lam, B.; Ku, P.P.; Leung, W.S.; Chu, C.M.; Ho, Y.W.; Ip, M.S.M.; Lai, K.N. Alleviation of sleep apnea in patients with chronic renal failure by nocturnal cycler-assisted peritoneal dialysis compared with conventional continuous ambulatory peritoneal dialysis. J. Am. Soc. Nephrol. 2006, 17, 2607–2616. [Google Scholar] [CrossRef]
- Kennedy, C.; Ryan, S.A.; Kane, T.; Costello, R.W.; Conlon, P.J. The impact of change of renal replacement therapy modality on sleep quality in patients with end-stage renal disease: A systematic review and meta analysis. J. Nephrol. 2018, 31, 61–70. [Google Scholar] [CrossRef] [PubMed]
- Lyons, O.D.; Chan, C.T.; Yadollahi, A.; Bradley, T.D. Effect of ultrafiltration on sleep apnea and sleep structure in patients with end-stage renal disease. Am. J. Respir. Crit. Care Med. 2015, 191, 1287–1294. [Google Scholar] [CrossRef]
- Nicholl, D.D.M.; Hanly, P.J.; Poulin, M.J.; Handley, G.B.; Hemmelgarn, B.R.; Sola, D.Y.; Ahmed, S.B. Evaluation of continuous positive airway pressure therapy on renin-angiotensin system activity in obstructive sleep apnea. Am. J. Respir. Crit. Care Med. 2014, 190, 572–580. [Google Scholar] [CrossRef]
- Krieger, J.; Imbs, J.L.; Schmidt, M.; Kurtz, D. Renal function in patients with obstructive sleep apnea. Effects of nasal continuous positive airway pressure. Arch. Intern. Med. 1988, 148, 1337–1340. [Google Scholar] [CrossRef] [PubMed]
- Ljungman, S.; Wikstrand, J.; Hartford, M.; Berglund, G. Urinary albumin excretion: A predictor of risk of cardiovascular disease: A prospective 10-year follow-up of middle aged nondiabetic normal and hypertensive men. Am. J. Hypertens. 1996, 9, 770–778. [Google Scholar] [CrossRef]
- Keane, W.F.; Eknoyan, G. Proteinuria, albuminuria, risk, assessment, detection, elimination (PARADE): A position paper of the National Kidney Foundation. Am. J. Kidney Dis. 1999, 33, 1004–1010. [Google Scholar] [CrossRef]
- Khosla, N.; Sarafidis, P.A.; Bakris, G.L. Microalbuminuria. Clin. Lab. Med. 2006, 26, 635–653. [Google Scholar] [CrossRef]
- Eickhoff, P.; Valipour, A.; Kiss, D.; Schreder, M.; Cekici, L.; Geyer, K.; Kohansal, R.; Burghuber, O.C. Determinants of systemic vascular function in patients with stable chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med. 2008, 178, 1211–1218. [Google Scholar] [CrossRef]
- Oelsner, E.C.; Balte, P.P.; Grams, M.E.; Cassano, P.A.; Jacobs, D.R.; Barr, R.G.; Burkart, K.M.; Kalhan, R.; Kronmal, R.; Loehr, L.R.; et al. Albuminuria, Lung Function Decline, and Risk of Incident Chronic Obstructive Pulmonary Disease. The NHLBI Pooled Cohorts Study. Am. J. Respir. Crit. Care Med. 2019, 199, 321–332. [Google Scholar] [CrossRef]
- Yoon, J.H.; Won, J.U.; Ahn, Y.S.; Roh, J. Poor lung function has inverse relationship with microalbuminuria, an early surrogate marker of kidney damage and atherosclerosis: The 5th Korea National Health and Nutrition Examination Survey. PLoS ONE 2014, 9, e94125. [Google Scholar] [CrossRef]
- Casanova, C.; de Torres, J.P.; Navarro, J.; Aguirre-Jaíme, A.; Toledo, P.; Cordoba, E.; Baz, R.; Celli, B.R. Microalbuminuria and hypoxemia in patients with chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med. 2010, 182, 1004–1010. [Google Scholar] [CrossRef] [PubMed]
- Kömürcüoğlu, A.; Kalenci, S.; Kalenci, D.; Kömürcüoğlu, B.; Tibet, G. Microalbuminuria in chronic obstructive pulmonary disease. Monaldi Arch. Chest Dis. 2003, 59, 269–272. [Google Scholar] [PubMed]
- Romundstad, S.; Naustdal, T.; Romundstad, P.R.; Sorger, H.; Langhammer, A. COPD and microalbuminuria: A 12-year follow-up study. Eur. Respir. J. 2014, 43, 1042–1050. [Google Scholar] [CrossRef]
- Kaysoydu, E.; Arslan, S.; Yıldız, G.; Candan, F. Factors related to microalbuminuria in patients with chronic obstructive pulmonary disease. Adv. Clin. Exp. Med. 2014, 23, 749–755. [Google Scholar] [CrossRef] [PubMed]
- Mendy, A.; Salo, P.M.; Wilkerson, J.; Feinstein, L.; Fessler, M.B.; Thorne, P.S.; Zeldin, D.C. Albuminuria as a Predictor of Mortality from Chronic Lower Respiratory Disease and from Influenza and Pneumonia. Ann. Am. Thorac. Soc. 2021, 18, 2093–2095. [Google Scholar] [CrossRef]
- Bulcun, E.; Ekici, M.; Ekici, A.; Cimen, D.A.; Kisa, U. Microalbuminuria in obstructive sleep apnea syndrome. Sleep Breath. 2015, 19, 1191–1197. [Google Scholar] [CrossRef]
- Tsioufis, C.; Thomopoulos, C.; Dimitriadis, K.; Amfilochiou, A.; Tsiachris, D.; Selima, M.; Petras, D.; Kallikazaros, I.; Stefanadis, C. Association of obstructive sleep apnea with urinary albumin excretion in essential hypertension: A cross-sectional study. Am. J. Kidney Dis. 2008, 52, 285–293. [Google Scholar] [CrossRef]
- Faulx, M.D.; Storfer-Isser, A.; Kirchner, H.L.; Jenny, N.S.; Tracy, R.P.; Redline, S. Obstructive sleep apnea is associated with increased urinary albumin excretion. Sleep 2007, 30, 923–929. [Google Scholar] [CrossRef]
- Chen, R.; Huang, Z.W.; Lin, X.F.; Lin, J.F.; Yang, M.J. Effect of continuous positive airway pressure on albuminuria in patients with obstructive sleep apnea: A meta-analysis. Sleep Breath. 2021, 26, 279–285. [Google Scholar] [CrossRef]
- Nickel, N.P.; de Jesus Perez, V.A.; Zamanian, R.T.; Fessel, J.P.; Cogan, J.D.; Hamid, R.; West, J.D.; de Caestecker, M.P.; Yang, H.; Austin, E.D. Low-grade albuminuria in pulmonary arterial hypertension. Pulm. Circ. 2019, 9, 2045894018824564. [Google Scholar] [CrossRef]
- Mukai, H.; Ming, P.; Lindholm, B.; Heimbürger, O.; Barany, P.; Anderstam, B.; Stenvinkel, P.; Qureshi, A.R. Restrictive lung disorder is common in patients with kidney failure and associates with protein-energy wasting, inflammation and cardiovascular disease. PLoS ONE 2018, 13, e0195585. [Google Scholar] [CrossRef]
- Anees, M.; Adhami, S.U.Z.; Aamer, M.; Shahid, I. Pulmonary Functions in Patients with End Stage Renal Disease and their Effect after Hemodialysis. J. Coll. Physicians Surg. Pak. 2021, 31, 144–149. [Google Scholar]
- Jabbar, A.; Qureshi, R.; Nasir, K.; Dhrolia, M.; Ahmad, A. Transudative and Exudative Pleural Effusion in Chronic Kidney Disease Patients: A Prospective Single-Center Study. Cureus 2021, 13, e18649. [Google Scholar] [CrossRef] [PubMed]
- Ray, S.; Mukherjee, S.; Ganguly, J.; Abhishek, K.; Mitras, S.; Kundu, S. A cross-sectional prospective study of pleural effusion among cases of chronic kidney disease. Indian J. Chest Dis. Allied Sci. 2013, 55, 209–213. [Google Scholar] [PubMed]
- Nidus, B.D.; Matalon, R.; Cantacuzino, D.; Eisinger, R.P. Uremic pleuritis a clinicopathological entity. N. Engl. J. Med. 1969, 281, 255–256. [Google Scholar] [CrossRef]
- Shaik, L.; Thotamgari, S.R.; Kowtha, P.; Ranjha, S.; Shah, R.N.; Kaur, P.; Subramani, R.; Katta, R.R.; Kalaiger, A.M.; Singh, R. A Spectrum of Pulmonary Complications Occurring in End-Stage Renal Disease Patients on Maintenance Hemodialysis. Cureus 2021, 13, e15426. [Google Scholar] [CrossRef] [PubMed]
- Barile, M. Pulmonary Edema: A Pictorial Review of Imaging Manifestations and Current Understanding of Mechanisms of Disease. Eur. J. Radiol. Open 2020, 7, 100274. [Google Scholar] [CrossRef]
- Kim, Y.; Shim, S.S.; Shin, J.H.; Choi, G.B.; Lee, K.S.; A Yi, C.; Oh, Y.W. Variable Pulmonary Manifestations in Hemodialysis Patients. J. Korean Radiol. Soc. 2003, 49, 89. [Google Scholar] [CrossRef]
- Gowrinath, K.; Attur, R.; Baig, W.; Magazine, R.; Srikanth, G.; Rajagopal, K. An unusual case of unilateral pulmonary edema in patients with chronic kidney disease. Respir. Med. CME 2009, 2, 130–133. [Google Scholar] [CrossRef]
- Storto, M.L.; Kee, S.T.; A Golden, J.; Webb, W.R. Hydrostatic pulmonary edema: High-resolution CT findings. Am. J. Roentgenol. 1995, 165, 817–820. [Google Scholar] [CrossRef]
- Picano, E.; Gargani, L. Ultrasound lung comets: The shape of lung water. Eur. J. Heart Fail. 2012, 14, 1194–1196. [Google Scholar] [CrossRef] [PubMed]
- Alexandrou, M.-E.; Theodorakopoulou, M.P.; Sarafidis, P.A. Lung Ultrasound as a Tool to Evaluate Fluid Accumulation in Dialysis Patients. Kidney Blood Press. Res. 2022, 47, 163–176. [Google Scholar] [CrossRef] [PubMed]
- Mallamaci, F.; Benedetto, F.A.; Tripepi, R.; Rastelli, S.; Castellino, P.; Tripepi, G.; Picano, E.; Zoccali, C. Detection of pulmonary congestion by chest ultrasound in dialysis patients. JACC Cardiovasc. Imaging 2010, 3, 586–594. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maw, A.M.; Hassanin, A.; Ho, P.M.; McInnes, M.D.F.; Moss, A.; Juarez-Colunga, E.; Soni, N.J.; Miglioranza, M.H.; Platz, E.; DeSanto, K.; et al. Diagnostic Accuracy of Point-of-Care Lung Ultrasonography and Chest Radiography in Adults With Symptoms Suggestive of Acute Decompensated Heart Failure: A Systematic Review and Meta-analysis. JAMA Netw. Open 2019, 2, e190703. [Google Scholar] [CrossRef]
- Zoccali, C.; Torino, C.; Tripepi, R.; Tripepi, G.; D’Arrigo, G.; Postorino, M.; Gargani, L.; Sicari, R.; Picano, E.; Mallamaci, F. Pulmonary congestion predicts cardiac events mortality in, E.S.R.D. J. Am. Soc. Nephrol. 2013, 24, 639–646. [Google Scholar] [CrossRef]
- Zoccali, C.; Torino, C.; Mallamaci, F.; Sarafidis, P.; Papagianni, A.; Ekart, R.; Hojs, R.; Klinger, M.; Letachowicz, K.; Fliser, D.; et al. A randomized multicenter trial on a lung ultrasound-guided treatment strategy in patients on chronic HDwith high cardiovascular risk. Kidney Int. 2021, 100, 1325–1333. [Google Scholar] [CrossRef]
- Rivas-Lasarte, M.; Álvarez-García, J.; Fernández-Martínez, J.; Maestro, A.; López-López, L.; Solé-González, E.; Pirla, M.J.; Mesado, N.; Mirabet, S.; Fluvià, P.; et al. Lung ultrasound-guided treatment in ambulatory patients with heart failure: A randomized controlled clinical trial (LUS-HF study). Eur. J. Heart Fail. 2019, 21, 1605–1613. [Google Scholar] [CrossRef]
- Marini, C.; Fragasso, G.; Italia, L.; Sisakian, H.; Tufaro, V.; Ingallina, G.; Stella, S.; Ancona, F.; Loiacono, F.; Innelli, P.; et al. Lung ultrasound-guided therapy reduces acute decompensation events in chronic heart failure. Heart 2020, 106, 1934–1939. [Google Scholar] [CrossRef] [PubMed]
- Torino, C.; Gargani, L.; Sicari, R.; Letachowicz, K.; Ekart, R.; Fliser, D.; Covic, A.; Siamopoulos, K.; Stavroulopoulos, A.; Massy, Z.A.; et al. The Agreement between Auscultation and Lung Ultrasound in Hemodialysis Patients: The LUST Study. Clin. J. Am. Soc. Nephrol. 2016, 11, 2005–2011. [Google Scholar] [CrossRef]
- Prencipe, M.; Granata, A.; D’Amelio, A.; Romano, G.; Aucella, F.; Fiorini, F. Usefulness of US imaging in overhydrated nephropathic patients. J. Ultrasound 2014, 19, 7–13. [Google Scholar] [CrossRef]
- Brennan, J.M.; Ronan, A.; Goonewardena, S.; Blair, J.E.; Hammes, M.; Shah, D.; Vasaiwala, S.; Kirkpatrick, J.N.; Spencer, K.T. Handcarried ultrasound measurement of the inferior vena cava for assessment of intravascular volume status in the outpatient HDclinic. Clin. J. Am. Soc. Nephrol. 2006, 1, 749–753. [Google Scholar] [CrossRef] [PubMed]
- Katzarski, K.S.; Nisell, J.; Randmaa, I.; Danielsson, A.; Freyschuss, U.; Bergström, J. A critical evaluation of ultrasound measurement of inferior vena cava diameter in assessing dry weight in normotensive and hypertensive HDpatients. Am. J. Kidney Dis. 1997, 30, 459–465. [Google Scholar] [CrossRef]
- Shibata, E.; Nagai, K.; Ueda, S.; Ono, H.; Nishimura, K.; Inagaki, T.; Minato, M.; Kishi, F.; Tamaki, M.; Murakami, T.; et al. The utility and limitation of inferior vena cava diameter as a dry weight marker. J. Med. Investig. 2019, 66, 172–177. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Washko, G. Diagnostic Imaging in COPD. Semin. Respir. Crit. Care Med. 2010, 31, 276–285. [Google Scholar] [CrossRef]
- Pipavath, S.; Schmidt, R.; Takasugi, J.; Godwin, J. Chronic obstructive pulmonary disease: Radiology-pathology correlation. J. Thorac. Imaging 2009, 24, 171–180. [Google Scholar] [CrossRef]
- Matsuoka, S.; Washko, G.; Dransfield, M.; Yamashiro, T.; Estepar, R.S.J.; Diaz, A.; Silverman, E.; Patz, S.; Hatabu, H. Quantitative CT Measurement of Cross-sectional Area of Small Pulmonary Vessel in COPD. Acad. Radiol. 2010, 17, 93–99. [Google Scholar] [CrossRef]
- Matsuoka, S.; Washko, G.; Yamashiro, T.; Estepar, R.; Diaz, A.; Silverman, E.; Hoffman, E.; Fessler, H.; Criner, G.; Marchetti, N.; et al. Pulmonary Hypertension and Computed Tomography Measurement of Small Pulmonary Vessels in Severe Emphysema. Am. J. Respir. Crit. Care Med. 2010, 181, 218–225. [Google Scholar] [CrossRef]
- Galderisi, M.; Cosyns, B.; Edvardsen, T.; Cardim, N.; Delgado, V.; Di Salvo, G.; Donal, E.; Sade, L.; Ernande, L.; Garbi, M.; et al. 2016–2018 EACVI Scientific Documents Committee, 2016–2018 EACVI Scientific Documents Committee, Standardization of adult transthoracic echocardiography reporting in agreement with recent chamber quantification, diastolic function, and heart valve disease recommendations: An expert consensus document of the European Association of Cardiovascular Imaging. Eur. Heart J. Cardiovasc. Imaging 2017, 18, 1301–1310. [Google Scholar] [CrossRef]
- Rudski, L.G.; Lai, W.W.; Afilalo, J.; Hua, L.; Handschumacher, M.D.; Chandrasekaran, K.; Solomon, S.D.; Louie, E.K.; Schiller, N.B. Guidelines for the Echocardiographic Assessment of the Right Heart in Adults: A Report from the American Society of Echocardiography. J. Am. Soc. Echocardiogr. 2010, 23, 685–713. [Google Scholar] [CrossRef]
- ESC Guidelines on Pulmonary Hypertension (Diagnosis and Treatment of). Available online: https://www.escardio.org/Guidelines/Clinical-Practice-Guidelines/Pulmonary-Hypertension-Guidelines-on-Diagnosis-and-Treatment-of (accessed on 18 December 2022).
- Swift, A.; Dwivedi, K.; Johns, C.; Garg, P.; Chin, M.; Currie, B.; Rothman, A.; Capener, D.; Shahin, Y.; Elliot, C.; et al. Diagnostic accuracy of CT pulmonary angiography in suspected pulmonary hypertension. Eur. Radiol. 2020, 30, 4918–4929. [Google Scholar] [CrossRef]
- Meinel, F.; Graef, A.; Bamberg, F.; Thieme, S.; Schwarz, F.; Sommer, W.; Neurohr, C.; Kupatt, C.; Reiser, M.; Johnson, T. Effectiveness of Automated Quantification of Pulmonary Perfused Blood Volume Using Dual-Energy CTPA for the Severity Assessment of Acute Pulmonary Embolism. Investig. Radiol. 2013, 48, 563–569. [Google Scholar] [CrossRef] [PubMed]
- Giordano, J.; Khung, S.; Duhamel, A.; Hossein-Foucher, C.; Bellèvre, D.; Lamblin, N.; Remy, J.; Remy-Jardin, M. Lung perfusion characteristics in pulmonary arterial hypertension (PAH) and peripheral forms of chronic thromboembolic pulmonary hypertension (pCTEPH): Dual-energy CT experience in 31 patients. Eur. Radiol. 2016, 27, 1631–1639. [Google Scholar] [CrossRef] [PubMed]
- Masy, M.; Giordano, J.; Petyt, G.; Hossein-Foucher, C.; Duhamel, A.; Kyheng, M.; De Groote, P.; Fertin, M.; Lamblin, N.; Bervar, J.-F.; et al. Dual-energy CT (DECT) lung perfusion in pulmonary hypertension: Concordance rate with V/Q scintigraphy in diagnosing chronic thromboembolic pulmonary hypertension (CTEPH). Eur. Radiol. 2018, 28, 5100–5110. [Google Scholar] [CrossRef]
- Meier, A.; Wurnig, M.; Desbiolles, L.; Leschka, S.; Frauenfelder, T.; Alkadhi, H. Advanced virtual monoenergetic images: Improving the contrast of dual-energy CT pulmonary angiography. Clin. Radiol. 2015, 70, 1244–1251. [Google Scholar] [CrossRef] [PubMed]
- Meier, A.; Higashigaito, K.; Martini, K.; Wurnig, M.; Seifert, B.; Keller, D.; Frauenfelder, T.; Alkadhi, H. Dual Energy CT Pulmonary Angiography with 6g Iodine—A Propensity Score-Matched Study. PLoS ONE 2016, 11, e0167214. [Google Scholar] [CrossRef] [Green Version]
Stages | FEV 1 Predicted |
---|---|
I (Mild) | ≥80% |
II (Moderate) | 50–79% |
III (Severe) | 30–49% |
IV (Very Severe) | ≤30% |
Author | Aim of the Study | Population | Design of the Study | Renal Impairment Prevalence/Renal Outcomes | Conclusion |
---|---|---|---|---|---|
Incalzi et al., 2010 [12] | Prevalence of CRF in elderly COPD patients | 356 COPD, 290 non-COPD They were categorized as having normal renal function (GFR 60 mL/min/1.73 m2), concealed CRF (normal serum creatinine and reduced GFR), or overt CRF (increased serum creatinine and reduced GFR) | Observational | 20.8% concealed (10.0% without COPD), 22.2% overt (13.4% without COPD) | CRF highly prevalent in patients with COPD |
Gjerde et al., 2011 [13] | COPD phenotypes and prevalence of sub-clinical renal failure and the relation with inflammatory markers | 433 COPD 233 non-COPD | Cohort | 9.6% females with COPD and 5.1% males with COPD patients; GFR < 60 | Female sex, higher age, cachexia, and the inflammatory markers sTNF-R1 and NGAL were all independently associated with a higher risk for renal failure in COPD patients |
Elmahallawy and Qora 2013 [14] | Frequency of underdiagnosed renal failure | 300 COPD and 300 control | Cohort | Normal renal function, concealed, overt in COPD patients, respectively, 54%, 26%, 20%; in controls, 78%, 10%, 12% | CRF is an important comorbidity and estimated GFR is needed for screening |
Mapel and Marton 2013 [15] | Prevalence of renal or hepatobiliary disease in COPD patients | 2284 COPD and 5959 non-COPD | Cohort | Acute, chronic, and unspecified renal failure 1.40 vs. 0.59, 2.89 vs. 0.79, and 1.09 vs. 0.44, respectively | COPD patients have an increased prevalence of renal, gallbladder, and pancreatic diseases, as well as abnormal renal and hepatic laboratory values. They are also more likely to be prescribed medications with potentially toxic renal or hepatic side effects. |
Yoshizawa et al., 2015 [16] | Prevalence of COPD with eGFR based on creatinine and cystatin C levels | 108 COPD, 73 non-COPD | Clinical trial | eGFRcr vs. eGFRcys 31% vs. 53% in COPD patients; 8% vs. 15% non-COPD patients | In Japanese COPD patients, renal function should preferably be evaluated based not only on Cr but on Cr in combination with Cys. |
Chen and Liao 2016 [17] | Incidence of CKD in COPD patients | 7739 COPD patients, 15,478 non-COPD | Case-cohort | HR: 1.61 overall (470.9 vs. 287.52 per 104 person-years) | Patients with COPD have a higher risk of CKD |
AbdelHalim and AboElNaga 2016 [18] | Prevalence of CRF in COPD patients | 136 COPD, 104 non-COPD | Cohort | 19.85% concealed (1.92% non-COPD), 6.66% overt (0% non-COPD) | High prevalence of CRF in COPD patients |
Sumida et al., 2017 [19] | Association of reduced lung function with ESRD and CKD | 14,946 | Prospective cohort | HR for CKD compared to high-normal 1.53, in mixed restrictive 1.42, obstructive 1.15, low-normal 1.08 | Reduced lung function is independently associated with CKD progression |
Yu et al., 2017 [20] | Association between lung and impaired kidney function | 1298 normal renal function, 156 impaired, 4313 normal, 1511 impaired | 2 cross-sectional studies | Increased risk for renal impairment below 3.05, both for FEV1 and FVC in both studies | There was a correlation between obstructive lung function and reduced kidney function |
Kim et al., 2018 [21] | Impact of lung function in the development of CKD | 10,128 subjects | Retrospective cohort | FEV1/FVC < 0.8, incidence of CKD 2.8% | Increased risk of CKD with restricted airflow; a 10% decrease in FEV1/FVC leads to a 35% increase in the development of CKD |
Zaigham et al., 2020 [22] | Low lung function early in life and development of CKD in the future | 28,025 | Prospective cohort | Q1 vs. Q4, HR 1.46 in low FEV1 and HR 1.51 for FVC in men | Low FEV1 and FVC were a risk factor for future incident CKD in men, but not women; FEV1/FVC < 0.7 does not increase the incidence for CKD in both men and women |
Suzuki et al., 2020 [23] | Mortality in COPD and CKD | 1233 health check-up participants | Cohort | CKDcys 26.1% with AFL vs. 16.2% without AFL | Significantly higher prevalence with CKDcys in AFL, but not with CKDcr |
Pelaia et al., 2021 [24] | Incidence of CKD and the rapid decline of eGFR | 707 outpatients | Multicenter Observational Cohort | 157 (22.2%) patients had CKD at baseline. During a mean follow-up of 52.3 ± 30.2 months, 100 patients developed CKD, and 200 patients showed a rapid reduction of eGFR | COPD patients had a significant worsening of renal function over time |
Kim et al., 2021 [25] | Association between obstructive spirometry pattern and incident CKD development | 7960 non-CKD patients | Prospective community-based cohort study | Incident CKD developed in 511 subjects (6.4%) | Decreased FEV1/FVC ratio was independently associated with an increased risk of incident CKD development, particularly in people without metabolic syndrome |
Boiko et al., 2022 [26] | Renal function parameters as early predictors of kidney damage in patients with hypertension and COPD | 88 patients with hypertension and COPD divided into three groups: Group I, 38 patients with hypertension, Group II, 27 patients with hypertension and COPD, Group III, 23 patients with COPD | Cohort | Blood creatinine levels: Group I 88.3 (84.2; 102.7) μmol/l, Group II 99.0 (80.0; 115.0) μmol/l, Group III 84.6 (75.0; 94.2) μmol/l (p = 0.008). | Decrease in renal filtration function in all the groups. Negative aggravating effect of COPD on renal function in patients with hypertension |
Sleep Apnoea Classification | Episodes per Hour of Sleep |
---|---|
Mild | 5 to 15 |
Moderate | 15 to 30 |
Severe | >30 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gembillo, G.; Calimeri, S.; Tranchida, V.; Silipigni, S.; Vella, D.; Ferrara, D.; Spinella, C.; Santoro, D.; Visconti, L. Lung Dysfunction and Chronic Kidney Disease: A Complex Network of Multiple Interactions. J. Pers. Med. 2023, 13, 286. https://doi.org/10.3390/jpm13020286
Gembillo G, Calimeri S, Tranchida V, Silipigni S, Vella D, Ferrara D, Spinella C, Santoro D, Visconti L. Lung Dysfunction and Chronic Kidney Disease: A Complex Network of Multiple Interactions. Journal of Personalized Medicine. 2023; 13(2):286. https://doi.org/10.3390/jpm13020286
Chicago/Turabian StyleGembillo, Guido, Sebastiano Calimeri, Valeria Tranchida, Salvatore Silipigni, Davide Vella, Domenico Ferrara, Claudia Spinella, Domenico Santoro, and Luca Visconti. 2023. "Lung Dysfunction and Chronic Kidney Disease: A Complex Network of Multiple Interactions" Journal of Personalized Medicine 13, no. 2: 286. https://doi.org/10.3390/jpm13020286
APA StyleGembillo, G., Calimeri, S., Tranchida, V., Silipigni, S., Vella, D., Ferrara, D., Spinella, C., Santoro, D., & Visconti, L. (2023). Lung Dysfunction and Chronic Kidney Disease: A Complex Network of Multiple Interactions. Journal of Personalized Medicine, 13(2), 286. https://doi.org/10.3390/jpm13020286