Active Surveillance for Prostate Cancer: Past, Current, and Future Trends
Abstract
:1. Introduction
2. History and Establishment of Active Surveillance Studies
3. Evidence for Active Surveillance from Randomised Controlled Trials Comparing Definitive Treatment and Observation
4. Evolution of Active Surveillance Inclusion Criteria and Intervention Triggers
5. Current Guideline Recommendations and Uptake of AS
6. Barriers to Uptake and Compliance of Active Surveillance
7. Risk-Based Follow-Up in Active Surveillance
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef]
- Catalona, W.J.; Smith, D.S.; Ratliff, T.L.; Dodds, K.M.; Coplen, D.E.; Yuan, J.J.; Petros, J.A.; Andriole, G.L. Measurement of prostate-specific antigen in serum as a screening test for prostate cancer. N. Engl. J. Med. 1991, 324, 1156–1161. [Google Scholar] [CrossRef]
- Thompson, I.M.; Ernst, J.J.; Gangai, M.P.; Spence, C.R. Adenocarcinoma of the Prostate: Results of Routine Urological Screening. J. Urol. 1984, 132, 690–692. [Google Scholar] [CrossRef] [PubMed]
- Paquette, E.L.; Sun, L.; Paquette, L.R.; Connelly, R.; McLeod, D.G.; Moul, J.W. Improved prostate cancer-specific survival and other disease parameters: Impact of prostate-specific antigen testing. Urology 2002, 60, 756–759. [Google Scholar] [CrossRef]
- Etzioni, R.; Gulati, R.; Mariotto, A. Overview of US Prostate Cancer Trends in the Era of PSA Screening. In Prostate Cancer Screening; Ankerst, D.P., Tangen, C.M., Thompson, I.M., Eds.; Humana Press: Totowa, NJ, USA, 2009; pp. 3–14. [Google Scholar]
- Neppl-Huber, C.; Zappa, M.; Coebergh, J.W.; Rapiti, E.; Rachtan, J.; Holleczek, B.; Rosso, S.; Aareleid, T.; Brenner, H.; Gondos, A.; et al. Changes in incidence, survival and mortality of prostate cancer in Europe and the United States in the PSA era: Additional diagnoses and avoided deaths. Ann. Oncol. 2012, 23, 1325–1334. [Google Scholar] [CrossRef] [PubMed]
- Schröder, F.H.; Hugosson, J.; Carlsson, S.; Tammela, T.; Määttänen, L.; Auvinen, A.; Kwiatkowski, M.; Recker, F.; Roobol, M.J. Screening for prostate cancer decreases the risk of developing metastatic disease: Findings from the European Randomized Study of Screening for Prostate Cancer (ERSPC). Eur. Urol. 2012, 62, 745–752. [Google Scholar] [CrossRef] [PubMed]
- Hugosson, J.; Roobol, M.J.; Månsson, M.; Tammela, T.L.J.; Zappa, M.; Nelen, V.; Kwiatkowski, M.; Lujan, M.; Carlsson, S.V.; Talala, K.M.; et al. A 16-yr Follow-up of the European Randomized study of Screening for Prostate Cancer. Eur. Urol. 2019, 76, 43–51. [Google Scholar] [CrossRef] [Green Version]
- Loeb, S.; Bjurlin, M.A.; Nicholson, J.; Tammela, T.L.; Penson, D.F.; Carter, H.B.; Carroll, P.; Etzioni, R. Overdiagnosis and overtreatment of prostate cancer. Eur. Urol. 2014, 65, 1046–1055. [Google Scholar] [CrossRef] [Green Version]
- Resnick, M.J.; Koyama, T.; Fan, K.H.; Albertsen, P.C.; Goodman, M.; Hamilton, A.S.; Hoffman, R.M.; Potosky, A.L.; Stanford, J.L.; Stroup, A.M.; et al. Long-term functional outcomes after treatment for localized prostate cancer. N. Engl. J. Med. 2013, 368, 436–445. [Google Scholar] [CrossRef] [Green Version]
- Smith, P.H. The case for no initial treatment of localized prostate cancer. Urol. Clin. N. Am. 1990, 17, 827–834. [Google Scholar] [CrossRef]
- Chodak, G.W.; Thisted, R.A.; Gerber, G.S.; Johansson, J.-E.; Adolfsson, J.; Jones, G.W.; Chisholm, G.D.; Moskovitz, B.; Livne, P.M.; Warner, J. Results of Conservative Management of Clinically Localized Prostate Cancer. N. Engl. J. Med. 1994, 330, 242–248. [Google Scholar] [CrossRef]
- Johansson, J.E. Expectant management of early stage prostatic cancer: Swedish experience. J. Urol. 1994, 152, 1753–1756. [Google Scholar] [CrossRef] [PubMed]
- Lu-Yao, G.L.; Yao, S.-L. Population-based study of long-term survival in patients with clinically localised prostate cancer. Lancet 1997, 349, 906–910. [Google Scholar] [CrossRef]
- Adolfsson, J.; Steineck, G.; Hedlund, P.-O. Deferred treatment of clinically localized low-grade prostate cancer: Actual 10-year and projected 15-year follow-up of the karolinska series. Urology 1997, 50, 722–726. [Google Scholar] [CrossRef] [PubMed]
- Albertsen, P.C.; Hanley, J.A.; Gleason, D.F.; Barry, M.J. Competing Risk Analysis of Men Aged 55 to 74 Years at Diagnosis Managed Conservatively for Clinically Localized Prostate Cancer. JAMA 1998, 280, 975–980. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Epstein, J.I.; Walsh, P.C.; Carmichael, M.; Brendler, C.B. Pathologic and Clinical Findings to Predict Tumor Extent of Nonpalpable (Stage T1 c) Prostate Cancer. JAMA 1994, 271, 368–374. [Google Scholar] [CrossRef]
- D’Amico, A.V.; Whittington, R.; Malkowicz, S.B.; Schultz, D.; Blank, K.; Broderick, G.A.; Tomaszewski, J.E.; Renshaw, A.A.; Kaplan, I.; Beard, C.J.; et al. Biochemical outcome after radical prostatectomy, external beam radiation therapy, or interstitial radiation therapy for clinically localized prostate cancer. JAMA 1998, 280, 969–974. [Google Scholar] [CrossRef]
- Choo, R.; Klotz, L.; Danjoux, C.; Morton, G.C.; DeBoer, G.; Szumacher, E.; Fleshner, N.; Bunting, P.; Hruby, G. Feasibility study: Watchful waiting for localized low to intermediate grade prostate carcinoma with selective delayed intervention based on prostate specific antigen, histological and/or clinical progression. J. Urol. 2002, 167, 1664–1669. [Google Scholar] [CrossRef] [PubMed]
- Carter, H.B.; Walsh, P.C.; Landis, P.; Epstein, J.I. Expectant management of nonpalpable prostate cancer with curative intent: Preliminary results. J. Urol. 2002, 167, 1231–1234. [Google Scholar] [CrossRef] [PubMed]
- Patel, M.I.; DeConcini, D.T.; Lopez-Corona, E.; Ohori, M.; Wheeler, T.; Scardino, P.T. An analysis of men with clinically localized prostate cancer who deferred definitive therapy. J. Urol. 2004, 171, 1520–1524. [Google Scholar] [CrossRef]
- van den Bergh, R.C.N.; Roemeling, S.; Roobol, M.J.; Roobol, W.; Schröder, F.H.; Bangma, C.H. Prospective Validation of Active Surveillance in Prostate Cancer: The PRIAS Study. Eur. Urol. 2007, 52, 1560–1563. [Google Scholar] [CrossRef] [PubMed]
- van As, N.J.; Parker, C.C. Active surveillance with selective radical treatment for localized prostate cancer. Cancer J. 2007, 13, 289–294. [Google Scholar] [CrossRef]
- Dall’Era, M.A.; Konety, B.R.; Cowan, J.E.; Shinohara, K.; Stauf, F.; Cooperberg, M.R.; Meng, M.V.; Kane, C.J.; Perez, N.; Master, V.A.; et al. Active surveillance for the management of prostate cancer in a contemporary cohort. Cancer 2008, 112, 2664–2670. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Newcomb, L.F.; Brooks, J.D.; Carroll, P.R.; Feng, Z.; Gleave, M.E.; Nelson, P.S.; Thompson, I.M.; Lin, D.W. Canary Prostate Active Surveillance Study: Design of a multi-institutional active surveillance cohort and biorepository. Urology 2010, 75, 407–413. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Erik, T.G.; Daniel, F.H.; Glen, M.D.; Aaron, E.K.; Mitchell, C.B.; Carl, A.O. Pretreatment prostate specific antigen doubling times: Use in patients before radical prostatectomy. J. Urol. 1997, 158, 1876–1879. [Google Scholar] [CrossRef]
- Egawa, S.; Arai, Y.; Tobisu, K.; Kuwao, S.; Kamoto, T.; Kakehi, Y.; Baba, S. Use of pretreatment prostate-specific antigen doubling time to predict outcome after radical prostatectomy. Prostate Cancer Prostatic Dis. 2000, 3, 269–274. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bill-Axelson, A.; Holmberg, L.; Ruutu, M.; Garmo, H.; Stark, J.R.; Busch, C.; Nordling, S.; Häggman, M.; Andersson, S.-O.; Bratell, S.; et al. Radical Prostatectomy versus Watchful Waiting in Early Prostate Cancer. N. Engl. J. Med. 2011, 364, 1708–1717. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wilt, T.J.; Brawer, M.K.; Jones, K.M.; Barry, M.J.; Aronson, W.J.; Fox, S.; Gingrich, J.R.; Wei, J.T.; Gilhooly, P.; Grob, B.M.; et al. Radical Prostatectomy versus Observation for Localized Prostate Cancer. N. Engl. J. Med. 2012, 367, 203–213. [Google Scholar] [CrossRef] [Green Version]
- Hamdy, F.C.; Donovan, J.L.; Lane, J.A.; Mason, M.; Metcalfe, C.; Holding, P.; Davis, M.; Peters, T.J.; Turner, E.L.; Martin, R.M.; et al. 10-Year Outcomes after Monitoring, Surgery, or Radiotherapy for Localized Prostate Cancer. N. Engl. J. Med. 2016, 375, 1415–1424. [Google Scholar] [CrossRef] [Green Version]
- Vickers, A.; Bennette, C.; Steineck, G.; Adami, H.O.; Johansson, J.E.; Bill-Axelson, A.; Palmgren, J.; Garmo, H.; Holmberg, L. Individualized estimation of the benefit of radical prostatectomy from the Scandinavian Prostate Cancer Group randomized trial. Eur. Urol. 2012, 62, 204–209. [Google Scholar] [CrossRef] [Green Version]
- Hamdy, F.C.; Donovan, J.L.; Lane, J.A.; Metcalfe, C.; Davis, M.; Turner, E.L.; Martin, R.M.; Young, G.J.; Walsh, E.I.; Bryant, R.J.; et al. Fifteen-Year Outcomes after Monitoring, Surgery, or Radiotherapy for Prostate Cancer. N. Engl. J. Med. 2023. [Google Scholar] [CrossRef] [PubMed]
- Bryant, R.J.; Oxley, J.; Young, G.J.; Lane, J.A.; Metcalfe, C.; Davis, M.; Turner, E.L.; Martin, R.M.; Goepel, J.R.; Varma, M.; et al. The ProtecT trial: Analysis of the patient cohort, baseline risk stratification and disease progression. BJU Int. 2020, 125, 506–514. [Google Scholar] [CrossRef]
- Donovan, J.L.; Hamdy, F.C.; Lane, J.A.; Mason, M.; Metcalfe, C.; Walsh, E.; Blazeby, J.M.; Peters, T.J.; Holding, P.; Bonnington, S.; et al. Patient-Reported Outcomes after Monitoring, Surgery, or Radiotherapy for Prostate Cancer. N. Engl. J. Med. 2016, 375, 1425–1437. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Donovan Jenny, L.; Hamdy Freddie, C.; Lane, J.A.; Young Grace, J.; Metcalfe, C.; Walsh Eleanor, I.; Davis, M.; Steuart-Feilding, T.; Blazeby Jane, M.; Avery Kerry, N.L.; et al. Patient-Reported Outcomes 12 Years after Localized Prostate Cancer Treatment. NEJM Evid. 2023, EVIDoa2300018. [Google Scholar] [CrossRef]
- Simpkin, A.J.; Tilling, K.; Martin, R.M.; Lane, J.A.; Hamdy, F.C.; Holmberg, L.; Neal, D.E.; Metcalfe, C.; Donovan, J.L. Systematic Review and Meta-analysis of Factors Determining Change to Radical Treatment in Active Surveillance for Localized Prostate Cancer. Eur. Urol. 2015, 67, 993–1005. [Google Scholar] [CrossRef]
- Ross, A.E.; Loeb, S.; Landis, P.; Partin, A.W.; Epstein, J.I.; Kettermann, A.; Feng, Z.; Carter, H.B.; Walsh, P.C. Prostate-specific antigen kinetics during follow-up are an unreliable trigger for intervention in a prostate cancer surveillance program. J. Clin. Oncol. 2010, 28, 2810–2816. [Google Scholar] [CrossRef] [Green Version]
- Whitson, J.M.; Porten, S.P.; Hilton, J.F.; Cowan, J.E.; Perez, N.; Cooperberg, M.R.; Greene, K.L.; Meng, M.V.; Simko, J.P.; Shinohara, K.; et al. The relationship between prostate specific antigen change and biopsy progression in patients on active surveillance for prostate cancer. J. Urol. 2011, 185, 1656–1660. [Google Scholar] [CrossRef]
- Ng, M.K.; Van As, N.; Thomas, K.; Woode-Amissah, R.; Horwich, A.; Huddart, R.; Khoo, V.; Thompson, A.; Dearnaley, D.; Parker, C. Prostate-specific antigen (PSA) kinetics in untreated, localized prostate cancer: PSA velocity vs PSA doubling time. BJU Int. 2009, 103, 872–876. [Google Scholar] [CrossRef]
- Iremashvili, V.; Manoharan, M.; Lokeshwar, S.D.; Rosenberg, D.L.; Pan, D.; Soloway, M.S. Comprehensive analysis of post-diagnostic prostate-specific antigen kinetics as predictor of a prostate cancer progression in active surveillance patients. BJU Int. 2013, 111, 396–403. [Google Scholar] [CrossRef]
- Bokhorst, L.P.; Alberts, A.R.; Rannikko, A.; Valdagni, R.; Pickles, T.; Kakehi, Y.; Bangma, C.H.; Roobol, M.J.; PRIAS Study Group. Compliance Rates with the Prostate Cancer Research International Active Surveillance (PRIAS) Protocol and Disease Reclassification in Noncompliers. Eur. Urol. 2015, 68, 814–821. [Google Scholar] [CrossRef]
- Bokhorst, L.P.; Valdagni, R.; Rannikko, A.; Kakehi, Y.; Pickles, T.; Bangma, C.H.; Roobol, M.J.; PRIAS Study Group. A Decade of Active Surveillance in the PRIAS Study: An Update and Evaluation of the Criteria Used to Recommend a Switch to Active Treatment. Eur. Urol. 2016, 70, 954–960. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Drost, F.-J.H.; Osses, D.; Nieboer, D.; Bangma, C.H.; Steyerberg, E.W.; Roobol, M.J.; Schoots, I.G. Prostate Magnetic Resonance Imaging, with or Without Magnetic Resonance Imaging-targeted Biopsy, and Systematic Biopsy for Detecting Prostate Cancer: A Cochrane Systematic Review and Meta-analysis. Eur. Urol. 2020, 77, 78–94. [Google Scholar] [CrossRef] [PubMed]
- Loeb, S.; Bruinsma, S.M.; Nicholson, J.; Briganti, A.; Pickles, T.; Kakehi, Y.; Carlsson, S.V.; Roobol, M.J. Active surveillance for prostate cancer: A systematic review of clinicopathologic variables and biomarkers for risk stratification. Eur. Urol. 2015, 67, 619–626. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kweldam, C.F.; Wildhagen, M.F.; Bangma, C.H.; van Leenders, G.J. Disease-specific death and metastasis do not occur in patients with Gleason score ≤6 at radical prostatectomy. BJU Int. 2015, 116, 230–235. [Google Scholar] [CrossRef] [PubMed]
- Ross, H.M.; Kryvenko, O.N.; Cowan, J.E.; Simko, J.P.; Wheeler, T.M.; Epstein, J.I. Do adenocarcinomas of the prostate with Gleason score (GS) ≤6 have the potential to metastasize to lymph nodes? Am. J. Surg. Pathol. 2012, 36, 1346–1352. [Google Scholar] [CrossRef] [Green Version]
- Ahdoot, M.; Wilbur, A.R.; Reese, S.E.; Lebastchi, A.H.; Mehralivand, S.; Gomella, P.T.; Bloom, J.; Gurram, S.; Siddiqui, M.; Pinsky, P.; et al. MRI-Targeted, Systematic, and Combined Biopsy for Prostate Cancer Diagnosis. N. Engl. J. Med. 2020, 382, 917–928. [Google Scholar] [CrossRef]
- Kovac, E.; Vertosick, E.A.; Sjoberg, D.D.; Vickers, A.J.; Stephenson, A.J. Effects of pathological upstaging or upgrading on metastasis and cancer-specific mortality in men with clinical low-risk prostate cancer. BJU Int. 2018, 122, 1003–1009. [Google Scholar] [CrossRef]
- Musunuru, H.B.; Yamamoto, T.; Klotz, L.; Ghanem, G.; Mamedov, A.; Sethukavalan, P.; Jethava, V.; Jain, S.; Zhang, L.; Vesprini, D.; et al. Active Surveillance for Intermediate Risk Prostate Cancer: Survival Outcomes in the Sunnybrook Experience. J. Urol. 2016, 196, 1651–1658. [Google Scholar] [CrossRef]
- Wilt, T.J.; Vo, T.N.; Langsetmo, L.; Dahm, P.; Wheeler, T.; Aronson, W.J.; Cooperberg, M.R.; Taylor, B.C.; Brawer, M.K. Radical Prostatectomy or Observation for Clinically Localized Prostate Cancer: Extended Follow-up of the Prostate Cancer Intervention Versus Observation Trial (PIVOT). Eur. Urol. 2020, 77, 713–724. [Google Scholar] [CrossRef]
- Kweldam, C.F.; Wildhagen, M.F.; Steyerberg, E.W.; Bangma, C.H.; van der Kwast, T.H.; van Leenders, G.J. Cribriform growth is highly predictive for postoperative metastasis and disease-specific death in Gleason score 7 prostate cancer. Mod. Pathol. 2015, 28, 457–464. [Google Scholar] [CrossRef] [Green Version]
- Baboudjian, M.; Breda, A.; Rajwa, P.; Gallioli, A.; Gondran-Tellier, B.; Sanguedolce, F.; Verri, P.; Diana, P.; Territo, A.; Bastide, C.; et al. Active Surveillance for Intermediate-risk Prostate Cancer: A Systematic Review, Meta-analysis, and Metaregression. Eur. Urol. Oncol. 2022, 5, 617–627. [Google Scholar] [CrossRef]
- Carlsson, S.; Benfante, N.; Alvim, R.; Sjoberg, D.D.; Vickers, A.; Reuter, V.E.; Fine, S.W.; Vargas, H.A.; Wiseman, M.; Mamoor, M.; et al. Long-Term Outcomes of Active Surveillance for Prostate Cancer: The Memorial Sloan Kettering Cancer Center Experience. J. Urol. 2020, 203, 1122–1127. [Google Scholar] [CrossRef]
- Ashwin, S.B.; Janet, E.C.; Matthew, R.C.; Katsuto, S.; Hao, G.N.; Peter, R.C. Evaluating the Safety of Active Surveillance: Outcomes of Deferred Radical Prostatectomy after an Initial Period of Surveillance. J. Urol. 2019, 202, 506–510. [Google Scholar] [CrossRef]
- Tosoian, J.J.; Mamawala, M.; Epstein, J.I.; Landis, P.; Macura, K.J.; Simopoulos, D.N.; Carter, H.B.; Gorin, M.A. Active Surveillance of Grade Group 1 Prostate Cancer: Long-term Outcomes from a Large Prospective Cohort. Eur. Urol. 2020, 77, 675–682. [Google Scholar] [CrossRef] [PubMed]
- Laurence, K.; Danny, V.; Perakaa, S.; Vibhuti, J.; Liying, Z.; Suneil, J.; Toshihiro, Y.; Alexandre, M.; Andrew, L. Long-Term Follow-Up of a Large Active Surveillance Cohort of Patients With Prostate Cancer. J. Clin. Oncol. 2015, 33, 272–277. [Google Scholar] [CrossRef] [Green Version]
- Newcomb, L.F.; Thompson, I.M., Jr.; Boyer, H.D.; Brooks, J.D.; Carroll, P.R.; Cooperberg, M.R.; Dash, A.; Ellis, W.J.; Fazli, L.; Feng, Z.; et al. Outcomes of Active Surveillance for Clinically Localized Prostate Cancer in the Prospective, Multi-Institutional Canary PASS Cohort. J. Urol. 2016, 195, 313–320. [Google Scholar] [CrossRef] [PubMed]
- Bruinsma, S.M.; Zhang, L.; Roobol, M.J.; Bangma, C.H.; Steyerberg, E.W.; Nieboer, D.; Van Hemelrijck, M.; Movember Foundation’s Global Action Plan Prostate Cancer Active Surveillance, c. The Movember Foundation’s GAP3 cohort: A profile of the largest global prostate cancer active surveillance database to date. BJU Int. 2018, 121, 737–744. [Google Scholar] [CrossRef] [Green Version]
- European Association of Urology (EAU). EAU Guidelines on Prostate Cancer. Available online: https://uroweb.org/guidelines/prostate-cancer (accessed on 7 March 2023).
- American Urological Association (AUA). Clinically Localized Prostate Cancer: AUA/ASTRO Guideline. Available online: https://www.auanet.org/guidelines-and-quality/guidelines/clinically-localized-prostate-cancer-aua/astro-guideline-2022 (accessed on 7 March 2023).
- The National Institute for Health and Clinical Excellence (NICE). Prostate Cancer: Diagnosis and Management. Available online: https://www.nice.org.uk/guidance/ng131 (accessed on 7 March 2023).
- The National Comprehensive Cancer Network (NCCN). NCCN Clinical Practice Guidelines in Oncology Prostate Cancer. Available online: https://www.nccn.org/professionals/physician_gls/pdf/prostate.pdf (accessed on 7 March 2023).
- Epstein, J.I.; Allsbrook, W.C., Jr.; Amin, M.B.; Egevad, L.L.; Committee, I.G. The 2005 International Society of Urological Pathology (ISUP) Consensus Conference on Gleason Grading of Prostatic Carcinoma. Am. J. Surg. Pathol. 2005, 29, 1228–1242. [Google Scholar] [CrossRef] [Green Version]
- Cooperberg, M.R.; Meeks, W.; Fang, R.; Gaylis, F.D.; Catalona, W.J.; Makarov, D.V. Time Trends and Variation in the Use of Active Surveillance for Management of Low-risk Prostate Cancer in the US. JAMA Netw. Open 2023, 6, e231439. [Google Scholar] [CrossRef]
- Jansen, H.; van Oort, I.M.; van Andel, G.; Wijsman, B.P.; Pos, F.J.; Hulshof, M.C.C.M.; Hulsbergen-van de Kaa, C.A.; van Leenders, G.J.L.H.; Fütterer, J.J.; Somford, D.M.; et al. Immediate treatment vs. active-surveillance in very-low-risk prostate cancer: The role of patient-, tumour-, and hospital-related factors. Prostate Cancer Prostatic Dis. 2019, 22, 337–343. [Google Scholar] [CrossRef]
- Loeb, S.; Folkvaljon, Y.; Curnyn, C.; Robinson, D.; Bratt, O.; Stattin, P. Uptake of Active Surveillance for Very-Low-Risk Prostate Cancer in Sweden. JAMA Oncol. 2017, 3, 1393–1398. [Google Scholar] [CrossRef] [PubMed]
- Kinsella, N.; Stattin, P.; Cahill, D.; Brown, C.; Bill-Axelson, A.; Bratt, O.; Carlsson, S.; Van Hemelrijck, M. Factors Influencing Men’s Choice of and Adherence to Active Surveillance for Low-risk Prostate Cancer: A Mixed-method Systematic Review. Eur. Urol. 2018, 74, 261–280. [Google Scholar] [CrossRef] [PubMed]
- Cunningham, M.; Murphy, M.; Sweeney, P.; Richards, H.L. Patient reported factors influencing the decision-making process of men with localised prostate cancer when considering Active Surveillance—A systematic review and thematic synthesis. Psycho-Oncology 2022, 31, 388–404. [Google Scholar] [CrossRef] [PubMed]
- Luckenbaugh, A.N.; Auffenberg, G.B.; Hawken, S.R.; Dhir, A.; Linsell, S.; Kaul, S.; Miller, D.C.; Michigan Urological Surgery Improvement, C. Variation in Guideline Concordant Active Surveillance Followup in Diverse Urology Practices. J. Urol. 2017, 197, 621–626. [Google Scholar] [CrossRef] [Green Version]
- Loeb, S.; Vellekoop, A.; Ahmed, H.U.; Catto, J.; Emberton, M.; Nam, R.; Rosario, D.J.; Scattoni, V.; Lotan, Y. Systematic review of complications of prostate biopsy. Eur. Urol. 2013, 64, 876–892. [Google Scholar] [CrossRef] [Green Version]
- Bokhorst, L.P.; Lepistö, I.; Kakehi, Y.; Bangma, C.H.; Pickles, T.; Valdagni, R.; Alberts, A.R.; Semjonow, A.; Strölin, P.; Montesino, M.F.; et al. Complications after prostate biopsies in men on active surveillance and its effects on receiving further biopsies in the Prostate cancer Research International: Active Surveillance (PRIAS) study. BJU Int. 2016, 118, 366–371. [Google Scholar] [CrossRef]
- Drost, F.H.; Rannikko, A.; Valdagni, R.; Pickles, T.; Kakehi, Y.; Remmers, S.; van der Poel, H.G.; Bangma, C.H.; Roobol, M.J.; PRIAS Study Group. Can active surveillance really reduce the harms of overdiagnosing prostate cancer? A reflection of real life clinical practice in the PRIAS study. Transl. Androl. Urol. 2018, 7, 98–105. [Google Scholar] [CrossRef] [Green Version]
- Jain, S.; Loblaw, A.; Vesprini, D.; Zhang, L.; Kattan, M.W.; Mamedov, A.; Jethava, V.; Sethukavalan, P.; Yu, C.; Klotz, L. Gleason Upgrading with Time in a Large Prostate Cancer Active Surveillance Cohort. J. Urol. 2015, 194, 79–84. [Google Scholar] [CrossRef]
- Porten, S.P.; Whitson, J.M.; Cowan, J.E.; Cooperberg, M.R.; Shinohara, K.; Perez, N.; Greene, K.L.; Meng, M.V.; Carroll, P.R. Changes in prostate cancer grade on serial biopsy in men undergoing active surveillance. J. Clin. Oncol. 2011, 29, 2795–2800. [Google Scholar] [CrossRef] [PubMed]
- Van Hemelrijck, M.; Ji, X.; Helleman, J.; Roobol, M.J.; van der Linden, W.; Nieboer, D.; Bangma, C.H.; Frydenberg, M.; Rannikko, A.; Lee, L.S.; et al. Reasons for Discontinuing Active Surveillance: Assessment of 21 Centres in 12 Countries in the Movember GAP3 Consortium. Eur. Urol. 2019, 75, 523–531. [Google Scholar] [CrossRef] [Green Version]
- Moore, C.M.; King, L.E.; Withington, J.; Amin, M.B.; Andrews, M.; Briers, E.; Chen, R.C.; Chinegwundoh, F.I.; Cooperberg, M.R.; Crowe, J.; et al. Best Current Practice and Research Priorities in Active Surveillance for Prostate Cancer—A Report of a Movember International Consensus Meeting. Eur. Urol. Oncol. 2023. [Google Scholar] [CrossRef] [PubMed]
- Coley, R.Y.; Zeger, S.L.; Mamawala, M.; Pienta, K.J.; Carter, H.B. Prediction of the Pathologic Gleason Score to Inform a Personalized Management Program for Prostate Cancer. Eur. Urol. 2017, 72, 135–141. [Google Scholar] [CrossRef]
- Coley, R.Y.; Fisher, A.J.; Mamawala, M.; Carter, H.B.; Pienta, K.J.; Zeger, S.L. A Bayesian hierarchical model for prediction of latent health states from multiple data sources with application to active surveillance of prostate cancer. Biometrics 2017, 73, 625–634. [Google Scholar] [CrossRef] [Green Version]
- Ankerst, D.P.; Xia, J.; Thompson, I.M., Jr.; Hoefler, J.; Newcomb, L.F.; Brooks, J.D.; Carroll, P.R.; Ellis, W.J.; Gleave, M.E.; Lance, R.S.; et al. Precision Medicine in Active Surveillance for Prostate Cancer: Development of the Canary-Early Detection Research Network Active Surveillance Biopsy Risk Calculator. Eur. Urol. 2015, 68, 1083–1088. [Google Scholar] [CrossRef] [Green Version]
- Drost, F.-J.H.; Nieboer, D.; Morgan, T.M.; Carroll, P.R.; Roobol, M.J.; Trock, B.; Ehdaie, B.; Carroll, P.; Filson, C.; Kim, J.; et al. Predicting Biopsy Outcomes During Active Surveillance for Prostate Cancer: External Validation of the Canary Prostate Active Surveillance Study Risk Calculators in Five Large Active Surveillance Cohorts. Eur. Urol. 2019, 76, 693–702. [Google Scholar] [CrossRef] [PubMed]
- Cooperberg, M.R.; Zheng, Y.; Faino, A.V.; Newcomb, L.F.; Zhu, K.; Cowan, J.E.; Brooks, J.D.; Dash, A.; Gleave, M.E.; Martin, F.; et al. Tailoring Intensity of Active Surveillance for Low-Risk Prostate Cancer Based on Individualized Prediction of Risk Stability. JAMA Oncol. 2020, 6, e203187. [Google Scholar] [CrossRef] [PubMed]
- Tomer, A.; Nieboer, D.; Roobol, M.J.; Bjartell, A.; Steyerberg, E.W.; Rizopoulos, D.; Movember Foundation’s Global Action Plan Prostate Cancer Active Surveillance, c. Personalised biopsy schedules based on risk of Gleason upgrading for patients with low-risk prostate cancer on active surveillance. BJU Int. 2021, 127, 96–107. [Google Scholar] [CrossRef]
- Tomer, A.; Nieboer, D.; Roobol, M.J.; Steyerberg, E.W.; Rizopoulos, D. Shared decision making of burdensome surveillance tests using personalized schedules and their burden and benefit. Stat. Med. 2022, 41, 2115–2131. [Google Scholar] [CrossRef]
- Light, A.; Lophatananon, A.; Keates, A.; Thankappannair, V.; Barrett, T.; Dominguez-Escrig, J.; Rubio-Briones, J.; Benheddi, T.; Olivier, J.; Villers, A.; et al. Development and External Validation of the STRATified CANcer Surveillance (STRATCANS) Multivariable Model for Predicting Progression in Men with Newly Diagnosed Prostate Cancer Starting Active Surveillance. J. Clin. Med. 2022, 12, 216. [Google Scholar] [CrossRef]
- Giganti, F.; Stabile, A.; Stavrinides, V.; Osinibi, E.; Retter, A.; Orczyk, C.; Panebianco, V.; Trock, B.J.; Freeman, A.; Haider, A.; et al. Natural history of prostate cancer on active surveillance: Stratification by MRI using the PRECISE recommendations in a UK cohort. Eur. Radiol. 2021, 31, 1644–1655. [Google Scholar] [CrossRef]
- Caglic, I.; Sushentsev, N.; Gnanapragasam, V.J.; Sala, E.; Shaida, N.; Koo, B.C.; Kozlov, V.; Warren, A.Y.; Kastner, C.; Barrett, T. MRI-derived PRECISE scores for predicting pathologically-confirmed radiological progression in prostate cancer patients on active surveillance. Eur. Radiol. 2021, 31, 2696–2705. [Google Scholar] [CrossRef] [PubMed]
- O’Connor, L.P.; Wang, A.Z.; Yerram, N.K.; Long, L.; Ahdoot, M.; Lebastchi, A.H.; Gurram, S.; Zeng, J.; Harmon, S.A.; Mehralivand, S.; et al. Changes in Magnetic Resonance Imaging Using the Prostate Cancer Radiologic Estimation of Change in Sequential Evaluation Criteria to Detect Prostate Cancer Progression for Men on Active Surveillance. Eur. Urol. Oncol. 2021, 4, 227–234. [Google Scholar] [CrossRef] [PubMed]
- Rajwa, P.; Pradere, B.; Quhal, F.; Mori, K.; Laukhtina, E.; Huebner, N.A.; D’Andrea, D.; Krzywon, A.; Shim, S.R.; Baltzer, P.A.; et al. Reliability of Serial Prostate Magnetic Resonance Imaging to Detect Prostate Cancer Progression During Active Surveillance: A Systematic Review and Meta-analysis. Eur. Urol. 2021, 80, 549–563. [Google Scholar] [CrossRef] [PubMed]
- Seibert, T.M.; Garraway, I.P.; Plym, A.; Mahal, B.A.; Giri, V.; Jacobs, M.F.; Cheng, H.H.; Loeb, S.; Helfand, B.T.; Eeles, R.A.; et al. Genetic Risk Prediction for Prostate Cancer: Implications for Early Detection and Prevention. Eur. Urol. 2023, 83, 241–248. [Google Scholar] [CrossRef]
- Jiang, Y.; Meyers, T.J.; Emeka, A.A.; Cooley, L.F.; Cooper, P.R.; Lancki, N.; Helenowski, I.; Kachuri, L.; Lin, D.W.; Stanford, J.L.; et al. Genetic factors associated with prostate cancer conversion from active surveillance to treatment. Hum. Genet. Genom. Adv. 2022, 3, 100070. [Google Scholar] [CrossRef]
- Carter, H.B.; Helfand, B.; Mamawala, M.; Wu, Y.; Landis, P.; Yu, H.; Wiley, K.; Na, R.; Shi, Z.; Petkewicz, J.; et al. Germline Mutations in ATM and BRCA1/2 Are Associated with Grade Reclassification in Men on Active Surveillance for Prostate Cancer. Eur. Urol. 2019, 75, 743–749. [Google Scholar] [CrossRef] [Green Version]
Institution | Start Study | Inclusion Criteria | Follow-Up Schedule | Criteria Triggering Definitive Treatment | Evolution of Protocol | |||
---|---|---|---|---|---|---|---|---|
Gleason Score | PSA (ng/mL)/PSA Density(ng/mL2) | Tumour Stage | Tumour Volume | |||||
University of Toronto | 1995 | 3 + 3 and 3 + 4 if aged >70 years | ≤10 or ≤15 and >70 years old/NR | ≤T2b | NR | PSA every 3 months for 2 years then every 6 months Biopsy within 6–12 months, then every 3–4 years | Clinical progression based on DRE or urinary symptoms Histopathological features: any upgrading in Gleason score PSA kinetics: PSA-DT <3 years (2 years until 1999) | Inclusion: restricted to men with 3 + 3 and PSA ≤ 10 ng/mL or men with PSA 10–20 and/or 3+4 with significant comorbidities and a life expectancy <10 years Follow-up: adverse PSA kinetics triggers MRI Intervention criteria: PSA kinetics was discontinued as a trigger for intervention; Clinical progression triggers biopsy instead immediate active treatment |
Johns Hopkins Medical Institute | 1995 | 3 + 3 | NR/ ≤ 0.15 | ≤T1c | ≤2 positive cores, and <50% cancer per core | PSA/DRE every 6 months Biopsy yearly | Histopathological features: ≥3 + 4; 3 positive cores; >50% cancer per core | Inclusion: expanded to men with 3 + 3, ≤T2a, and a PSA < 10 ng/mL Follow-up: MRI included (interval not specified) Intervention criteria: increased tumour volume was discontinued as a trigger for intervention |
Memorial Sloan Kettering Cancer Centre | 2000 | 3 + 3 | ≤10/NR | ≤T2a | ≤2 positive cores, and ≤50% cancer per core | PSA/DRE every 3 months for 1 year, then every 6 months Biopsy yearly or if PSA/DRE/TRUS showed progression | ≥3 score based on histopathological features and PSA kinetics | Inclusion: expanded to 3 + 3 with no limitation on PSA level or number of positive cores. ≤3 + 4 and/or ≤T2b are also allowed Follow-up: PSA/DRE every 6 months; MRI every 18 months; confirmatory biopsy within 12 months and biopsy every 2–3 years or in case of MRI/PSA progression Intervention criteria: PSA kinetics and increased tumour volume were discontinued as a trigger for intervention |
PRIAS | 2006 | 3 + 3 | ≤10/≤0.2 | ≤T2c | ≤2 positive cores | PSA every 3 months for 2 years then every 6 months Biopsy at year 1,4 and 7 Yearly biopsies if PSA-DT between 3–10 years | Clinical progression to ≥T3 Histopathological features: ≥3 + 4; ≥3 positive cores PSA kinetics: PSA-DT <3 years | Inclusion: expanded to higher PSA (≤20), PSA density (≤0.25) and no limit in the number of positive cores when MRI is used at inclusion; Gleason 3 + 4 without cribriform/intraductal carcinoma with ≤50% cores positive is also allowed Follow-up: PSADT < 10 years triggers yearly MRI; DRE only yearly after 2 years Intervention criteria: PSA kinetics and increased tumour volume were discontinued as a trigger for intervention |
Royal Marsden Hospital | 2002 | 3 + 3 and 3 + 4 if aged >65 years | ≤15/NR | ≤T2a | ≤10 mm cancer of any core, and <50% positive cores | PSA/DRE every 3 months for 2 years, then every 6 months Biopsy at 1 year, then every 3 years | Histopathological features: ≥4 + 3; 50% cores positive PSA kinetics: increase of >1.0 ng/mL per year | Inclusion: MRI for all patients at inclusion Follow-up: MRI every 2 years |
University of California San Francisco | 1990 | 3 + 3 | ≤10/NR | ≤T2a | <33% positive cores | PSA/DRE every 3 months TRUS every 6–12 months Starting 2003, repeat biopsies every 12–24 months | Histopathological features: ≥3 + 4 PSA kinetics: increase of >0.75 ng/mL per year | Inclusion: men who do not meet the criteria can enrol in the study after shared decision-making Follow-up: biopsy within 12 months; interval MRI Intervention criteria: PSA kinetics was discontinued as a trigger for intervention |
Canary Prostate Active Surveillance Study | 2008 | 3 + 3 and 3 + 4 | No limitations | ≤T2c | NR | PSA every 3 months DRE every 6 months Biopsy within 6–12 months, at 2 years, then every 2 years | Clinical progression based on DRE Histopathological features: any upgrading in Gleason score PSA kinetics: PSA-DT <3 year | No changes |
Guidelines | ISUP Grade Group | PSA (ng/mL) | Clinical Tumour Stage | PSA Density (ng/mL/g) | Tumour Volume | Strength of Evidence | Other Recommendations |
---|---|---|---|---|---|---|---|
EAU | 1 | <10 | ≤T2a | NR | NR | Strong | Life expectancy should be >10 y Perform MRI in AS patients who have not had an MRI previously Exclude patients with intraductal and cribriform histology |
2 | <10 | ≤T2a | NR | <10% pattern 4; ≤3 cores positive; and ≤50% core involvement/per core | Weak | ||
AUA | 1 | <20 | ≤T2a | NR | NR | Strong | Life expectancy must be taken into account |
2 | <10 | ≤T2a | “low” | “Low” % of pattern 4; and <50% of total cores positive | Strong | ||
NICE | 1 | <20 | ≤T2 | NR | NR | NR | Perform MRI in AS patients who have not had an MRI previously |
2 | <10 | ≤T2 | NR | NR | NR | ||
NCCN | 1 | <20 | ≤T2a | ≤0.15 | NR | NR | Life expectancy should be >10 y |
2 | <10 | ≤T2a | “low” | “Low” % of pattern 4; and <50% of total cores positive | NR |
Prediction Model | Development Cohort | Statistical Technique | Included Clinical Variables | Outcome | Performance | External Validation |
---|---|---|---|---|---|---|
Johns Hopkins [77,78] | 964 patients Gleason score ≤6 and at least two PSA measurements and at least 1 post-diagnosis biopsy | Dynamic Bayesian joint model | Repeated PSA and biopsy results | Gleason score ≥3 + 4 at radical prostatectomy | AUC = 0.74 (95%CI: 0.66–0.80) | None |
Canary Prostate Active Surveillance Study [79,80] | 859 patients with Gleason score ≤6 at least 1 post-diagnosis biopsy | Logistic regression with generalised estimating equations | Most recent PSA; PSA change; age; time since the most recent prior biopsy; negative biopsy after biopsy; and the percent of positive cores (<34% vs. ≥34%) on the most recent prior biopsy | Gleason score ≥3 + 4 or an increase in percentage of cancer cores positive to ≥34% upon repeat biopsy | AUC = 0.72 | Johns Hopkins: AUC = 0.75 MSKCC: AUC = 0.68 PRIAS: AUC = 0.63 Toronto: AUC = 0.69 UCSF: AUC = 0.67 |
Canary Prostate Active Surveillance Study [81] | 850 patients with Gleason score ≤6 and at least 1 post-diagnosis biopsy | Partly conditional Cox proportional hazards regression | PSA and prostate volume at diagnosis; PSA-kinetics; time since diagnosis; negative biopsy after diagnosis; maximum percent positive cores at diagnosis; and body mass index | No reclassification at 4 years | AUC = 0.70 (95%CI: 0.63–0.76) | UCSF: AUC = 0.70 |
PRIAS [82,83] | 7813 patients with Gleason score ≤6 | Dynamic Bayesian joint model | Repeated PSA and biopsy results; timing of prior biopsy; and age at inclusion | Gleason score ≥3 + 4 upon repeat biopsy | Time-dependent AUC = 0.62–0.69 | Johns Hopkins: AUC = 0.60–0.74 MSKCC: AUC = 0.58–0.75 Toronto: AUC = 0.64–0.79 UCSF: AUC = 0.62–0.74 KCL: AUC = 0.68–0.69 MUSIC: AUC = 0.60 |
STRATCANS Model [84] | 883 patients with Gleason score ≤3 + 4 | Cox proportional hazards regression | At diagnosis: PSA; Gleason score; prostate volume; percent of positive cores; MRI PI-RADS score; age; and family history | Gleason score ≥4 + 3 or Gleason score ≥3 + 4 with PSA ≥ 10 upon repeat biopsy | C-index = 0.74 (95%CI: 0.69–0.79) | Cardiff: C-index = 0.85 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
de Vos, I.I.; Luiting, H.B.; Roobol, M.J. Active Surveillance for Prostate Cancer: Past, Current, and Future Trends. J. Pers. Med. 2023, 13, 629. https://doi.org/10.3390/jpm13040629
de Vos II, Luiting HB, Roobol MJ. Active Surveillance for Prostate Cancer: Past, Current, and Future Trends. Journal of Personalized Medicine. 2023; 13(4):629. https://doi.org/10.3390/jpm13040629
Chicago/Turabian Stylede Vos, Ivo I., Henk B. Luiting, and Monique J. Roobol. 2023. "Active Surveillance for Prostate Cancer: Past, Current, and Future Trends" Journal of Personalized Medicine 13, no. 4: 629. https://doi.org/10.3390/jpm13040629