Targeted Therapy for Orofacial Pain: A Novel Perspective for Precision Medicine
Abstract
:1. Introduction
2. History of Precision Medicine
3. The Need for Advancement of Precision Medicine in Pain Management
4. Precision Medicine Targeting Orofacial Pain
4.1. Voltage-Gated Sodium Channel
4.2. Voltage-Gated Potassium Channel
4.3. Voltage-Gated Calcium Channel
4.4. Transient Receptor Potential Channels
4.5. Serotonin-Gated Ion Channels
4.6. Single Nucleotide Polymorphisms
- Solute carrier family 17 member 9 (SLC17A9) and purinergic receptor P2Y12 (P2RY12) have been reported to be associated with neuropathic pain. Further studies are needed for understanding the detailed mechanisms of pain signal transduction in humans [32].
- Catechol-O-methyltransferase [COMT] is a metabolic enzyme found primarily in postsynaptic neurons and glial cells. Previous reports have shown the participation of COMT in the regulation of neurotransmitters such as dopamine, noradrenaline and adrenaline related to pain [33,34,35,36]. The literature shows evidence of the association of COMT with pain modulation in temporomandibular disorders, which would aid in progressing toward precision medicine.
4.7. Sepiapterin Reductase/GTP Cyclohydrolase 1
4.8. Opioid Receptors
5. Challenges
6. Multifaced Perspectives
6.1. Health Systems
6.2. Nutrition
6.3. Epigenetics
6.4. Genetics
7. Future Directions
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zakrzewska, J.M.; Hamlyn, P.J. Facial pain. In Epidemiology of Pain Seattle; IASP Press: Washington, DC, USA, 1999; pp. 171–202. [Google Scholar]
- Sessle, B. Chronic Orofacial Pain: Models, Mechanisms, and Genetic and Related Environmental Influences. Int. J. Mol. Sci. 2021, 22, 7112. [Google Scholar] [CrossRef] [PubMed]
- Pak, D.J.; Yong, R.J.; Kaye, A.D.; Urman, R.D. Chronification of pain: Mechanisms, current understanding, and clinical implications. Curr. Pain Headache Rep. 2018, 22, 9. [Google Scholar] [CrossRef] [PubMed]
- Rotpenpian, N.; Yakkaphan, P. Review of literatures: Physiology of orofacial pain in dentistry. Eneuro 2021, 8, 1–7. [Google Scholar] [CrossRef]
- Ananthan, S.; Benoliel, R. Chronic orofacial pain. J. Neural Transm. 2020, 127, 575–588. [Google Scholar] [CrossRef]
- Benoliel, R.; May, A.; Svensson, P.; Pigg, M.; Alstergren, P.; Baad-Hansen, L. International Classification of Orofacial Pain, (ICOP). Cephalalgia 2020, 40, 129–221. [Google Scholar]
- Ghurye, S.; McMillan, R. Orofacial pain–an update on diagnosis and management. Br. Dent. J. 2017, 223, 639–647. [Google Scholar] [CrossRef]
- Li, C.C.; Shen, Z.; Bavarian, R.; Yang, F.; Bhattacharya, A. Oral cancer: Genetics and the role of precision medicine. Dent. Clin. N. Am. 2018, 62, 29–46. [Google Scholar] [CrossRef]
- Kaidar-Person, O.; Gil, Z.; Billan, S. Precision medicine in head and neck cancer. Drug Resist. Updates 2018, 40, 13–16. [Google Scholar] [CrossRef]
- Kim, J.; Hu, C.; El Achkar, C.M.; Black, L.E.; Douville, J.; Larson, A.; Pendergast, M.K.; Goldkind, S.F.; Lee, E.A.; Kuniholm, A.; et al. Patient-customized oligonucleotide therapy for a rare genetic disease. N. Engl. J. Med. 2019, 381, 1644–1652. [Google Scholar] [CrossRef]
- Branford, R.; Droney, J.; Ross, J.R. Opioid genetics: The key to personalized pain control? Clin. Genet. 2012, 82, 301–310. [Google Scholar] [CrossRef]
- Klepstad, P.; Rakvåg, T.T.; Kaasa, S.; Holthe, M.; Dale, O.; Borchgrevink, P.C.; Baar, C.; Vikan, T.; Krokan, H.E.; Skorpen, F. The 118 A> G polymorphism in the human µ-opioid receptor gene may increase morphine requirements in patients with pain caused by malignant disease. Acta Anaesthesiol. Scand. 2004, 48, 1232–1239. [Google Scholar] [CrossRef] [PubMed]
- Sia, A.T.; Lim, Y.; Lim, E.C.; Goh, R.W.; Law, H.Y.; Landau, R.; Teo, Y.Y.; Tan, E.C. A118G single nucleotide polymorphism of human μ-opioid receptor gene influences pain perception and patient-controlled intravenous morphine consumption after intrathecal morphine for postcesarean analgesia. Anesthesiology 2008, 109, 520–526. [Google Scholar] [CrossRef] [Green Version]
- Gibson, W.M. Can personalized medicine survive? Can. Fam. Physician 1971, 17, 29–88. [Google Scholar] [PubMed]
- Litman, T. Personalized medicine—Concepts, technologies, and applications in inflammatory skin diseases. Apmis 2019, 127, 386–424. [Google Scholar] [CrossRef] [PubMed]
- Wasi, P. Human genomics: Implications for health. Southeast Asian J. Trop. Med. Public Health 1997, 28, 19–24. [Google Scholar] [PubMed]
- Peck, R.W. Precision medicine is not just genomics: The right dose for every patient. Annu. Rev. Pharmacol. Toxicol. 2018, 58, 105–122. [Google Scholar] [CrossRef]
- De Rossi, S.S. Orofacial pain: A primer. Dent. Clin. N. Am. 2013, 57, 383–392. [Google Scholar] [CrossRef]
- Bhattacharya, A.; Wickenden, A.D.; Chaplan, S.R. Sodium channel blockers for the treatment of neuropathic pain. Neurotherapeutics 2009, 6, 663–678. [Google Scholar] [CrossRef] [Green Version]
- Abd-Elsayed, A.; Jackson, M.; Gu, S.L.; Fiala, K.; Gu, J. Neuropathic pain and Kv7 voltage-gated potassium channels: The potential role of Kv7 activators in the treatment of neuropathic pain. Mol. Pain 2019, 15, 1744806919864256. [Google Scholar] [CrossRef] [Green Version]
- Smith, P.A. K+ channels in primary afferents and their role in nerve injury-induced pain. Front. Cell. Neurosci. 2020, 14, 566418. [Google Scholar] [CrossRef]
- Dolphin, A.C. Beta subunits of voltage-gated calcium channels. J. Bioenerg. Biomembr. 2003, 35, 599–620. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sekiguchi, F.; Tsubota, M.; Kawabata, A. Involvement of voltage-gated calcium channels in inflammation and inflammatory Pain. Biol. Pharm. Bull. 2018, 41, 1127–1134. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zamponi, G.W.; Lewis, R.J.; Todorovic, S.M.; Arneric, S.P.; Snutch, T.P. Role of voltage-gated calcium channels in ascending pain pathways. Brain Res. Rev. 2009, 60, 84–89. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alles, S.R.; Smith, P.A. Peripheral voltage-gated cation channels in neuropathic pain and their potential as therapeutic targets. Front. Pain Res. 2021, 2, 106. [Google Scholar] [CrossRef]
- Samanta, A.; Hughes, T.E.T.; Moiseenkova-Bell, V.Y. Transient receptor potential (TRP) channels. Subcell. Biochem. 2018, 87, 141–165. [Google Scholar]
- Jardín, I.; López, J.J.; Diez, R.; Sánchez-Collado, J.; Cantonero, C.; Albarrán, L.; Woodard, G.E.; Redondo, P.C.; Salido, G.M.; Smani, T.; et al. TRPs in pain sensation. Front. Physiol. 2017, 8, 392. [Google Scholar] [CrossRef] [Green Version]
- Duitama, M.; Moreno, Y.; Santander, S.P.; Casas, Z.; Sutachan, J.J.; Torres, Y.P.; Albarracín, S.L. TRP Channels as Molecular Targets to Relieve Cancer Pain. Biomolecules 2021, 12, 1. [Google Scholar] [CrossRef]
- Panicker, S.; Cruz, H.; Arrabit, C.; Slesinger, P.A. Evidence for a centrally located gate in the pore of a serotonin-gated ion channel. J. Neurosci. 2002, 22, 1629–1639. [Google Scholar] [CrossRef]
- Liu, Q.Q.; Yao, X.X.; Gao, S.H.; Li, R.; Li, B.J.; Yang, W.; Cui, R.J. Role of 5-HT receptors in neuropathic pain: Potential therapeutic implications. Pharmacol. Res. 2020, 159, 104949. [Google Scholar] [CrossRef]
- Peiró, A.M. Pharmacogenetics in Pain Treatment. Adv. Pharmacol. 2018, 83, 247–273. [Google Scholar]
- Soeda, M.; Ohka, S.; Nishizawa, D.; Hasegawa, J.; Nakayama, K.; Ebata, Y.; Fukuda, K.I.; Ikeda, K. Single-nucleotide polymorphisms of the SLC17A9 and P2RY12 genes are significantly associated with phantom tooth pain. Mol. Pain 2022, 18, 17448069221089592. [Google Scholar] [CrossRef] [PubMed]
- Tolba, M.F.; Omar, H.A.; Hersi, F.; Nunes, A.C.F.; Noreddin, A.M. The impact of catechol-O-methyl transferase knockdown on the cell proliferation of hormone-responsive cancers. Mol. Cell. Endocrinol. 2019, 488, 79–88. [Google Scholar] [CrossRef] [PubMed]
- García-Carmona, J.A.; Georgiou, P.; Zanos, P.; Bailey, A.; Laorden, M.L. Methamphetamine withdrawal induces activation of CRF neurons in the brain stress system in parallel with an increased activity of cardiac sympathetic pathways. Naunyn-Schmiedeberg’s Arch. Pharmacol. 2018, 391, 423–434. [Google Scholar] [CrossRef]
- Slade, G.D.; Diatchenko, L.; Ohrbach, R.; Maixner, W. Orthodontic Treatment, Genetic Factors, and Risk of Temporomandibular Disorder. Semin. Orthod. 2008, 14, 146–156. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, Y.; Song, Z.; Chen, S.; Yao, F.; Liu, J.; Ouyang, Z.; Liao, Z. Mechanism of Catechol-O-methyltransferase Regulating Orofacial Pain Induced by Tooth Movement. BioMed Res. Int. 2021, 2021, 4229491. [Google Scholar] [CrossRef]
- Latremoliere, A.; Latini, A.; Andrews, N.; Cronin, S.J.; Fujita, M.; Gorska, K.; Hovius, R.; Romero, C.; Chuaiphichai, S.; Painter, M.; et al. Reduction of neuropathic and inflammatory pain through inhibition of the tetrahydrobiopterin pathway. Neuron 2015, 86, 1393–1406. [Google Scholar] [CrossRef] [Green Version]
- Raman, S.; Waskitho, A.; Raju, R.; Iwasa, T.; Ikutame, D.; Okura, K.; Oshima, M.; Matsuka, Y. Analgesic Effect of Tranilast in an Animal Model of Neuropathic Pain and Its Role in the Regulation of Tetrahydrobiopterin Synthesis. Int. J. Mol. Sci. 2022, 23, 5878. [Google Scholar] [CrossRef]
- Corbett, A.D.; Henderson, G.; McKnight, A.T.; Paterson, S.J. 75 years of opioid research: The exciting but vain quest for the Holy Grail. Br. J. Pharmacol. 2006, 147, S153–S162. [Google Scholar] [CrossRef] [Green Version]
- Somogyi, A.A.; Musolino, S.T.; Barratt, D.T. New pharmacological perspectives and therapeutic options for opioids: Differences matter. Anaesth. Intensive Care 2022, 50, 127–140. [Google Scholar] [CrossRef]
- Eriksson, J.; Jablonski, A.; Persson, A.K.; Hao, J.X.; Kouya, P.F.; Wiesenfeld-Hallin, Z.; Xu, X.J.; Fried, K. Behavioral changes and trigeminal ganglion sodium channel regulation in an orofacial neuropathicpain model. Pain 2005, 119, 82–94. [Google Scholar] [CrossRef]
- Luiz, A.P.; Kopach, O.; Santana-Varela, S.; Wood, J.N. The role of Nav1.9 channel in the development of neuropathic orofacial pain associated with trigeminal neuralgia. Mol. Pain 2015, 25, 72. [Google Scholar]
- Madrid, R.; de la Peña, E.; Donovan-Rodriguez, T.; Belmonte, C.; Viana, F. Variable threshold of trigeminal cold-thermosensitive neurons is determined by a balance between TRPM8 and Kv1 potassium channels. J. Neurosci. 2009, 29, 3120–3131. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kanda, H.; Ling, J.; Chang, Y.-T.; Erol, F.; Viatchenko-Karpinski, V.; Yamada, A.; Noguchi, K.; Gu, J.G. Kv4.3 channel dysfunction contributes to trigeminal neuropathic pain manifested with orofacial cold hypersensitivity in rats. J. Neurosci. 2021, 41, 2091–2105. [Google Scholar] [CrossRef] [PubMed]
- Montera, M.; Goins, A.; Cmarko, L.; Weiss, N.; Westlund, K.N.; Alles, S.R.A. Trigeminal neuropathic pain is alleviated by inhibition of Cav3.3 T-type calcium channels in mice. Channels 2021, 15, 31–37. [Google Scholar] [CrossRef]
- Gambeta, E.; Gandini, M.A.; Souza, I.A.; Zamponi, G.W. Ca V 3.2 calcium channels contribute to trigeminal neuralgia. Pain 2022, 163, 2315–2325. [Google Scholar] [CrossRef]
- DeMartini, C.; Greco, R.; Zanaboni, A.M.; Francesconi, O.; Nativi, C.; Tassorelli, C.; Deseure, K. Antagonism of Transient Receptor Potential Ankyrin Type-1 Channels as a Potential Target for the Treatment of Trigeminal Neuropathic Pain: Study in an Animal Model. Int. J. Mol. Sci. 2018, 19, 3320. [Google Scholar] [CrossRef] [Green Version]
- Santos, S.A.A.R.; Damasceno, M.B.M.V.; Magalhães, F.E.A.; Sessle, B.J.; Oliveira, B.A.; Batista, F.L.A.; Vieira-Neto, A.E.; Campos, A.R. Transient receptor potential channel involvement in antinociceptive effect of citral in orofacial acute and chronic pain models. EXCLI J. 2022, 21, 869–887. [Google Scholar]
- Cornelison, L.E.; Woodman, S.E.; Durham, P.L. 5-HT3/7 and GABAB receptors mediate inhibition of trigeminal nociception by dietary supplementation of grape seed extract. Nutr. Neurosci. 2022, 25, 1565–1576. [Google Scholar] [CrossRef]
- Katagiri, A.; Shinoda, M.; Honda, K.; Toyofuku, A.; Sessle, B.J.; Iwata, K. Satellite glial cell P2Y12 receptor in the trigeminal ganglion is involved in lingual neuropathic pain mechanisms in rats. Mol. Pain 2012, 8, 23–36. [Google Scholar] [CrossRef] [Green Version]
- Nũnéz, S.; Lee, J.S.; Zhang, Y.; Bai, G.; Ro, J.Y. Role of peripheral mu-opioid receptors in inflammatory orofacial muscle pain. J. Neurosci. 2007, 146, 1346–1354. [Google Scholar] [CrossRef]
- Erfanparast, A.; Tamaddonfard, E.; Seyedin, S. Involvement of central opiate receptors in modulation of centrally administered oxytocin-induced antinociception. Iran. J. Basic Med. Sci. 2018, 12, 1275. [Google Scholar]
- Saloman, J.L.; Niu, K.Y.; Ro, J.Y. Activation of peripheral delta-opioid receptors leads to anti-hyperalgesic responses in the masseter muscle of male and female rats. J. Neurosci. 2011, 190, 379–385. [Google Scholar] [CrossRef] [Green Version]
- Siqueira, S.R.; Alves, B.; Malpartida, H.M.; Teixeira, M.J.; Siqueira, J.T. Abnormal expression of voltage-gated sodium channels Nav1.7, Nav1.3 and Nav1.8 in trigeminal neuralgia. Neuroscience 2009, 164, 573–577. [Google Scholar] [CrossRef]
- Zakrzewska, J.M.; Palmer, J.; Morisset, V.; Giblin, G.M.; Obermann, M.; Ettlin, D.A.; Cruccu, G.; Bendtsen, L.; Estacion, M.; Derjean, D.; et al. Safety and efficacy of a nav1.7 selective sodium channel blocker in patients with trigeminal neuralgia: A double-blind, placebo-controlled, randomised withdrawal phase 2a trial. Lancet Neurol. 2017, 16, 291–300. [Google Scholar] [CrossRef] [Green Version]
- Kotecha, M.; Cheshire, W.P.; Finnigan, H.; Giblin, K.; Naik, H.; Palmer, J.; Tate, S.; Zakrzewska, J.M. Design of phase 3 studies evaluating vixotrigine for treatment of trigeminal neuralgia. J. Pain Res. 2020, 13, 1601–1609. [Google Scholar] [CrossRef]
- Al-Karagholi, M.A.M.; Hansen, J.M.; Guo, S.; Olesen, J.; Ashina, M. Opening of ATP-Sensitive Potassium Channels Causes Migraine Attacks: A New Target for the Treatment of Migraine. Brain 2019, 142, 2644–2654. [Google Scholar] [CrossRef]
- Al-Karagholi, M.A.M.; Ghanizada, H.; Hansen, J.M.; Aghazadeh, S.; Skovgaard, L.T.; Olesen, J.; Ashina, M. Extracranial activation of ATP-sensitive potassium channels induces vasodilation without nociceptive effects. Cephalalgia 2019, 39, 1789–1797. [Google Scholar] [CrossRef]
- Al-Karagholi, M.A.M.; Ghanizada, H.; Nielsen, C.A.W.; Skandarioon, C.; Snellman, J.; Lopez Lopez, C.; Hansen, J.M.; Ashina, M. Opening of BKCa channels alters cerebral hemodynamic and causes headache in healthy volunteers. Cephalalgia 2020, 40, 1145–1154. [Google Scholar] [CrossRef]
- Christidis, N.; Kang, I.; Cairns, B.E.; Kumar, U.; Dong, X.; Rosén, A.; Kopp, S.; Ernberg, M. Expression of 5-HT3 receptors and TTX resistant sodium channels (Na(V)1.8) on muscle nerve fibers in pain-free humans and patients with chronic myofascial temporomandibular disorders. J. Headache Pain 2014, 15, 63. [Google Scholar] [CrossRef] [Green Version]
- Slade, G.D.; Fillingim, R.B.; Ohrbach, R.; Hadgraft, H.; Willis, J.; Arbes Jr, S.J.; Tchivileva, I.E. COMT genotype and efficacy of propranolol for TMD pain: A randomized trial. J. Dent. Res. 2021, 100, 163–170. [Google Scholar] [CrossRef]
- Kleinert, R.; Lange, C.; Steup, A.; Black, P.; Goldberg, J.; Desjardins, P. Single dose analgesic efficacy of tapentadol in postsurgical dental pain: The results of a randomized, double-blind, placebo-controlled study. Anesth. Analg. 2008, 107, 2048–2055. [Google Scholar] [CrossRef]
- Dickenson, A.H.; Patel, R. Translational issues in precision medicine in neuropathic pain. Can. J. Pain 2020, 4, 30–38. [Google Scholar] [CrossRef] [Green Version]
- Cox, J.J.; Reimann, F.; Nicholas, A.K.; Thornton, G.; Roberts, E.; Springell, K.; Karbani, G.; Jafri, H.; Mannan, J.; Raashid, Y.; et al. An SCN9A channelopathy causes congenital inability to experience pain. Nature 2006, 444, 894–898. [Google Scholar] [CrossRef]
- McCleane, G.J.; Suzuki, R.; Dickenson, A.H. Does a single intravenous injection of the 5HT3 receptor antagonist ondansetron have an analgesic effect in neuropathic pain? A double-blinded, placebo-controlled cross-over study. Anesth. Analg. 2003, 97, 1474–1478. [Google Scholar] [CrossRef]
- Tuveson, B.; Leffler, A.S.; Hansson, P. Ondansetron, a 5HT3-antagonist, does not alter dynamic mechanical allodynia or spontaneous ongoing pain in peripheral neuropathy. Clin. J. Pain 2011, 27, 323–329. [Google Scholar] [CrossRef]
- Goetz, L.H.; Schork, N.J. Personalized medicine: Motivation, challenges, and progress. Fertil. Steril. 2018, 109, 952–963. [Google Scholar] [CrossRef]
- Ginsburg, G.S.; Phillips, K.A. Precision medicine: From science to value. Health Aff. 2018, 37, 694–701. [Google Scholar] [CrossRef]
- Franklin, T.B.; Mansuy, I.M. Epigenetic inheritance in mammals: Evidence for the impact of adverse environmental effects. Neurobiol. Dis. 2010, 39, 61–65. [Google Scholar] [CrossRef]
- Darnaudéry, M.; Maccari, S. Epigenetic programming of the stress response in male and female rats by prenatal restraint stress. Brain Res. Rev. 2008, 57, 571–585. [Google Scholar] [CrossRef]
- Ponomarev, I.; Wang, S.; Zhang, L.; Harris, R.A.; Mayfield, R.D. Gene Coexpression Networks in Human Brain Identify Epigenetic Modifications in Alcohol Dependence. J. Neurosci. 2012, 32, 1884–1897. [Google Scholar] [CrossRef] [Green Version]
- Ungerer, M.; Knezovich, J.; Ramsay, M. In utero alcohol exposure, epigenetic changes, and their consequences. Alcohol Res. Curr. Rev. 2013, 35, 37–46. [Google Scholar]
- Ashley, E.A. Towards precision medicine. Nat. Rev. Genet. 2016, 17, 507–522. [Google Scholar] [CrossRef] [PubMed]
- Diatchenko, L.; Slade, G.D.; Nackley, A.G.; Bhalang, K.; Sigurdsson, A.; Belfer, I.; Goldman, D.; Xu, K.; Shabalina, S.A.; Shagin, D.; et al. Genetic basis for individual variations in pain perception and the development of a chronic pain condition. Hum. Mol. Genet. 2005, 14, 135–143. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dickenson, A. Why are sodium channel modulators not yet pharmacotherapeutic trailblazers for neuropathic pain? Expert Opin. Pharmacother. 2021, 22, 1635–1637. [Google Scholar] [CrossRef] [PubMed]
1. | Orofacial pain attributed to disorders of dentoalveolar and anatomically related structures
|
2. | Myofascial orofacial pain
|
3. | Temporomandibular joint (TMJ) pain
|
4. | Orofacial pain attributed to lesion or disease of the cranial nerves
|
5. | Orofacial pains resembling presentations of primary headaches
|
6. | Idiopathic orofacial pain
|
7. | Psychosocial assessment of patients with orofacial pain |
Potential Targets | First Author, Year, Country | Animal and Experiment Condition | Results/Outcome | Opinion |
---|---|---|---|---|
VGSC | Eriksson et al., 2005, Sweden [41] | Rat—Partial ischemic injury to the infraorbital branch of the trigeminal nerve. | The beta 3 subunit was significantly upregulated, whereas the mRNAs for Nav1.8 and Nav 1.9 were reduced in terms of number of neurons and intensities. | Designing a sodium channel subtype-specific blocker from these observations would be helpful for orofacial neuropathic pain therapeutics. |
Luiz et al., 2015, UK [42] | Nav1.9–/– and Nav1.9+/+ mice—Unilateral constriction of the infraorbital nerve. | Reported the role of Nav1.9 sodium channel in the development of thermal and mechanical hypersensitivity. | Regulation of Nav1.9 channel should be investigated for the treatment of orofacial neuropathic pain. | |
VGKC | Madrid at al., 2009, Spain [43] | Neonatal (P1–P6) and adult OF1 mice. | Excitation and inhibition of Kv1 channels modulate the thermosensitive channels. | Suggests the possibility of Kv1 channels in alleviating peripheral gating of cold-evoked discomfort and pain. |
Kanda et al., 2021, AL, USA [44] | Rat—Infraorbital nerve constriction injury (chronic model). | Dysfunction of Kv4.3 channels in sensory neurons of trigeminal ganglion exhibit cold hypersensitivity in orofacial regions leading to neuropathic pain. | Selective Kv4.3 activators may be clinically useful to alleviate trigeminal neuropathic pain. | |
VGCC | Montera et al., 2021, NM, USA [45] | Mice—Foramen rotundum inflammatory Constriction of trigeminal infraorbital nerve. | Upregulation of Cav3.3 in injury model and Cav3.3 blocking significantly reduced allodynia and attenuated neuropathic pain. | Blocking Cav3.3 function may be effective in the treatment of trigeminal neuropathic pain. The blocking of Cav3.3 may be more effective in females. |
Gambeta et al., 2022, Canada [46] | Mice—Constriction of infraorbital nerve. | Antihyperalgesia was the outcome. With the use of a selective T-type calcium channel blocker (Z944). It had no impact in CaV3.2−/− mice. | T-type calcium channel (CaV3.2) is a potential target in trigeminal pain. | |
TRP channels | DeMartini et al., 2018, Italy [47] | Rat—Chronic constriction injury of the infraorbital nerve | TRPA1 and TRPV1 expression levels were markedly increased post injury. | TRPA1 and TRPV1 channels are potential targets in trigeminal neuropathic pain. |
Santos et al., 2022, Brazil [48] | Mice and rat Formalin injection—Temporomandibular joint. Mustard oil injection—Masseter muscle. Chronic model—Infraorbital nerve transection | Findings showed inhibition of orofacial nociception via TRP channels (TRPV1, TRPM3, TRPM8) in both acute and chronic pain models. | Further studies are needed to check whether the same is effective in females as well. Additionally, TRPV2 and TRPV3 could also be involved. | |
Serotonin-gated ion channel | Cornelison et al., 2022, MO, USA [49] | Rat—Inflammation induced by injection of Freund’s adjuvant into the trapezius muscle. | Injection of antagonists of the 5-HT3/7 reduced the symptoms. | Explore the role of 5-HT3 in inhibition of trigeminal nociception. |
SNP | Katagiri et al., 2012, Japan [50] | Rat—Lingual nerve crush. | Demonstrated evidence that activation of P2Y12R following lingual nerve injury induces neuropathic pain. | Satellite glial cells and trigeminal ganglion neuron interactions are involved in the neuron excitability of lingual nerve crush. |
SPR | Raman et al., 2022, Japan [38] | Rat—Infraorbital nerve constriction. | Reported SPR as a novel therapeutic target to treat neuropathic pain | A novel and safe target for new drug designing. |
Opioid receptor MOR DOR | Nunez et al., 2007, MD, USA [51] | Rat—Inflammation induced by injection of Freund’s adjuvant into the masseter muscle. | Increased mRNA and protein expression of MOR 3 days post inflammation. | Contributions of MOR in acute and inflammatory muscle pain conditions. |
Erfanparast et al., 2018, Iran [52] | Rat—Inflammation induced by injection of formalin into the vibrissa pad. | Showed the occurrence of biphasic pain post injection. | Involvement of MOR in modulation of antinociception in orofacial region. | |
Saloman et al., PA, USA [53] | Rat—Orofacial muscle pain condition induced by capsaicin injection. | Pretreatment with DOR agonist attenuated mechanical hypersensitivity. | Role of DOR in mediation of anti-hyperalgesic response in an acute orofacial muscle pain condition. |
Potential Targets | First Author, Year, Country | Patient Population | Results/Outcome | Opinion |
---|---|---|---|---|
VGSC | Siqueira et al., 2009, Brazil [54] | Trigeminal neuralgia at maxillary and/or mandibular branches. n = 10 | Upregulation of Nav1.3 and downregulation of Nav1.7 | The selective expression of particular VGSCs (Nav1.3, Nav1.7, Nav1.8) are suggestive of new targets for drug discovery. |
Zakrzewska et al., 2017, UK [55] | Trigeminal neuralgia patients (based on International Classification of Headache Disorders) (multicenter study) n = 29 | The safety and efficacy of Nav1.7 in patients with trigeminal neuralgia was assessed. Headache was the most common reported adverse effect. | Needs further clinical trials for effective establishment of Nav 1.7 in patients with trigeminal neuralgia. | |
Kotecha et al., 2020, FL, USA [56] | Classical, purely paroxysmal trigeminal neuralgia patients n = 88 | A new design for evaluating VGSCs (vixotrigine) for trigeminal neuralgia patients. | Evaluate the pharmacokinetics of sodium channel blocker for an effective treatment. | |
VGKC | Al-Karagholi et al., 2019, 2020, Denmark [57,58,59] | Migraine patients (1–5 attacks per month) n = 16 | The findings from these trials show evidence of migraine attacks in the opening of ATP-sensitive potassium channels. | The role of ATP-sensitive potassium channels and calcium-activated potassium channels (BKCa) in headaches and migraines and the need for a novel drug is evident. |
Serotonin-gated ion channel | Christidis et al., 2014, Sweden [60] | Temporomandibular disorder patients n = 5 | Increased expression of NaV1.8 by 5-HT3A positive nerve fibers. | 5-HT3 receptor is a biomarker of myofascial temporomandibular disorders. |
SNP | Soeda et al., 2022, Japan [32] | Orofacial pain patients including phantom tooth pain n = 33 | The association of SLC17A9 and P2RY12 with the development of phantom tooth pain was evident. | Larger sample size clinical trials would witness the association of these SNPs in phantom tooth pain. |
Slade et al., 2021, NC, USA [61] | Temporomandibular disorder patients with SNP of COMT gene n = 143 | COMT alters analgesic efficacy. | It could serve as a precision medicine in treating temporomandibular disorders. | |
Opioid receptor MOR | Kleinert et al., 2008, Germany [62] | Patients with post-surgical pain after mandibular third molar extraction n = 400 | Reported the use of tapentadol, a novel, centrally acting analgesic with two modes of action, combining mu-opioid agonism and norepinephrine. Effectively reduced pain. | Single oral dose with limited side effect. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Raman, S.; Ikutame, D.; Okura, K.; Matsuka, Y. Targeted Therapy for Orofacial Pain: A Novel Perspective for Precision Medicine. J. Pers. Med. 2023, 13, 565. https://doi.org/10.3390/jpm13030565
Raman S, Ikutame D, Okura K, Matsuka Y. Targeted Therapy for Orofacial Pain: A Novel Perspective for Precision Medicine. Journal of Personalized Medicine. 2023; 13(3):565. https://doi.org/10.3390/jpm13030565
Chicago/Turabian StyleRaman, Swarnalakshmi, Daisuke Ikutame, Kazuo Okura, and Yoshizo Matsuka. 2023. "Targeted Therapy for Orofacial Pain: A Novel Perspective for Precision Medicine" Journal of Personalized Medicine 13, no. 3: 565. https://doi.org/10.3390/jpm13030565
APA StyleRaman, S., Ikutame, D., Okura, K., & Matsuka, Y. (2023). Targeted Therapy for Orofacial Pain: A Novel Perspective for Precision Medicine. Journal of Personalized Medicine, 13(3), 565. https://doi.org/10.3390/jpm13030565