A Novel Representation of Audiological and Subjective Findings for Acoustical, Bone Conduction and Direct Drive Hearing Solutions
Abstract
:1. Introduction
2. Materials and Methods
- Sound field thresholds in unaided and aided conditions. The PTA4 is defined as the an average of 0.5, 1, 2, 4 kHz [1].
- Word recognition scores (WRS) in quiet, in unaided and aided conditions at 65 dB SPL in sound field.
- Speech Recognition Thresholds (SRT50) in noise in unaided and aided conditions in sound field.
- Wearing time (hours/day).
- SSQ12 questionnaire scores.
- 1.
- Region 1 indicated that the users achieved ≥70% word recognition score in quiet and wore the device for ≥8 h/day. This exhibited an ideal situation. The patient reached high listening and acceptable wearing comfort.
- 2.
- Region 2 represented word recognition score of ≥70% and wearing time of ≤8 h/day. It suggested that an optimal speech comprehension in the speech test was achieved, but the ideal wearing time was not achieved.
- 3.
- Region 3 identified ≤70% word recognition score and wearing time of ≥8 h/day. This indicated ideal wearing time but a need to achieve better speech scores.
- 4.
- Region 4 showed ≤70% word recognition score and wearing time between 4 and 8 h/day.
- 5.
- Region 5 marked ≤70% word recognition score and wearing time between 1 and 4 h/day.
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Maier, H.; Baumann, U.; Baumgartner, W.D.; Beutner, D.; Caversaccio, M.D.; Keintzel, T.; Kompis, M.; Lenarz, T.; Magele, A.; Mewes, T.; et al. Minimal Reporting Standards for Active Middle Ear Hearing Implants. Audiol. Neurotol. 2018, 23, 105–115. [Google Scholar] [CrossRef] [PubMed]
- Gatehouse, S.; Noble, W. The speech, spatial and qualities of hearing scale (SSQ). Int. J. Audiol. 2004, 43, 85–99. [Google Scholar] [CrossRef] [PubMed]
- Noble, W.; Jensen, N.S.; Naylor, G.; Bhullar, N.; Akeroyd, M.A. A short form of the speech, spatial and qualities of hearing scale suitable for clinical use: The SSQ12. Int. J. Audiol. 2013, 52, 409–412. [Google Scholar] [CrossRef] [PubMed]
- Weisman, K.B.; Warner-Czyz, A.D. Inconsistent device use in pediatric cochlear implant users; Prevalence and risk factors. Cochlear Implant. Int. 2018, 19, 131–141. [Google Scholar] [CrossRef]
- Walker, E.A.; Spratford, M.; Moeller, M.P.; Oleson, J.; Hua, O.; Roush, P.; Jacobs, S. Predictors of hearing aid use time in children with mild-to-severe hearing loss. Lang. Speech Hear. Serv. Sch. 2013, 44, 73–88. [Google Scholar] [CrossRef] [Green Version]
- Easwar, V.; Sanfilippo, J.; Papsin, B.; Gordon, K. Impact of consistency in daily device use on speech perception abilities in children with cochlear implants: Datalogging evidence. J. Am. Acad. Audiol. 2018, 29, 835–846. [Google Scholar] [CrossRef]
- Guerzoni, L.; Cuda, D. Speech processor datalogging helps in predicting early linguistic outcomes in implanted children. Int. J. Pediatr. Otorhinolaryngol. 2017, 101, 81–86. [Google Scholar] [CrossRef]
- Dahm, V.; Auinger, A.B.; Liepins, R.; Baumgartner, W.D.; Riss, D.; Arnoldner, C. A Randomized Cross-over Trial Comparing a Pressure-free, Adhesive to a Conventional Bone Conduction Hearing Device. Otol. Neurotol. 2019, 40, 571–577. [Google Scholar] [CrossRef]
- Sprinzl, G.M.; Schoerg, P.; Ploder, M.; Edlinger, S.H.; Magele, A. Surgical Experience and Early Audiological Outcomes with New Active Transcutaneous Bone Conduction Implant. Otol. Neurotol. 2021, 42, 1208–1215. [Google Scholar] [CrossRef]
- Snik, A.; Maier, H.; Hodgetts, B.; Kompis, M.; Mertens, G.; van de Heyning, P.; Lenarz, T.; Bosman, A. Efficacy of Auditory Implants for Patients With Conductive and Mixed Hearing Loss Depends on Implant Center. Otol. Neurotol. 2019, 40, 430–435. [Google Scholar] [CrossRef]
- Mueller, H.G.; Killion, M.C. An easy method for calculating the articulation index. Hear. J. 1990, 43, 14–17. [Google Scholar]
- Dillon, H. Hearing Aids, 2nd ed.; Thieme: New York, NY, USA, 2012. [Google Scholar]
- Killion, M.C.; Mueller, H.G. Twenty years later: A new Count-the-Dots method. Hear. J. 2010, 63, 10, 12–14, 16–17. [Google Scholar] [CrossRef] [Green Version]
- Zahnert, T.; Mlynski, R.; Löwenheim, H.; Beutner, D.; Hagen, R.; Ernst, A.; Zehlicke, T.; Kühne, H.; Friese, N.; Tropitzsch, A.; et al. Long-Term Outcomes of Vibroplasty Coupler Implantations to Treat Mixed/ Conductive Hearing Loss. Audiol. Neurotol. 2018, 23, 316–325. [Google Scholar] [CrossRef] [PubMed]
- Hempel, J.-M.; Sprinzl, G.; Riechelmann, H.; Streitberger, C.; Giarbini, N.; Stark, T.; Zorowka, P.; Koci, V.; Magele, A.; Strenger, T.; et al. A Transcutaneous Active Middle Ear Implant (AMEI) in Children and Adolescents: Long-term, Multicenter Results. Otol. Neurotol. 2019, 40, 1059–1067. [Google Scholar] [CrossRef] [PubMed]
- Löhler, J.; Gräbner, F.; Wollenberg, B.; Schlattmann, P.; Schönweiler, R. Sensitivity and specificity of the abbreviated profile of hearing aid benefit (APHAB). Eur. Arch. Oto-Rhino-Laryngol. 2017, 274, 3593–3598. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Löhler, J.; Wollenberg, B.; Schönweiler, R. APHAB scores for idividual assessment of the benefit of hearing aid fitting. HNO 2017, 65, 901–909. [Google Scholar] [CrossRef] [Green Version]
- De Brito, R.; Ventura, L.M.P.; Jorge, J.C.; Oliveira, E.B.; Lourencone, L.F.M. An implantable hearing system as rehabilitation for hearing loss due to bilateral aural atresia: Surgical technique and audiological results. J. Int. Adv. Otol. 2016, 12, 241–246. [Google Scholar] [CrossRef]
- Hüttenbrink, K.B.; Zahnert, T.; Wiistenberg, E.G.; Hofmann, G. Titanium clip prosthesis. Otol. Neurotol. 2004, 25, 436–442. [Google Scholar] [CrossRef]
- Müller, A.; Mir-Salim, P.; Zellhuber, N.; Helbig, R.; Bloching, M.; Schmidt, T.; Koscielny, S.; Dziemba, O.C.; Plontke, S.K.; Rahne, T. Influence of floating-mass transducer coupling efficiency for active middle-ear implants on speech recognition. Otol. Neurotol. 2017, 38, 809–814. [Google Scholar] [CrossRef]
- Schraven, S.P.; Großmann, W.; Rak, K.; Shehata-Dieler, W.; Hagen, R.; Mlynski, R. Long-term stability of the active middle-ear implant with floating-mass transducer technology: A single-center study. Otol. Neurotol. 2016, 37, 252–266. [Google Scholar] [CrossRef]
- Schwab, B.; Grigoleit, S.; Teschner, M. Do we really need a Coupler for the round window application of an AMEI. Otol. Neurotol. 2013, 34, 1181–1185. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Zhao, S.; Zhang, Q.; Li, Y.; Ma, X.; Ren, R. Vibrant SoundBridge combined with auricle reconstruction for bilateral congenital aural atresia. Int. J. Pediatr. Otorhinolaryngol. 2016, 86, 240–245. [Google Scholar] [CrossRef] [PubMed]
- Zhao, S.; Gong, S.; Han, D.; Zhang, H.; Ma, X.; Li, Y.; Chen, X.; Ren, R.; Li, Y. Round window application of an active middle ear implant (AMEI) system in congenital oval window atresia. Acta Oto-Laryngol. 2016, 136, 23–33. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sprinzl, G.M.; Magele, A.; Schoerg, P.; Hagen, R.; Rak, K.; Kurz, A.; Van de Heyning, P.; Calvino, M.; Lassaletta, L.; Gavilán, J. A Novel Representation of Audiological and Subjective Findings for Acoustical, Bone Conduction and Direct Drive Hearing Solutions. J. Pers. Med. 2023, 13, 462. https://doi.org/10.3390/jpm13030462
Sprinzl GM, Magele A, Schoerg P, Hagen R, Rak K, Kurz A, Van de Heyning P, Calvino M, Lassaletta L, Gavilán J. A Novel Representation of Audiological and Subjective Findings for Acoustical, Bone Conduction and Direct Drive Hearing Solutions. Journal of Personalized Medicine. 2023; 13(3):462. https://doi.org/10.3390/jpm13030462
Chicago/Turabian StyleSprinzl, Georg Mathias, Astrid Magele, Philipp Schoerg, Rudolf Hagen, Kristen Rak, Anja Kurz, Paul Van de Heyning, Miryam Calvino, Luis Lassaletta, and Javier Gavilán. 2023. "A Novel Representation of Audiological and Subjective Findings for Acoustical, Bone Conduction and Direct Drive Hearing Solutions" Journal of Personalized Medicine 13, no. 3: 462. https://doi.org/10.3390/jpm13030462
APA StyleSprinzl, G. M., Magele, A., Schoerg, P., Hagen, R., Rak, K., Kurz, A., Van de Heyning, P., Calvino, M., Lassaletta, L., & Gavilán, J. (2023). A Novel Representation of Audiological and Subjective Findings for Acoustical, Bone Conduction and Direct Drive Hearing Solutions. Journal of Personalized Medicine, 13(3), 462. https://doi.org/10.3390/jpm13030462