Higher-Order Aberrations of Topography-Guided LASIK and Wavefront-Optimized LASIK in High- and Low-Myopic Eyes: A Non-Randomized Controlled Trial
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patients
2.2. Surgical Technique and Preoperative Assessment
2.3. Ophthalmic Examinations and Postoperative Assessment
2.4. Statistical Analysis
3. Results
3.1. Demographic Data and Visual Outcome
3.2. HOAs and CS Outcome
3.3. High-Myopia vs. Low-Myopia Analysis for HOAs and CS
3.4. Subjective Quality of Vision (QoV) Result
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sutton, G.; Lawless, M.; Hodge, C. Laser in situ keratomileusis in 2012: A review. Clin. Exp. Optom. 2014, 97, 18–29. [Google Scholar] [CrossRef] [PubMed]
- Moreno-Barriuso, E.; Lloves, J.M.; Marcos, S.; Navarro, R.; Llorente, L.; Barbero, S. Ocular aberrations before and after myopic corneal refractive surgery: LASIK-induced changes measured with laser ray tracing. Investig. Ophthalmol. Vis. Sci. 2001, 42, 1396–1403. [Google Scholar]
- Schallhorn, S.C.; Farjo, A.A.; Huang, D.; Boxer Wachler, B.S.; Trattler, W.B.; Tanzer, D.J.; Majmudar, P.A.; Sugar, A. Wavefront-guided LASIK for the correction of primary myopia and astigmatism a report by the American Academy of Ophthalmology. Ophthalmology 2008, 115, 1249–1261. [Google Scholar] [CrossRef] [PubMed]
- Artal, P.; Guirao, A.; Berrio, E.; Williams, D.R. Compensation of corneal aberrations by the internal optics in the human eye. J. Vis. 2001, 1, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Pasquali, T.; Krueger, R. Topography-guided laser refractive surgery. Curr. Opin. Ophthalmol. 2012, 23, 264–268. [Google Scholar] [CrossRef] [PubMed]
- Stonecipher, K.; Parrish, J.; Stonecipher, M. Comparing wavefront-optimized, wavefront-guided and topography-guided laser vision correction: Clinical outcomes using an objective decision tree. Curr. Opin. Ophthalmol. 2018, 29, 277–285. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Choi, S.H.; Lim, D.H.; Yang, C.M.; Yoon, G.J.; Chung, T.Y. Topography-guided versus wavefront-optimized laser in situ keratomileusis for myopia: Surgical outcomes. J. Cataract. Refract. Surg. 2019, 45, 959–965. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Choi, S.H.; Lim, D.H.; Yoon, G.J.; Chung, T.Y. Comparison of outcomes after topography-modified refraction versus wavefront-optimized versus manifest topography-guided LASIK. BMC Ophthalmol. 2020, 20, 192. [Google Scholar] [CrossRef]
- Ozulken, K.; Yuksel, E.; Tekin, K.; Kiziltoprak, H.; Aydogan, S. Comparison of Wavefront-Optimized Ablation and Topography-Guided Contoura Ablation With LYRA Protocol in LASIK. J. Refract. Surg. 2019, 35, 222–229. [Google Scholar] [CrossRef] [PubMed]
- Lin, L.L.; Shih, Y.F.; Hsiao, C.K.; Chen, C.J.; Lee, L.A.; Hung, P.T. Epidemiologic study of the prevalence and severity of myopia among schoolchildren in Taiwan in 2000. J. Formos. Med. Assoc. 2001, 100, 684–691. [Google Scholar] [PubMed]
- Lin, L.L.; Shih, Y.F.; Hsiao, C.K.; Chen, C.J. Prevalence of myopia in Taiwanese schoolchildren: 1983 to 2000. Ann. Acad. Med. Singap. 2004, 33, 27–33. [Google Scholar] [PubMed]
- Pointer, J.S. Sighting dominance, handedness, and visual acuity preference: Three mutually exclusive modalities? Ophthalmic. Physiol. Opt. 2001, 21, 117–126. [Google Scholar] [CrossRef] [PubMed]
- Chan, A.; Manche, E.E. Effect of preoperative pupil size on quality of vision after wavefront-guided LASIK. Ophthalmology 2011, 118, 736–741. [Google Scholar] [CrossRef] [PubMed]
- Aryadoust, V.; Tan, H.A.H.; Ng, L.Y. A Scientometric Review of Rasch Measurement: The Rise and Progress of a Specialty. Front. Psychol. 2019, 10, 2197. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Villa, C.; Gutiérrez, R.; Jiménez, J.R.; González-Méijome, J.M. Night vision disturbances after successful LASIK surgery. Br. J. Ophthalmol. 2007, 91, 1031–1037. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Padmanabhan, P.; Basuthkar, S.S.; Joseph, R. Ocular aberrations after wavefront optimized LASIK for myopia. Indian J. Ophthalmol. 2010, 58, 307–312. [Google Scholar] [CrossRef] [PubMed]
- Alio, J.L.; Vega-Estrada, A.; Piñero, D.P. Laser-assisted in situ keratomileusis in high levels of myopia with the amaris excimer laser using optimized aspherical profiles. Am. J. Ophthalmol. 2011, 152, 954–963.e951. [Google Scholar] [CrossRef] [PubMed]
- Vega-Estrada, A.; Alió, J.L.; Arba Mosquera, S.; Moreno, L.J. Corneal higher order aberrations after LASIK for high myopia with a fast repetition rate excimer laser, optimized ablation profile, and femtosecond laser-assisted flap. J. Refract. Surg. 2012, 28, 689–696. [Google Scholar] [CrossRef] [PubMed]
- Al-Zeraid, F.M.; Osuagwu, U.L. Induced Higher-order aberrations after Laser In Situ Keratomileusis (LASIK) Performed with Wavefront-Guided IntraLase Femtosecond Laser in moderate to high Astigmatism. BMC Ophthalmol. 2016, 16, 29. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goyal, J.L.; Garg, A.; Arora, R.; Jain, P.; Goel, Y. Comparative evaluation of higher-order aberrations and corneal asphericity between wavefront-guided and aspheric LASIK for myopia. J. Refract. Surg. 2014, 30, 777–784. [Google Scholar] [CrossRef] [PubMed]
Parameter | TG-LASIK (20 Eyes) | WFO-LASIK (20 Eyes) | p Value |
---|---|---|---|
Age | 32.7 ± 7.8 | 32.7 ± 7.8 | 1.0000 |
Sex (male) (%) | 7 (33.3%) | 7 (33.3%) | 1.0000 |
Pre-op CDVA (logMAR) | 0.01 ± 0.02 | 0.02 ± 0.04 | 0.7886 |
Sphere (D) | −5.70 ± 2.26 | −5.89 ± 2.08 | 0.7148 |
Cylinder (D) | −0.81 ± 0.61 | −0.98 ± 0.90 | 0.6652 |
logMesopic CS | |||
Without glare | |||
3CPD | 1.67 ± 0.22 | 1.66 ± 0.25 | 0.5740 |
6CPD | 1.86 ± 0.26 | 1.88 ± 0.19 | 0.9780 |
12CPD | 1.55 ± 0.29 | 1.65 ± 0.29 | 0.4920 |
18CPD | 1.10 ± 0.27 | 1.16 ± 0.18 | 0.6383 |
With glare | |||
3CPD | 1.62 ± 0.28 | 1.64 ± 0.29 | 0.9228 |
6CPD | 1.84 ± 0.27 | 2.63 ± 3.39 | 0.4161 |
12CPD | 1.56 ± 0.31 | 1.59 ± 0.27 | 0.7422 |
18CPD | 1.08 ± 0.28 | 1.17 ± 0.27 | 0.2767 |
RMS (μm) | |||
Coma | 0.45 ± 0.16 | 0.48 ± 0.27 | 0.7868 |
Trefoil | 0.27 ± 0.15 | 0.38 ± 0.20 | 0.0699 |
Spherical | 0.56 ± 0.23 | 0.56 ± 0.24 | 1.0000 |
Parameter | TG-LASIK (20 Eyes) | WFO-LASIK (20 Eyes) | p Value |
---|---|---|---|
UDVA(logMAR) | −0.03 ± 0.07 | −0.01 ± 0.10 | 0.4634 |
CDVA(logMAR) | −0.05 ± 0.08 | −0.04 ± 0.07 | 0.7439 |
SE(D) | −0.05 ± 0.29 | −0.09 ± 0.28 | 0.6350 |
RMS (μm) | Preoperative | Postoperative | p Value |
---|---|---|---|
TG-LASIK (20 eyes) | |||
Coma | 0.45 ± 0.16 | 0.70 ± 0.32 | 0.0028 * |
Trefoil | 0.27 ± 0.15 | 0.22 ± 0.10 | 0.2180 |
Spherical | 0.56 ± 0.23 | 1.88 ± 0.72 | 0.0001 * |
WFO-LASIK (20 eyes) | |||
Coma | 0.48 ± 0.27 | 0.70 ± 0.39 | 0.0315 * |
Trefoil | 0.38 ± 0.20 | 0.41 ± 0.39 | 0.3317 |
Spherical | 0.56 ± 0.24 | 1.94 ± 0.64 | 0.0001 * |
Mesopic CS (log Units) | Preoperative | Postoperative | p Value * |
---|---|---|---|
TG-LASIK (20 Eyes) | |||
Without glare | |||
3CPD | 1.67 ± 0.22 | 1.68 ± 0.21 | 0.7051 |
6CPD | 1.86 ± 0.26 | 1.91 ± 0.25 | 0.3018 |
12CPD | 1.55 ± 0.29 | 1.56 ± 0.23 | 0.7592 |
18CPD | 1.10 ± 0.27 | 1.17 ± 0.33 | 0.5616 |
With glare | |||
3CPD | 1.62 ± 0.28 | 1.71 ± 0.23 | 0.1831 |
6CPD | 1.84 ± 0.27 | 1.86 ± 0.13 | 0.8509 |
12CPD | 1.56 ± 0.31 | 1.54 ± 0.25 | 0.9250 |
18CPD | 1.08 ± 0.28 | 1.06 ± 0.23 | 0.9102 |
WFO-LASIK (20 eyes) | |||
Without glare | |||
3CPD | 1.66 ± 0.25 | 1.62 ± 0.18 | 0.7758 |
6CPD | 1.88 ± 0.19 | 1.81 ± 0.26 | 0.2930 |
12CPD | 1.65 ± 0.29 | 1.52 ± 0.18 | 0.0841 |
18CPD | 1.16 ± 0.18 | 1.18 ± 0.31 | 0.8344 |
With glare | |||
3CPD | 1.64 ± 0.29 | 1.62 ± 0.20 | 0.9395 |
6CPD | 2.63 ± 3.39 | 1.81 ± 0.18 | 0.1994 |
12CPD | 1.59 ± 0.27 | 1.45 ± 0.20 | 0.0753 |
18CPD | 1.17 ± 0.27 | 1.15 ± 0.25 | 0.8800 |
Parameters | TG-LASIK | WFO-LASIK | p Value * |
---|---|---|---|
Low myopia | (10 eyes) | (8 eyes) | |
Pre-op SE (D) | −4.31 ± 0.86 | −4.36 ± 1.07 | 0.8590 |
Surgically induced (μm) | |||
Coma | 0.16 ± 0.34 | 0.11 ± 0.47 | 0.9292 |
Trefoil | −0.06 ± 0.16 | 0.08 ± 0.69 | 0.5940 |
Spherical | 0.96 ± 0.31 | 0.87 ± 0.39 | 0.4239 |
Postoperative (μm) | |||
Coma | 0.57 ± 0.27 | 0.65 ± 0.33 | 0.4772 |
Trefoil | 0.22 ± 0.08 | 0.51 ± 0.55 | 0.0914 |
Spherical | 1.52 ± 0.30 | 1.38 ± 0.36 | 0.2863 |
High myopia | (10 eyes) | (12 eyes) | |
Pre-op SE | −7.78 ± 1.53 | −7.69 ± 1.24 | 0.7920 |
Surgically induced (μm) | |||
Coma | 0.35 ± 0.31 | −0.19 ± 1.55 | 0.2914 |
Trefoil | −0.04 ± 0.18 | 0.00 ± 0.31 | 0.8691 |
Spherical | 1.67 ± 0.81 | 1.72 ± 0.32 | 0.3913 |
Postoperative (μm) | |||
Coma | 0.83 ± 0.32 | 0.74 ± 0.44 | 0.3734 |
Trefoil | 0.23 ± 0.12 | 0.36 ± 0.24 | 0.1469 |
Spherical | 2.24 ± 0.85 | 2.31 ± 0.50 | 0.8951 |
Parameter | TG-LASIK (20 Eyes) | WFO-LASIK (20 Eyes) | p Value * |
---|---|---|---|
Glare at night | 36.3 ± 7.3 | 36.5 ± 6.4 | 0.3750 |
Haze | 35.3 ± 6.7 | 37.8 ± 5.4 | 0.0215 * |
Halos | 36.4 ± 6.1 | 35.9 ± 4.4 | 0.6250 |
Clarity at night | 34.6 ± 9.1 | 38.4 ± 6.4 | 0.0386 * |
Clarity during the day | 35.6 ± 7.2 | 37.4 ± 6.5 | 0.1094 |
Dry eye | 36.2 ± 7.7 | 37.2 ± 7.7 | 0.3750 |
Dry eye, severity | 36.4 ± 7.7 | 37.4 ± 7.7 | 0.3750 |
Fluctuating vision | 35.8 ± 6.8 | 37.6 ± 6.8 | 0.2188 |
Total | 35.8 ± 6.1 | 37.3 ± 4.6 | 0.0225 * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mai, E.L.-C.; Chang, C.-K.; Lee, C.-Y.; Lian, I.-B.; Chao, C.-C. Higher-Order Aberrations of Topography-Guided LASIK and Wavefront-Optimized LASIK in High- and Low-Myopic Eyes: A Non-Randomized Controlled Trial. J. Pers. Med. 2023, 13, 399. https://doi.org/10.3390/jpm13030399
Mai EL-C, Chang C-K, Lee C-Y, Lian I-B, Chao C-C. Higher-Order Aberrations of Topography-Guided LASIK and Wavefront-Optimized LASIK in High- and Low-Myopic Eyes: A Non-Randomized Controlled Trial. Journal of Personalized Medicine. 2023; 13(3):399. https://doi.org/10.3390/jpm13030399
Chicago/Turabian StyleMai, Elsa Lin-Chin, Chao-Kai Chang, Chia-Yi Lee, Ie-Bin Lian, and Chen-Cheng Chao. 2023. "Higher-Order Aberrations of Topography-Guided LASIK and Wavefront-Optimized LASIK in High- and Low-Myopic Eyes: A Non-Randomized Controlled Trial" Journal of Personalized Medicine 13, no. 3: 399. https://doi.org/10.3390/jpm13030399
APA StyleMai, E. L. -C., Chang, C. -K., Lee, C. -Y., Lian, I. -B., & Chao, C. -C. (2023). Higher-Order Aberrations of Topography-Guided LASIK and Wavefront-Optimized LASIK in High- and Low-Myopic Eyes: A Non-Randomized Controlled Trial. Journal of Personalized Medicine, 13(3), 399. https://doi.org/10.3390/jpm13030399