High-Throughput Sequencing Reveals That Rotundine Inhibits Colorectal Cancer by Regulating Prognosis-Related Genes
Abstract
:1. Background
2. Materials and methods
2.1. Materials
2.2. Cell Culture
2.3. MTT Assay
2.4. Cell Scratch Assay
2.5. Apoptosis Assay
2.6. High-Throughput mRNA Sequencing
2.7. Identification of Differentially Expressed Genes
2.8. Enrichment Analysis and Construction of Protein-Protein Interaction(PPI) Network
2.9. Bioinformatics Analysis Based on TCGA Database
2.10. Prognostic Model Construction
2.11. Statistical Analysis
3. Results
3.1. Effect of Rotundine on Cytotoxicity and Invasive Migration of SW480
3.2. Apoptosis Assay
3.3. High-Throughput mRNA Sequencing Analysis
3.4. Enrichment Analysis and Construction of PPI Network
3.5. Gene Expression Analysis of 16 DEGs
3.6. Overall Survival Prognosis Analysis of 16 DEGs
3.7. KEGG and GO Enrichment Analysis of 16 DEGs
3.8. Genetic Correlation Analysis of 16 DEGs
3.9. Prognostic Model Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- Morgan, E.; Arnold, M.; Gini, A.; Lorenzoni, V.; Cabasag, C.J.; Laversanne, M.; Vignat, J.; Ferlay, J.; Murphy, N.; Bray, F. Global burden of colorectal cancer in 2020 and 2040: Incidence and mortality estimates from GLOBOCAN. Gut 2023, 72, 338–344. [Google Scholar] [CrossRef] [PubMed]
- Hofmann, M.H.; Gerlach, D.; Misale, S.; Petronczki, M.; Kraut, N. Expanding the Reach of Precision Oncology by Drugging All KRAS Mutants. Cancer Discov. 2022, 12, 924–937. [Google Scholar] [CrossRef]
- Zhu, G.; Pei, L.; Xia, H.; Tang, Q.; Bi, F. Role of oncogenic KRAS in the prognosis, diagnosis and treatment of colorectal cancer. Mol. Cancer 2021, 20, 143. [Google Scholar] [CrossRef]
- Wang, W.; Kandimalla, R.; Huang, H.; Zhu, L.; Li, Y.; Gao, F.; Goel, A.; Wang, X. Molecular subtyping of colorectal cancer: Recent progress, new challenges and emerging opportunities. Semin. Cancer Biol. 2019, 55, 37–52. [Google Scholar] [CrossRef]
- Chu, H.-Y.; Jin, G.; Friedman, E.; Zhen, X. Recent development in studies of tetrahydroprotoberberines: Mechanism in antinociception and drug addiction. Cell. Mol. Neurobiol. 2008, 28, 491–499. [Google Scholar] [CrossRef]
- Xu, S.X.; Yu, L.P.; Han, Y.R.; Chen, Y.; Jin, G.Z. Effects of tetrahydroprotoberberines on dopamine receptor subtypes in brain. Zhongguo Yao Li Xue Bao 1989, 10, 104–110. [Google Scholar] [PubMed]
- Du, Q.; Meng, X.; Wang, S. A Comprehensive Review on the Chemical Properties, Plant Sources, Pharmacological Activities, Pharmacokinetic and Toxicological Characteristics of Tetrahydropalmatine. Front. Pharmacol. 2022, 13, 890078. [Google Scholar] [CrossRef] [PubMed]
- Yin, X.; Li, W.; Zhang, J.; Zhao, W.; Cai, H.; Zhang, C.; Liu, Z.; Guo, Y.; Wang, J. AMPK-Mediated Metabolic Switching Is High Effective for Phytochemical Levo-Tetrahydropalmatine (l-THP) to Reduce Hepatocellular Carcinoma Tumor Growth. Metabolites 2021, 11, 811. [Google Scholar] [CrossRef]
- Xia, X.; He, J.; Liu, B.; Shao, Z.; Xu, Q.; Hu, T.; Huang, H. Targeting ERalpha degradation by L-Tetrahydropalmatine provides a novel strategy for breast cancer treatment. Int. J. Biol. Sci. 2020, 16, 2192–2204. [Google Scholar] [CrossRef]
- Wang, W.; Liu, J.; Zhao, X.; Peng, Y.; Wang, N.; Lee, D.Y.W.; Dai, R. Simultaneous determination of l-tetrahydropalmatine and its active metabolites in rat plasma by a sensitive ultra-high-performance liquid chromatography with tandem mass spectrometry method and its application in a pharmacokinetic study. Biomed. Chromatogr. 2017, 31, e3903. [Google Scholar] [CrossRef]
- Yang, Z.; Shao, Y.C.; Li, S.J.; Qi, J.L.; Zhang, M.J.; Hao, W.; Jin, G.Z. Medication of l-tetrahydropalmatine significantly ameliorates opiate craving and increases the abstinence rate in heroin users: A pilot study. Acta Pharmacol. Sin. 2008, 29, 781–788. [Google Scholar] [CrossRef] [Green Version]
- Gelibter, A.J.; Caponnetto, S.; Urbano, F.; Emiliani, A.; Scagnoli, S.; Sirgiovanni, G.; Napoli, V.M.; Cortesi, E. Adjuvant chemotherapy in resected colon cancer: When, how and how long? Surg. Oncol. 2019, 30, 100–107. [Google Scholar] [CrossRef]
- Goyal, S.; Gupta, N.; Chatterjee, S.; Nimesh, S. Natural Plant Extracts as Potential Therapeutic Agents for the Treatment of Cancer. Curr. Top. Med. Chem. 2017, 17, 96–106. [Google Scholar] [CrossRef]
- Khan, T.; Ali, M.; Khan, A.; Nisar, P.; Jan, S.A.; Afridi, S.; Shinwari, Z.K. Anticancer Plants: A Review of the Active Phytochemicals, Applications in Animal Models, and Regulatory Aspects. Biomolecules 2019, 10, 47. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gong, X.; Yue, K.; Ma, B.; Xing, J.; Gan, Y.; Wang, D.; Jin, G.; Li, C. Levo-tetrahydropalmatine, a natural, mixed dopamine receptor antagonist, inhibits methamphetamine self-administration and methamphetamine-induced reinstatement. Pharmacol. Biochem. Behav. 2016, 144, 67–72. [Google Scholar] [CrossRef] [PubMed]
- Du, K.; Wang, Z.; Zhang, H.; Zhang, Y.; Su, H.; Wei, Z.; Zhang, C.; Yun, K.; Cong, B. Levo-tetrahydropalmatine attenuates the acquisition of fentanyl-induced conditioned place preference and the changes in ERK and CREB phosphorylation expression in mice. Neurosci. Lett. 2021, 756, 135984. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Dai, R.; Damiescu, R.; Efferth, T.; Lee, D.Y. Role of Levo-tetrahydropalmatine and its metabolites for management of chronic pain and opioid use disorders. Phytomedicine 2021, 90, 153594. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Zhu, W.; Lu, D.; Zhang, C.; Wang, Y. Tetrahydropalmatine attenuates MSU crystal-induced gouty arthritis by inhibiting ROS-mediated NLRP3 inflammasome activation. Int. Immunopharmacol. 2021, 100, 108107. [Google Scholar] [CrossRef]
- Mosmann, T. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J. Immunol. Methods 1983, 65, 55–63. [Google Scholar] [CrossRef]
- De Las Rivas, J.; Fontanillo, C. Protein-protein interactions essentials: Key concepts to building and analyzing interactome networks. PLoS Comput. Biol. 2010, 6, e1000807. [Google Scholar] [CrossRef] [Green Version]
- Mackay, J.P.; Sunde, M.; Lowry, J.A.; Crossley, M.; Matthews, J.M. Protein interactions: Is seeing believing? Trends Biochem. Sci. 2007, 32, 530–531. [Google Scholar] [CrossRef]
- Chatr-Aryamontri, A.; Ceol, A.; Licata, L.; Cesareni, G. Protein interactions: Integration leads to belief. Trends Biochem. Sci. 2008, 33, 241–242. [Google Scholar] [CrossRef]
- Prieto, C.; Risueño, A.; Fontanillo, C.; De Las Rivas, J. Human gene coexpression landscape: Confident network derived from tissue transcriptomic profiles. PLoS ONE 2008, 3, e3911. [Google Scholar] [CrossRef] [Green Version]
- Toiyama, Y.; Mizoguchi, A.; Kimura, K.; Araki, T.; Yoshiyama, S.; Sakaguchi, K.; Miki, C.; Kusunoki, M. Persistence of gene expression changes in noninflamed and inflamed colonic mucosa in ulcerative colitis and their presence in colonic carcinoma. World J. Gastroenterol. 2005, 11, 5151–5155. [Google Scholar] [PubMed]
- Nome, T.; Thomassen, G.O.; Bruun, J.; Ahlquist, T.; Bakken, A.C.; Hoff, A.M.; Rognum, T.; Nesbakken, A.; Lorenz, S.; Sun, J.; et al. Common Fusion Transcripts Identified in Colorectal Cancer Cell Lines by High-Throughput RNA Sequencing. Transl. Oncol. 2013, 6, 546–553. [Google Scholar] [CrossRef] [Green Version]
- Miyoshi, N.; Ishii, H.; Sekimoto, M.; Doki, Y.; Mori, M. RGS16 is a marker for prognosis in colorectal cancer. Ann. Surg. Oncol. 2009, 16, 3507–3514. [Google Scholar] [CrossRef]
- Pietrzyk, L.; Wdowiak, P. Serum TEM5 and TEM7 concentrations correlate with clinicopathologic features and poor prognosis of colorectal cancer patients. Adv. Med. Sci. 2019, 64, 402–408. [Google Scholar] [CrossRef] [PubMed]
- Pietrzyk, L. Biomarkers Discovery for Colorectal Cancer: A Review on Tumor Endothelial Markers as Perspective Candidates. Dis. Markers 2016, 2016, 4912405. [Google Scholar] [CrossRef] [Green Version]
- Rmali, K.A.; Puntis, M.C.; Jiang, W.G. Prognostic values of tumor endothelial markers in patients with colorectal cancer. World J. Gastroenterol. 2005, 11, 1283–1286. [Google Scholar] [CrossRef] [PubMed]
- Wei, Q.; Zhou, H.; Zhong, L.; Shi, L.; Liu, J.; Yang, Q.; Zhao, T. IMP3 expression in biopsy specimens as a diagnostic biomarker for colorectal cancer. Hum. Pathol. 2017, 64, 137–144. [Google Scholar] [CrossRef]
- Salehitabar, E.; Mahdevar, M.; Motlagh, A.V.; Forootan, F.S.; Feizbakhshan, S.; Zohrabi, D.; Peymani, M. Identification of genes with high heterogeneity of expression as a predictor of different prognosis and therapeutic responses in colorectal cancer: A challenge and a strategy. Cancer Cell Int. 2022, 22, 276. [Google Scholar] [CrossRef]
- Mannironi, C.; D’Incalci, M. Doxorubicin induces the acetylation of histone H1 in a human colon cancer cell line (LoVo/DX) selected for resistance to the drug, but not in the sensitive parental line (LoVo). Biochem. Biophys. Res. Commun. 1988, 155, 1221–1229. [Google Scholar] [CrossRef]
- Qi, X.; Lin, Y.; Liu, X.; Chen, J.; Shen, B. Biomarker Discovery for the Carcinogenic Heterogeneity Between Colon and Rectal Cancers Based on lncRNA-Associated ceRNA Network Analysis. Front. Oncol. 2020, 10, 535985. [Google Scholar] [CrossRef]
- Juhari, W.K.W.; Noordin, K.B.A.A.; Zakaria, A.D.; Rahman, W.F.W.A.; Mokhter, W.M.M.W.M.; Abu Hassan, M.R.; Sidek, A.S.M.; Zilfalil, B.A. Whole-Genome Profiles of Malay Colorectal Cancer Patients with Intact MMR Proteins. Genes 2021, 12, 1448. [Google Scholar] [CrossRef]
- Vander Heiden, M.G.; DeBerardinis, R.J. Understanding the Intersections between Metabolism and Cancer Biology. Cell 2017, 168, 657–669. [Google Scholar] [CrossRef] [Green Version]
- Martinez-Reyes, I.; Chandel, N.S. Cancer metabolism: Looking forward. Nat. Rev. Cancer 2021, 21, 669–680. [Google Scholar] [CrossRef] [PubMed]
- Shears, S.B. Diphosphoinositol polyphosphates: Metabolic messengers? Mol. Pharmacol. 2009, 76, 236–252. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saha, P.; Yeoh, B.S.; Xiao, X.; Golonka, R.M.; Kumarasamy, S.; Vijay-Kumar, M. Enterobactin, an iron chelating bacterial siderophore, arrests cancer cell proliferation. Biochem. Pharmacol. 2019, 168, 71–81. [Google Scholar] [CrossRef] [PubMed]
- Saha, P.; Yeoh, B.S.; Xiao, X.; Golonka, R.M.; Abokor, A.A.; Wenceslau, C.F.; Shah, Y.M.; Joe, B.; Vijay-Kumar, M. Enterobactin induces the chemokine, interleukin-8, from intestinal epithelia by chelating intracellular iron. Gut Microbes 2020, 12, 1–18. [Google Scholar] [CrossRef]
- Zhou, H.-H.; Wu, D.-L.; Gao, L.-Y.; Fang, Y.; Ge, W.-H. L-Tetrahydropalmatine alleviates mechanical hyperalgesia in models of chronic inflammatory and neuropathic pain in mice. Neuroreport 2016, 27, 476–480. [Google Scholar] [CrossRef]
- Li, C.; Li, L.; Yi, Y.; Wang, W.; Yuan, J.; Tan, F.; Fang, D.; Zeng, S.; Zhou, H.; Jiang, H. L-tetrahydropalmatine attenuates cisplatin-induced nephrotoxicity via selective inhibition of organic cation transporter 2 without impairing its antitumor efficacy. Biochem. Pharmacol. 2020, 177, 114021. [Google Scholar] [CrossRef] [PubMed]
385 Differentially Expressed Genes (DEGs) Obtained by High-Throughput Sequencing | ||||
---|---|---|---|---|
Gene ID | Gene Symbol | Type | log2 (Rotundine/Control) | FDR (Rotundine/Control) |
100271849 | MEF2B | mRNA | −1.074476505 | 0.005394141 |
9651 | PLCH2 | mRNA | −1.719892081 | 2.65 × 10−5 |
92797 | HELB | mRNA | −1.387023123 | 0.008073432 |
9311 | ASIC3 | mRNA | −1.55359833 | 4.19 × 10−7 |
84249 | PSD2 | mRNA | −1.201633861 | 0.005584584 |
6004 | RGS16 | mRNA | −1.332575339 | 1.51 × 10−4 |
64801 | ARV1 | mRNA | 1.633872101 | 4.99 × 10−8 |
399693 | CCDC187 | mRNA | −1.232660757 | 0.004063028 |
57125 | PLXDC1 | mRNA | −1.106915204 | 0.004030209 |
10643 | IGF2BP3 | mRNA | −1.117197143 | 1.14 × 10−133 |
130162 | CLHC1 | mRNA | −1.282399731 | 1.86 × 10−5 |
144132 | DNHD1 | mRNA | −1.22571278 | 9.33 × 10−8 |
26278 | SACS | mRNA | −1.133362096 | 8.77 × 10−63 |
3008 | H1-4 | mRNA | −3.058893689 | 9.15 × 10−5 |
375248 | ANKRD36 | mRNA | −1.024627189 | 5.93 × 10−11 |
51351 | ZNF117 | mRNA | −13.30092449 | 7.74 × 10−29 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, L.; Zou, T.; Liang, W.; Mo, C.; Wei, J.; Deng, Y.; Ou, M. High-Throughput Sequencing Reveals That Rotundine Inhibits Colorectal Cancer by Regulating Prognosis-Related Genes. J. Pers. Med. 2023, 13, 550. https://doi.org/10.3390/jpm13030550
Huang L, Zou T, Liang W, Mo C, Wei J, Deng Y, Ou M. High-Throughput Sequencing Reveals That Rotundine Inhibits Colorectal Cancer by Regulating Prognosis-Related Genes. Journal of Personalized Medicine. 2023; 13(3):550. https://doi.org/10.3390/jpm13030550
Chicago/Turabian StyleHuang, Lingyu, Tongxiang Zou, Wenken Liang, Chune Mo, Jianfen Wei, Yecheng Deng, and Minglin Ou. 2023. "High-Throughput Sequencing Reveals That Rotundine Inhibits Colorectal Cancer by Regulating Prognosis-Related Genes" Journal of Personalized Medicine 13, no. 3: 550. https://doi.org/10.3390/jpm13030550
APA StyleHuang, L., Zou, T., Liang, W., Mo, C., Wei, J., Deng, Y., & Ou, M. (2023). High-Throughput Sequencing Reveals That Rotundine Inhibits Colorectal Cancer by Regulating Prognosis-Related Genes. Journal of Personalized Medicine, 13(3), 550. https://doi.org/10.3390/jpm13030550