Biomarkers for Prostate Cancer Bone Metastasis Detection and Prediction
Abstract
:1. Introduction
2. Bone Formation Markers
2.1. Alkaline Phosphatase (ALP)
2.2. Osteocalcin (OC)
2.3. Pro-Collagen Type I N-Terminal Pro-Peptide (PINP) and Pro-Collagen Type I C-Terminal Pro-Peptide (PICP)
2.4. Osteopontin (OPN)
2.5. Osteoprotegerin (OPG)
3. Bone Resorption Markers
3.1. Bone Sialoprotein (BSP)
3.2. C-Telopeptide of Type I Collagen (CTx) and N-Telopeptide of Type I Collagen (NTx)
3.3. Tartrate-Resistant Acid Phosphatase (TRACP)
3.4. C-Terminal Pyridinoline Cross-Linked Telopeptide of Type I Collagen (ICTP)
3.5. Pyridoxine (PYD) and Deoxypyridinoline (D-PYD)
4. Prostate-Specific Antigen (PSA)
5. Neuroendocrine Markers
6. Liquid Biopsy Markers
6.1. MicroRNA (miRNA)
6.2. Cell-Free DNA (cfDNA) and Circulating Tumor DNA (ctDNA)
6.3. Exosomes
6.4. Circulating Tumor Cells (CTCs)
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Siegel, R.L.; Miller, K.D.; Fuchs, H.E.; Jemal, A. Cancer statistics, 2022. CA Cancer J. Clin. 2022, 72, 7–33. [Google Scholar] [CrossRef] [PubMed]
- Xia, C.; Dong, X.; Li, H.; Cao, M.; Sun, D.; He, S.; Yang, F.; Yan, X.; Zhang, S.; Li, N.; et al. Cancer statistics in China and United States, 2022: Profiles, trends, and determinants. Chin. Med. J. 2022, 135, 584–590. [Google Scholar] [CrossRef]
- Simmons, J.K.; Hildreth, B.E., 3rd; Supsavhad, W.; Elshafae, S.M.; Hassan, B.B.; Dirksen, W.P.; Toribio, R.E.; Rosol, T.J. Animal Models of Bone Metastasis. Vet. Pathol. 2015, 52, 827–841. [Google Scholar] [CrossRef] [PubMed]
- Huang, S.H.; Kao, Y.H.; Muller, C.J.F.; Joubert, E.; Chuu, C.P. Aspalathin-rich green Aspalathus linearis extract suppresses migration and invasion of human castration-resistant prostate cancer cells via inhibition of YAP signaling. Phytomedicine 2020, 69, 153210. [Google Scholar] [CrossRef] [PubMed]
- Yu, Z.; Zou, H.; Wang, H.; Li, Q.; Yu, D. Identification of Key Gene Signatures Associated with Bone Metastasis in Castration-Resistant Prostate Cancer Using Co-Expression Analysis. Front. Oncol. 2020, 10, 571524. [Google Scholar] [CrossRef] [PubMed]
- Qu, L.; Li, S.; Zhuo, Y.; Chen, J.; Qin, X.; Guo, G. Anticancer effect of triterpenes from Ganoderma lucidum in human prostate cancer cells. Oncol. Lett. 2017, 14, 7467–7472. [Google Scholar] [CrossRef]
- Lee, S.; Mendoza, T.R.; Burner, D.N.; Muldong, M.T.; Wu, C.C.N.; Arreola-Villanueva, C.; Zuniga, A.; Greenburg, O.; Zhu, W.Y.; Murtadha, J.; et al. Novel Dormancy Mechanism of Castration Resistance in Bone Metastatic Prostate Cancer Organoids. Int. J. Mol. Sci. 2022, 23, 3203. [Google Scholar] [CrossRef]
- Morale, M.G.; Tamura, R.E.; Rubio, I.G.S. Metformin and Cancer Hallmarks: Molecular Mechanisms in Thyroid, Prostate and Head and Neck Cancer Models. Biomolecules 2022, 12, 157. [Google Scholar] [CrossRef]
- Chi, J.T.; Lin, P.H.; Tolstikov, V.; Oyekunle, T.; Chen, E.Y.; Bussberg, V.; Greenwood, B.; Sarangarajan, R.; Narain, N.R.; Kiebish, M.A.; et al. Metabolomic effects of androgen deprivation therapy treatment for prostate cancer. Cancer Med. 2020, 9, 3691–3702. [Google Scholar] [CrossRef]
- Salji, M.; Hendry, J.; Patel, A.; Ahmad, I.; Nixon, C.; Leung, H.Y. Peri-prostatic Fat Volume Measurement as a Predictive Tool for Castration Resistance in Advanced Prostate Cancer. Eur. Urol. Focus. 2018, 4, 858–866. [Google Scholar] [CrossRef]
- Yang, L.; Jin, M.; Park, S.J.; Seo, S.Y.; Jeong, K.W. SETD1A Promotes Proliferation of Castration-Resistant Prostate Cancer Cells via FOXM1 Transcription. Cancers 2020, 12, 1736. [Google Scholar] [CrossRef] [PubMed]
- Talreja, D.B. Importance of antiresorptive therapies for patients with bone metastases from solid tumors. Cancer Manag. Res. 2012, 4, 287–297. [Google Scholar] [CrossRef] [PubMed]
- Coleman, R.E. Clinical features of metastatic bone disease and risk of skeletal morbidity. Clin. Cancer Res. 2006, 12, 6243s–6249s. [Google Scholar] [CrossRef] [PubMed]
- Clézardin, P.; Coleman, R.; Puppo, M.; Ottewell, P.; Bonnelye, E.; Paycha, F.; Confavreux, C.B.; Holen, I. Bone metastasis: Mechanisms, therapies, and biomarkers. Physiol. Rev. 2021, 101, 797–855. [Google Scholar] [CrossRef]
- Clarke, N.W.; Hart, C.A.; Brown, M.D. Molecular mechanisms of metastasis in prostate cancer. Asian J. Androl. 2009, 11, 57–67. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.; Xu, T.; Wang, X.; Yu, Y.B.; Fan, Z.Y.; Li, D.X.; Luo, L.; Yang, X.C.; Jiao, W.; Niu, H.T. Diagnostic Performance of (68) Gallium Labelled Prostate-Specific Membrane Antigen Positron Emission Tomography/Computed Tomography and Magnetic Resonance Imaging for Staging the Prostate Cancer with Intermediate or High Risk Prior to Radical Prostatectomy: A Systematic Review and Meta-analysis. World J. Mens. Health 2020, 38, 208–219. [Google Scholar] [CrossRef]
- Luna, A.; Vilanova, J.C.; Alcalá Mata, L. Total body MRI in early detection of bone metastasis and its indication in comparison to bone scan and other imaging techniques. Arch. Esp. Urol. 2015, 68, 371–390. [Google Scholar]
- Kang, J.; La Manna, F.; Bonollo, F.; Sampson, N.; Alberts, I.L.; Mingels, C.; Afshar-Oromieh, A.; Thalmann, G.N.; Karkampouna, S. Tumor microenvironment mechanisms and bone metastatic disease progression of prostate cancer. Cancer Lett. 2022, 530, 156–169. [Google Scholar] [CrossRef]
- Bock, N.; Kryza, T.; Shokoohmand, A.; Röhl, J.; Ravichandran, A.; Wille, M.L.; Nelson, C.C.; Hutmacher, D.W.; Clements, J.A. In vitro engineering of a bone metastases model allows for study of the effects of antiandrogen therapies in advanced prostate cancer. Sci. Adv. 2021, 7, eabg2564. [Google Scholar] [CrossRef]
- Hagberg Thulin, M.; Jennbacken, K.; Damber, J.E.; Welén, K. Osteoblasts stimulate the osteogenic and metastatic progression of castration-resistant prostate cancer in a novel model for in vitro and in vivo studies. Clin. Exp. Metastasis 2014, 31, 269–283. [Google Scholar] [CrossRef]
- Kim, H.; Lee, J.H.; Lee, S.K.; Song, N.Y.; Son, S.H.; Kim, K.R.; Chung, W.Y. Chemerin Treatment Inhibits the Growth and Bone Invasion of Breast Cancer Cells. Int. J. Mol. Sci. 2020, 21, 2871. [Google Scholar] [CrossRef] [PubMed]
- Helo, S.; Manger, J.P.; Krupski, T.L. Role of denosumab in prostate cancer. Prostate Cancer Prostatic Dis. 2012, 15, 231–236. [Google Scholar] [CrossRef] [PubMed]
- Yue, Z.; Niu, X.; Yuan, Z.; Qin, Q.; Jiang, W.; He, L.; Gao, J.; Ding, Y.; Liu, Y.; Xu, Z.; et al. RSPO2 and RANKL signal through LGR4 to regulate osteoclastic premetastatic niche formation and bone metastasis. J. Clin. Investig. 2022, 132. [Google Scholar] [CrossRef] [PubMed]
- Zaninotto, M.; Secchiero, S.; Rubin, D.; Sciacovelli, L.; Trovò, M.; Bortolus, R.; Plebani, M. Serum bone alkaline phosphatase in the follow-up of skeletal metastases. Anticancer Res. 1995, 15, 2223–2228. [Google Scholar]
- Zhao, H.; Han, K.L.; Wang, Z.Y.; Chen, Y.; Li, H.T.; Zeng, J.L.; Shen, Z.; Yao, Y. Value of C-telopeptide-cross-linked Type I collagen, osteocalcin, bone-specific alkaline phosphatase and procollagen Type I N-terminal propeptide in the diagnosis and prognosis of bone metastasis in patients with malignant tumors. Med. Sci. Monit. 2011, 17, Cr626–Cr633. [Google Scholar] [CrossRef]
- Jung, K.; Lein, M.; Stephan, C.; Von Hösslin, K.; Semjonow, A.; Sinha, P.; Loening, S.A.; Schnorr, D. Comparison of 10 serum bone turnover markers in prostate carcinoma patients with bone metastatic spread: Diagnostic and prognostic implications. Int. J. Cancer 2004, 111, 783–791. [Google Scholar] [CrossRef]
- Rasch-Isla Muñoz, A.; Cataño Cataño, J.G. Usefulness of bone-specific alkaline phosphatase for bone metastases detection in prostate cancer. Arch. Esp. Urol. 2004, 57, 693–698. [Google Scholar]
- De la Piedra, C.; Castro-Errecaborde, N.A.; Traba, M.L.; Méndez-Dávila, C.; García-Moreno, C.; Rodriguez de Acuña, L.; Rodriguez-Molina, J. Bone remodeling markers in the detection of bone metastases in prostate cancer. Clin. Chim. Acta 2003, 331, 45–53. [Google Scholar] [CrossRef]
- Fizazi, K.; Massard, C.; Smith, M.; Rader, M.; Brown, J.; Milecki, P.; Shore, N.; Oudard, S.; Karsh, L.; Carducci, M.; et al. Bone-related Parameters are the Main Prognostic Factors for Overall Survival in Men with Bone Metastases from Castration-resistant Prostate Cancer. Eur. Urol. 2015, 68, 42–50. [Google Scholar] [CrossRef]
- Arai, Y.; Takeuchi, H.; Oishi, K.; Yoshida, O. Osteocalcin: Is it a useful marker of bone metastasis and response to treatment in advanced prostate cancer? Prostate 1992, 20, 169–177. [Google Scholar] [CrossRef]
- Maeda, H.; Koizumi, M.; Yoshimura, K.; Yamauchi, T.; Kawai, T.; Ogata, E. Correlation between bone metabolic markers and bone scan in prostatic cancer. J. Urol. 1997, 157, 539–543. [Google Scholar] [CrossRef] [PubMed]
- Koopmans, N.; de Jong, I.J.; Breeuwsma, A.J.; van der Veer, E. Serum bone turnover markers (PINP and ICTP) for the early detection of bone metastases in patients with prostate cancer: A longitudinal approach. J. Urol. 2007, 178, 849–853; discussion 853; quiz 1129. [Google Scholar] [CrossRef] [PubMed]
- Brasso, K.; Christensen, I.J.; Johansen, J.S.; Teisner, B.; Garnero, P.; Price, P.A.; Iversen, P. Prognostic value of PINP, bone alkaline phosphatase, CTX-I, and YKL-40 in patients with metastatic prostate carcinoma. Prostate 2006, 66, 503–513. [Google Scholar] [CrossRef] [PubMed]
- Khodavirdi, A.C.; Song, Z.; Yang, S.; Zhong, C.; Wang, S.; Wu, H.; Pritchard, C.; Nelson, P.S.; Roy-Burman, P. Increased expression of osteopontin contributes to the progression of prostate cancer. Cancer Res. 2006, 66, 883–888. [Google Scholar] [CrossRef] [PubMed]
- Thoms, J.W.; Dal Pra, A.; Anborgh, P.H.; Christensen, E.; Fleshner, N.; Menard, C.; Chadwick, K.; Milosevic, M.; Catton, C.; Pintilie, M.; et al. Plasma osteopontin as a biomarker of prostate cancer aggression: Relationship to risk category and treatment response. Br. J. Cancer 2012, 107, 840–846. [Google Scholar] [CrossRef]
- Jung, K.; Lein, M.; von Hösslin, K.; Brux, B.; Schnorr, D.; Loening, S.A.; Sinha, P. Osteoprotegerin in serum as a novel marker of bone metastatic spread in prostate cancer. Clin. Chem. 2001, 47, 2061–2063. [Google Scholar] [CrossRef]
- Zhang, J.; Dai, J.; Qi, Y.; Lin, D.L.; Smith, P.; Strayhorn, C.; Mizokami, A.; Fu, Z.; Westman, J.; Keller, E.T. Osteoprotegerin inhibits prostate cancer-induced osteoclastogenesis and prevents prostate tumor growth in the bone. J. Clin. Investig. 2001, 107, 1235–1244. [Google Scholar] [CrossRef]
- Mori, K.; Janisch, F.; Parizi, M.K.; Mostafaei, H.; Lysenko, I.; Enikeev, D.V.; Kimura, S.; Egawa, S.; Shariat, S.F. Prognostic value of alkaline phosphatase in hormone-sensitive prostate cancer: A systematic review and meta-analysis. Int. J. Clin. Oncol. 2020, 25, 247–257. [Google Scholar] [CrossRef]
- Tong, T.; Lei, H.; Guan, Y.; Yang, X.; Liao, G.; Li, Y.; Jiang, D.; Pang, J. Revealing Prognostic Value of Skeletal-Related Parameters in Metastatic Castration-Resistant Prostate Cancer on Overall Survival: A Systematic Review and Meta-Analysis of Randomized Controlled Trial. Front. Oncol. 2020, 10, 586192. [Google Scholar] [CrossRef]
- D’Oronzo, S.; Brown, J.; Coleman, R. The value of biomarkers in bone metastasis. Eur. J. Cancer Care 2017, 26, e12725. [Google Scholar] [CrossRef]
- Scalzi, P.; Baiocco, C.; Genovese, S.; Trevisan, A.; Sirotova, Z.; Poti, C. Evaluation of bone metastases by 18F-choline PET/CT in a patient with castration-resistant prostate cancer treated with radium-223. Urologia 2017, 84, 61–64. [Google Scholar] [CrossRef] [PubMed]
- Miyazaki, K.S.; Kuang, Y.; Kwee, S.A. Changes in Skeletal Tumor Activity on (18)F-choline PET/CT in Patients Receiving (223)Radium Radionuclide Therapy for Metastatic Prostate Cancer. Nucl. Med. Mol. Imaging 2015, 49, 160–164. [Google Scholar] [CrossRef] [PubMed]
- Chung, J.H.; Park, M.S.; Kim, Y.S.; Chang, J.; Kim, J.H.; Kim, S.K.; Kim, S.K. Usefulness of bone metabolic markers in the diagnosis of bone metastasis from lung cancer. Yonsei Med. J. 2005, 46, 388–393. [Google Scholar] [CrossRef] [PubMed]
- Yamamichi, G.; Kato, T.; Uemura, M.; Nonomura, N. Diagnosing and Prognosing Bone Metastasis in Prostate Cancer: Clinical Utility of Blood Biomarkers. Anticancer. Res. 2023, 43, 283–290. [Google Scholar] [CrossRef]
- Heinrich, D.; Bruland, Ø.; Guise, T.A.; Suzuki, H.; Sartor, O. Alkaline phosphatase in metastatic castration-resistant prostate cancer: Reassessment of an older biomarker. Future Oncol. 2018, 14, 2543–2556. [Google Scholar] [CrossRef]
- Petrioli, R.; Rossi, S.; Caniggia, M.; Pozzessere, D.; Messinese, S.; Sabatino, M.; Marsili, S.; Correale, P.; Salvestrini, F.; Manganelli, A.; et al. Analysis of biochemical bone markers as prognostic factors for survival in patients with hormone-resistant prostate cancer and bone metastases. Urology 2004, 63, 321–326. [Google Scholar] [CrossRef]
- Hegele, A.; Wahl, H.G.; Varga, Z.; Sevinc, S.; Koliva, L.; Schrader, A.J.; Hofmann, R.; Olbert, P. Biochemical markers of bone turnover in patients with localized and metastasized prostate cancer. BJU Int. 2007, 99, 330–334. [Google Scholar] [CrossRef]
- Xue, Y.; Li, R.; Zhao, Y.; Li, L.; Zhou, Y. Effects of sleeve gastrectomy on bone mass, microstructure of femurs and bone metabolism associated serum factors in obese rats. BMC Endocr. Disord. 2021, 21, 173. [Google Scholar] [CrossRef]
- Ebert, W.; Muley, T.; Herb, K.P.; Schmidt-Gayk, H. Comparison of bone scintigraphy with bone markers in the diagnosis of bone metastasis in lung carcinoma patients. Anticancer Res. 2004, 24, 3193–3201. [Google Scholar]
- Coleman, R.E.; Major, P.; Lipton, A.; Brown, J.E.; Lee, K.A.; Smith, M.; Saad, F.; Zheng, M.; Hei, Y.J.; Seaman, J.; et al. Predictive value of bone resorption and formation markers in cancer patients with bone metastases receiving the bisphosphonate zoledronic acid. J. Clin. Oncol. 2005, 23, 4925–4935. [Google Scholar] [CrossRef]
- Lopes, L.S.; Schwartz, R.P.; Ferraz-de-Souza, B.; da Silva, M.E.; Corrêa, P.H.; Nery, M. The role of enteric hormone GLP-2 in the response of bone markers to a mixed meal in postmenopausal women with type 2 diabetes mellitus. Diabetol. Metab. Syndr. 2015, 7, 13. [Google Scholar] [CrossRef] [PubMed]
- Gardner, T.A.; Lee, S.J.; Lee, S.D.; Li, X.; Shirakawa, T.; Kwon, D.D.; Park, R.Y.; Ahn, K.Y.; Jung, C. Differential expression of osteocalcin during the metastatic progression of prostate cancer. Oncol. Rep. 2009, 21, 903–908. [Google Scholar] [CrossRef]
- Nimptsch, K.; Rohrmann, S.; Nieters, A.; Linseisen, J. Serum undercarboxylated osteocalcin as biomarker of vitamin K intake and risk of prostate cancer: A nested case-control study in the Heidelberg cohort of the European prospective investigation into cancer and nutrition. Cancer Epidemiol. Biomarkers Prev. 2009, 18, 49–56. [Google Scholar] [CrossRef] [PubMed]
- Lee, A.J.; Hodges, S.; Eastell, R. Measurement of osteocalcin. Ann. Clin. Biochem. 2000, 37 Pt 4, 432–446. [Google Scholar] [CrossRef] [PubMed]
- Smith, C.; Voisin, S.; Al Saedi, A.; Phu, S.; Brennan-Speranza, T.; Parker, L.; Eynon, N.; Hiam, D.; Yan, X.; Scott, D.; et al. Osteocalcin and its forms across the lifespan in adult men. Bone 2020, 130, 115085. [Google Scholar] [CrossRef] [PubMed]
- Hayashi, Y.; Kawakubo-Yasukochi, T.; Mizokami, A.; Takeuchi, H.; Nakamura, S.; Hirata, M. Differential Roles of Carboxylated and Uncarboxylated Osteocalcin in Prostate Cancer Growth. J. Cancer 2016, 7, 1605–1609. [Google Scholar] [CrossRef]
- Krege, J.H.; Lane, N.E.; Harris, J.M.; Miller, P.D. PINP as a biological response marker during teriparatide treatment for osteoporosis. Osteoporos. Int. 2014, 25, 2159–2171. [Google Scholar] [CrossRef]
- Akimoto, S.; Furuya, Y.; Akakura, K.; Ito, H. Comparison of markers of bone formation and resorption in prostate cancer patients to predict bone metastasis. Endocr. J. 1998, 45, 97–104. [Google Scholar] [CrossRef]
- Koizumi, M.; Yonese, J.; Fukui, I.; Ogata, E. The serum level of the amino-terminal propeptide of type I procollagen is a sensitive marker for prostate cancer metastasis to bone. BJU Int. 2001, 87, 348–351. [Google Scholar] [CrossRef]
- De la Piedra, C.; Alcaraz, A.; Bellmunt, J.; Meseguer, C.; Gómez-Caamano, A.; Ribal, M.J.; Vázquez, F.; Anido, U.; Samper, P.; Esteban, E.; et al. Usefulness of bone turnover markers as predictors of mortality risk, disease progression and skeletal-related events appearance in patients with prostate cancer with bone metastases following treatment with zoledronic acid: TUGAMO study. Br. J. Cancer 2013, 108, 2565–2572. [Google Scholar] [CrossRef]
- Jung, K.; Miller, K.; Wirth, M.; Albrecht, M.; Lein, M. Bone turnover markers as predictors of mortality risk in prostate cancer patients with bone metastases following treatment with zoledronic acid. Eur. Urol. 2011, 59, 604–612. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.X.; Denhardt, D.T. Osteopontin: Role in immune regulation and stress responses. Cytokine Growth Factor Rev. 2008, 19, 333–345. [Google Scholar] [CrossRef] [PubMed]
- Zhao, H.; Chen, Q.; Alam, A.; Cui, J.; Suen, K.C.; Soo, A.P.; Eguchi, S.; Gu, J.; Ma, D. The role of osteopontin in the progression of solid organ tumour. Cell. Death Dis. 2018, 9, 356. [Google Scholar] [CrossRef]
- Yu, A.; Guo, K.; Qin, Q.; Xing, C.; Zu, X. Clinicopathological and prognostic significance of osteopontin expression in patients with prostate cancer: A systematic review and meta-analysis. Biosci. Rep. 2021, 41, BSR20203531. [Google Scholar] [CrossRef]
- Desai, B.; Rogers, M.J.; Chellaiah, M.A. Mechanisms of osteopontin and CD44 as metastatic principles in prostate cancer cells. Mol. Cancer 2007, 6, 18. [Google Scholar] [CrossRef]
- Mi, Z.; Guo, H.; Russell, M.B.; Liu, Y.; Sullenger, B.A.; Kuo, P.C. RNA aptamer blockade of osteopontin inhibits growth and metastasis of MDA-MB231 breast cancer cells. Mol. Ther. 2009, 17, 153–161. [Google Scholar] [CrossRef] [PubMed]
- Zinonos, I.; Luo, K.W.; Labrinidis, A.; Liapis, V.; Hay, S.; Panagopoulos, V.; Denichilo, M.; Ko, C.H.; Yue, G.G.; Lau, C.B.; et al. Pharmacologic inhibition of bone resorption prevents cancer-induced osteolysis but enhances soft tissue metastasis in a mouse model of osteolytic breast cancer. Int. J. Oncol. 2014, 45, 532–540. [Google Scholar] [CrossRef]
- Ye, Y.; Li, S.L.; Ma, Y.Y.; Diao, Y.J.; Yang, L.; Su, M.Q.; Li, Z.; Ji, Y.; Wang, J.; Lei, L.; et al. Exosomal miR-141-3p regulates osteoblast activity to promote the osteoblastic metastasis of prostate cancer. Oncotarget 2017, 8, 94834–94849. [Google Scholar] [CrossRef]
- Al Nakouzi, N.; Bawa, O.; Le Pape, A.; Lerondel, S.; Gaudin, C.; Opolon, P.; Gonin, P.; Fizazi, K.; Chauchereau, A. The IGR-CaP1 xenograft model recapitulates mixed osteolytic/blastic bone lesions observed in metastatic prostate cancer. Neoplasia 2012, 14, 376–387. [Google Scholar] [CrossRef]
- Ndip, A.; Williams, A.; Jude, E.B.; Serracino-Inglott, F.; Richardson, S.; Smyth, J.V.; Boulton, A.J.; Alexander, M.Y. The RANKL/RANK/OPG signaling pathway mediates medial arterial calcification in diabetic Charcot neuroarthropathy. Diabetes 2011, 60, 2187–2196. [Google Scholar] [CrossRef]
- Kiefer, J.A.; Vessella, R.L.; Quinn, J.E.; Odman, A.M.; Zhang, J.; Keller, E.T.; Kostenuik, P.J.; Dunstan, C.R.; Corey, E. The effect of osteoprotegerin administration on the intra-tibial growth of the osteoblastic LuCaP 23.1 prostate cancer xenograft. Clin. Exp. Metastasis 2004, 21, 381–387. [Google Scholar] [CrossRef] [PubMed]
- Kruger, T.E.; Miller, A.H.; Godwin, A.K.; Wang, J. Bone sialoprotein and osteopontin in bone metastasis of osteotropic cancers. Crit. Rev. Oncol. Hematol. 2014, 89, 330–341. [Google Scholar] [CrossRef] [PubMed]
- Chawalitpong, S.; Chokchaisiri, R.; Suksamrarn, A.; Katayama, S.; Mitani, T.; Nakamura, S.; Athamneh, A.A.; Ritprajak, P.; Leelahavanichkul, A.; Aeimlapa, R.; et al. Cyperenoic acid suppresses osteoclast differentiation and delays bone loss in a senile osteoporosis mouse model by inhibiting non-canonical NF-κB pathway. Sci. Rep. 2018, 8, 5625. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Rodriguez, J.A.; Barnett, B.; Hashimoto, N.; Tang, J.; Yoneda, T. Bone sialoprotein promotes tumor cell migration in both in vitro and in vivo models. Connect. Tissue Res. 2003, 44 (Suppl. S1), 279–284. [Google Scholar] [CrossRef] [PubMed]
- Karadag, A.; Ogbureke, K.U.; Fedarko, N.S.; Fisher, L.W. Bone sialoprotein, matrix metalloproteinase 2, and alpha(v)beta3 integrin in osteotropic cancer cell invasion. J. Natl. Cancer Inst. 2004, 96, 956–965. [Google Scholar] [CrossRef] [PubMed]
- Bellahcene, A.; Kroll, M.; Liebens, F.; Castronovo, V. Bone sialoprotein expression in primary human breast cancer is associated with bone metastases development. J. Bone Miner. Res. 1996, 11, 665–670. [Google Scholar] [CrossRef]
- Bellahcène, A.; Menard, S.; Bufalino, R.; Moreau, L.; Castronovo, V. Expression of bone sialoprotein in primary human breast cancer is associated with poor survival. Int. J. Cancer 1996, 69, 350–353. [Google Scholar] [CrossRef]
- Waltregny, D.; Bellahcène, A.; Van Riet, I.; Fisher, L.W.; Young, M.; Fernandez, P.; Dewé, W.; de Leval, J.; Castronovo, V. Prognostic value of bone sialoprotein expression in clinically localized human prostate cancer. J. Natl. Cancer Inst. 1998, 90, 1000–1008. [Google Scholar] [CrossRef]
- Wei, R.J.; Li, T.Y.; Yang, X.C.; Jia, N.; Yang, X.L.; Song, H.B. Serum levels of PSA, ALP, ICTP, and BSP in prostate cancer patients and the significance of ROC curve in the diagnosis of prostate cancer bone metastases. Genet. Mol. Res. 2016, 15, 15. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, X.F.; Dai, J.; Zheng, Y.C.; Zhang, M.G.; He, J.J. Predictive value of serum bone sialoprotein and prostate-specific antigen doubling time in patients with bone metastasis of prostate cancer. J. Huazhong Univ. Sci. Technolog Med. Sci. 2013, 33, 559–562. [Google Scholar] [CrossRef]
- Withold, W.; Armbruster, F.P.; Karmatschek, M.; Reinauer, H. Bone sialoprotein in serum of patients with malignant bone diseases. Clin. Chem. 1997, 43, 85–91. [Google Scholar] [CrossRef] [PubMed]
- Jain, A.; McKnight, D.A.; Fisher, L.W.; Humphreys, E.B.; Mangold, L.A.; Partin, A.W.; Fedarko, N.S. Small integrin-binding proteins as serum markers for prostate cancer detection. Clin. Cancer Res. 2009, 15, 5199–5207. [Google Scholar] [CrossRef] [PubMed]
- Rajpar, S.; Massard, C.; Laplanche, A.; Tournay, E.; Gross-Goupil, M.; Loriot, Y.; Di Palma, M.; Bossi, A.; Escudier, B.; Chauchereau, A.; et al. Urinary N-telopeptide (uNTx) is an independent prognostic factor for overall survival in patients with bone metastases from castration-resistant prostate cancer. Ann. Oncol. 2010, 21, 1864–1869. [Google Scholar] [CrossRef] [PubMed]
- Yamamichi, G.; Kato, T.; Yumiba, S.; Tomiyama, E.; Koh, Y.; Nakano, K.; Matsushita, M.; Hayashi, Y.; Ishizuya, Y.; Watabe, T.; et al. Diagnostic and prognostic significance of tartrate-resistant acid phosphatase type 5b in newly diagnosed prostate cancer with bone metastasis: A real-world multi-institutional study. Int. J. Urol. 2023, 30, 70–76. [Google Scholar] [CrossRef]
- Ozu, C.; Nakashima, J.; Horiguchi, Y.; Oya, M.; Ohigashi, T.; Murai, M. Prediction of bone metastases by combination of tartrate-resistant acid phosphatase, alkaline phosphatase and prostate specific antigen in patients with prostate cancer. Int. J. Urol. 2008, 15, 419–422. [Google Scholar] [CrossRef]
- Salminen, E.K.; Kallioinen, M.J.; Ala-Houhala, M.A.; Vihinen, P.P.; Tiitinen, S.L.; Varpula, M.; Vahlberg, T.J. Survival markers related to bone metastases in prostate cancer. Anticancer Res. 2006, 26, 4879–4884. [Google Scholar]
- Kataoka, A.; Yuasa, T.; Kageyama, S.; Tsuchiya, N.; Habuchi, T.; Iwaki, H.; Narita, M.; Okada, Y.; Yoshiki, T. Diagnosis of bone metastasis in men with prostate cancer by measurement of serum ICTP in combination with alkali phosphatase and prostate-specific antigen. Clin. Oncol. 2006, 18, 480–484. [Google Scholar] [CrossRef]
- Kamiya, N.; Suzuki, H.; Yano, M.; Endo, T.; Takano, M.; Komaru, A.; Kawamura, K.; Sekita, N.; Imamoto, T.; Ichikawa, T. Implications of serum bone turnover markers in prostate cancer patients with bone metastasis. Urology 2010, 75, 1446–1451. [Google Scholar] [CrossRef]
- Lara, P.N., Jr.; Ely, B.; Quinn, D.I.; Mack, P.C.; Tangen, C.; Gertz, E.; Twardowski, P.W.; Goldkorn, A.; Hussain, M.; Vogelzang, N.J.; et al. Serum biomarkers of bone metabolism in castration-resistant prostate cancer patients with skeletal metastases: Results from SWOG 0421. J. Natl. Cancer Inst. 2014, 106, dju013. [Google Scholar] [CrossRef]
- Kikuchi, W.; Ichihara, K.; Mori, K.; Shimizu, Y. Biological sources of variations of tartrate-resistant acid phosphatase 5b in a healthy Japanese population. Ann. Clin. Biochem. 2021, 58, 358–367. [Google Scholar] [CrossRef]
- Guo, H.; Weng, W.; Zhang, S.; Rinderknecht, H.; Braun, B.; Breinbauer, R.; Gupta, P.; Kumar, A.; Ehnert, S.; Histing, T.; et al. Maqui Berry and Ginseng Extracts Reduce Cigarette Smoke-Induced Cell Injury in a 3D Bone Co-Culture Model. Antioxidants 2022, 11, 2460. [Google Scholar] [CrossRef] [PubMed]
- Hanson, D.A.; Weis, M.A.; Bollen, A.M.; Maslan, S.L.; Singer, F.R.; Eyre, D.R. A specific immunoassay for monitoring human bone resorption: Quantitation of type I collagen cross-linked N-telopeptides in urine. J. Bone Miner. Res. 1992, 7, 1251–1258. [Google Scholar] [CrossRef] [PubMed]
- Koga, H.; Naito, S.; Koto, S.; Sakamoto, N.; Nakashima, M.; Yamasaki, T.; Noma, H.; Kumazawa, J. Use of bone turnover marker, pyridinoline cross-linked carboxyterminal telopeptide of type I collagen (ICTP), in the assessment and monitoring of bone metastasis in prostate cancer. Prostate 1999, 39, 1–7. [Google Scholar] [CrossRef]
- Sano, M.; Kushida, K.; Takahashi, M.; Ohishi, T.; Kawana, K.; Okada, M.; Inoue, T. Urinary pyridinoline and deoxypyridinoline in prostate carcinoma patients with bone metastasis. Br. J. Cancer 1994, 70, 701–703. [Google Scholar] [CrossRef]
- Coleman, R.E.; Houston, S.; James, I.; Rodger, A.; Rubens, R.D.; Leonard, R.C.; Ford, J. Preliminary results of the use of urinary excretion of pyridinium crosslinks for monitoring metastatic bone disease. Br. J. Cancer 1992, 65, 766–768. [Google Scholar] [CrossRef]
- Takeuchi, S.; Arai, K.; Saitoh, H.; Yoshida, K.; Miura, M. Urinary pyridinoline and deoxypyridinoline as potential markers of bone metastasis in patients with prostate cancer. J. Urol. 1996, 156, 1691–1695. [Google Scholar] [CrossRef] [PubMed]
- Miyamoto, K.K.; McSherry, S.A.; Robins, S.P.; Besterman, J.M.; Mohler, J.L. Collagen cross-link metabolites in urine as markers of bone metastases in prostatic carcinoma. J. Urol. 1994, 151, 909–913. [Google Scholar] [CrossRef] [PubMed]
- Takeuchi, S.; Saitoh, H. The clinical usefulness of urinary pyridinoline and deoxypyridinoline as potential markers of bone metastasis in patients with prostate cancer. Nihon Rinsho 1998, 56, 2077–2081. [Google Scholar]
- Sekhoacha, M.; Riet, K.; Motloung, P.; Gumenku, L.; Adegoke, A.; Mashele, S. Prostate Cancer Review: Genetics, Diagnosis, Treatment Options, and Alternative Approaches. Molecules 2022, 27, 5730. [Google Scholar] [CrossRef]
- Oesterling, J.E.; Martin, S.K.; Bergstralh, E.J.; Lowe, F.C. The use of prostate-specific antigen in staging patients with newly diagnosed prostate cancer. JAMA 1993, 269, 57–60. [Google Scholar] [CrossRef]
- Partin, A.W.; Carter, H.B.; Chan, D.W.; Epstein, J.I.; Oesterling, J.E.; Rock, R.C.; Weber, J.P.; Walsh, P.C. Prostate specific antigen in the staging of localized prostate cancer: Influence of tumor differentiation, tumor volume and benign hyperplasia. J. Urol. 1990, 143, 747–752. [Google Scholar] [CrossRef] [PubMed]
- Asrani, K.; Torres, A.F.; Woo, J.; Vidotto, T.; Tsai, H.K.; Luo, J.; Corey, E.; Hanratty, B.; Coleman, I.; Yegnasubramanian, S.; et al. Reciprocal YAP1 loss and INSM1 expression in neuroendocrine prostate cancer. J. Pathol. 2021, 255, 425–437. [Google Scholar] [CrossRef] [PubMed]
- Vlachostergios, P.J.; Puca, L.; Beltran, H. Emerging Variants of Castration-Resistant Prostate Cancer. Curr. Oncol. Rep. 2017, 19, 32. [Google Scholar] [CrossRef] [PubMed]
- Muoio, B.; Pascale, M.; Roggero, E. The role of serum neuron-specific enolase in patients with prostate cancer: A systematic review of the recent literature. Int. J. Biol. Markers 2018, 33, 10–21. [Google Scholar] [CrossRef] [PubMed]
- Szarvas, T.; Csizmarik, A.; Fazekas, T.; Hüttl, A.; Nyirády, P.; Hadaschik, B.; Grünwald, V.; Püllen, L.; Jurányi, Z.; Kocsis, Z.; et al. Comprehensive analysis of serum chromogranin A and neuron-specific enolase levels in localized and castration-resistant prostate cancer. BJU Int. 2021, 127, 44–55. [Google Scholar] [CrossRef] [PubMed]
- Niedworok, C.; Tschirdewahn, S.; Reis, H.; Lehmann, N.; Szücs, M.; Nyirády, P.; Romics, I.; Rübben, H.; Szarvas, T. Serum Chromogranin A as a Complementary Marker for the Prediction of Prostate Cancer-Specific Survival. Pathol. Oncol. Res. 2017, 23, 643–650. [Google Scholar] [CrossRef] [PubMed]
- Heck, M.M.; Thaler, M.A.; Schmid, S.C.; Seitz, A.K.; Tauber, R.; Kübler, H.; Maurer, T.; Thalgott, M.; Hatzichristodoulou, G.; Höppner, M.; et al. Chromogranin A and neurone-specific enolase serum levels as predictors of treatment outcome in patients with metastatic castration-resistant prostate cancer undergoing abiraterone therapy. BJU Int. 2017, 119, 30–37. [Google Scholar] [CrossRef]
- Kamiya, N.; Akakura, K.; Suzuki, H.; Isshiki, S.; Komiya, A.; Ueda, T.; Ito, H. Pretreatment serum level of neuron specific enolase (NSE) as a prognostic factor in metastatic prostate cancer patients treated with endocrine therapy. Eur. Urol. 2003, 44, 309–314; discussion 314. [Google Scholar] [CrossRef]
- Yang, K.; Li, T.; Gao, Z.; Zhang, W. Effect of abiraterone combined with prednisone on serum CgA and NSE in metastatic castration-resistant prostate cancer without previous chemotherapy. Trop. J. Pharm. Res. 2019, 18, 631–637. [Google Scholar] [CrossRef]
- Fléchon, A.; Pouessel, D.; Ferlay, C.; Perol, D.; Beuzeboc, P.; Gravis, G.; Joly, F.; Oudard, S.; Deplanque, G.; Zanetta, S.; et al. Phase II study of carboplatin and etoposide in patients with anaplastic progressive metastatic castration-resistant prostate cancer (mCRPC) with or without neuroendocrine differentiation: Results of the French Genito-Urinary Tumor Group (GETUG) P01 trial. Ann. Oncol. 2011, 22, 2476–2481. [Google Scholar] [CrossRef]
- Ploussard, G.; Rozet, F.; Roubaud, G.; Stanbury, T.; Sargos, P.; Roupret, M. Chromogranin A: A useful biomarker in castration-resistant prostate cancer. World J. Urol. 2022, 41, 361–369. [Google Scholar] [CrossRef] [PubMed]
- Dong, A.; Zhang, J.; Chen, X.; Ren, X.; Zhang, X. Diagnostic value of ProGRP for small cell lung cancer in different stages. J. Thorac. Dis. 2019, 11, 1182–1189. [Google Scholar] [CrossRef] [PubMed]
- Yu, M.; Yang, C.; Wang, S.; Zeng, Y.; Chen, Z.; Feng, N.; Ning, C.; Wang, L.; Xue, L.; Zhang, Z. Serum ProGRP as a novel biomarker of bone metastasis in prostate cancer. Clin. Chim. Acta 2020, 510, 437–441. [Google Scholar] [CrossRef] [PubMed]
- Colden, M.; Dar, A.A.; Saini, S.; Dahiya, P.V.; Shahryari, V.; Yamamura, S.; Tanaka, Y.; Stein, G.; Dahiya, R.; Majid, S. MicroRNA-466 inhibits tumor growth and bone metastasis in prostate cancer by direct regulation of osteogenic transcription factor RUNX2. Cell. Death Dis. 2017, 8, e2572. [Google Scholar] [CrossRef]
- Brase, J.C.; Johannes, M.; Schlomm, T.; Fälth, M.; Haese, A.; Steuber, T.; Beissbarth, T.; Kuner, R.; Sültmann, H. Circulating miRNAs are correlated with tumor progression in prostate cancer. Int. J. Cancer 2011, 128, 608–616. [Google Scholar] [CrossRef]
- Peng, P.; Chen, T.; Wang, Q.; Zhang, Y.; Zheng, F.; Huang, S.; Tang, Y.; Yang, C.; Ding, W.; Ren, D.; et al. Decreased miR-218-5p Levels as a Serum Biomarker in Bone Metastasis of Prostate Cancer. Oncol. Res. Treat. 2019, 42, 165–185. [Google Scholar] [CrossRef]
- Nguyen, H.C.; Xie, W.; Yang, M.; Hsieh, C.L.; Drouin, S.; Lee, G.S.; Kantoff, P.W. Expression differences of circulating microRNAs in metastatic castration resistant prostate cancer and low-risk, localized prostate cancer. Prostate 2013, 73, 346–354. [Google Scholar] [CrossRef]
- Jung, K.; Stephan, C.; Lewandowski, M.; Klotzek, S.; Jung, M.; Kristiansen, G.; Lein, M.; Loening, S.A.; Schnorr, D. Increased cell-free DNA in plasma of patients with metastatic spread in prostate cancer. Cancer Lett. 2004, 205, 173–180. [Google Scholar] [CrossRef]
- Morrison, G.; Buckley, J.; Ostrow, D.; Varghese, B.; Cen, S.Y.; Werbin, J.; Ericson, N.; Cunha, A.; Lu, Y.T.; George, T.; et al. Non-Invasive Profiling of Advanced Prostate Cancer via Multi-Parametric Liquid Biopsy and Radiomic Analysis. Int. J. Mol. Sci. 2022, 23, 2571. [Google Scholar] [CrossRef]
- Kohli, M.; Tan, W.; Zheng, T.; Wang, A.; Montesinos, C.; Wong, C.; Du, P.; Jia, S.; Yadav, S.; Horvath, L.G.; et al. Clinical and genomic insights into circulating tumor DNA-based alterations across the spectrum of metastatic hormone-sensitive and castrate-resistant prostate cancer. EBioMedicine 2020, 54, 102728. [Google Scholar] [CrossRef]
- Yaman Agaoglu, F.; Kovancilar, M.; Dizdar, Y.; Darendeliler, E.; Holdenrieder, S.; Dalay, N.; Gezer, U. Investigation of miR-21, miR-141, and miR-221 in blood circulation of patients with prostate cancer. Tumour Biol. 2011, 32, 583–588. [Google Scholar] [CrossRef] [PubMed]
- Foj, L.; Ferrer, F.; Serra, M.; Arévalo, A.; Gavagnach, M.; Giménez, N.; Filella, X. Exosomal and Non-Exosomal Urinary miRNAs in Prostate Cancer Detection and Prognosis. Prostate 2017, 77, 573–583. [Google Scholar] [CrossRef] [PubMed]
- Bhagirath, D.; Yang, T.L.; Bucay, N.; Sekhon, K.; Majid, S.; Shahryari, V.; Dahiya, R.; Tanaka, Y.; Saini, S. microRNA-1246 Is an Exosomal Biomarker for Aggressive Prostate Cancer. Cancer Res. 2018, 78, 1833–1844. [Google Scholar] [CrossRef] [PubMed]
- Wani, S.; Kaul, D.; Mavuduru, R.S.; Kakkar, N.; Bhatia, A. Urinary-exosomal miR-2909: A novel pathognomonic trait of prostate cancer severity. J. Biotechnol. 2017, 259, 135–139. [Google Scholar] [CrossRef]
- Ruiz-Plazas, X.; Altuna-Coy, A.; Alves-Santiago, M.; Vila-Barja, J.; García-Fontgivell, J.F.; Martínez-González, S.; Segarra-Tomás, J.; Chacón, M.R. Liquid Biopsy-Based Exo-oncomiRNAs Can Predict Prostate Cancer Aggressiveness. Cancers 2021, 13, 250. [Google Scholar] [CrossRef]
- Bijnsdorp, I.V.; Geldof, A.A.; Lavaei, M.; Piersma, S.R.; van Moorselaar, R.J.; Jimenez, C.R. Exosomal ITGA3 interferes with non-cancerous prostate cell functions and is increased in urine exosomes of metastatic prostate cancer patients. J. Extracell. Vesicles 2013, 2, 22097. [Google Scholar] [CrossRef]
- Danila, D.C.; Heller, G.; Gignac, G.A.; Gonzalez-Espinoza, R.; Anand, A.; Tanaka, E.; Lilja, H.; Schwartz, L.; Larson, S.; Fleisher, M.; et al. Circulating tumor cell number and prognosis in progressive castration-resistant prostate cancer. Clin. Cancer Res. 2007, 13, 7053–7058. [Google Scholar] [CrossRef]
- Chen, Z.; Wang, J.; Lu, Y.; Lai, C.; Qu, L.; Zhuo, Y. Ezrin expression in circulating tumor cells is a predictor of prostate cancer metastasis. Bioengineered 2022, 13, 4076–4084. [Google Scholar] [CrossRef]
- Fabris, L.; Ceder, Y.; Chinnaiyan, A.M.; Jenster, G.W.; Sorensen, K.D.; Tomlins, S.; Visakorpi, T.; Calin, G.A. The Potential of MicroRNAs as Prostate Cancer Biomarkers. Eur. Urol. 2016, 70, 312–322. [Google Scholar] [CrossRef]
- Lu, J.; Getz, G.; Miska, E.A.; Alvarez-Saavedra, E.; Lamb, J.; Peck, D.; Sweet-Cordero, A.; Ebert, B.L.; Mak, R.H.; Ferrando, A.A.; et al. MicroRNA expression profiles classify human cancers. Nature 2005, 435, 834–838. [Google Scholar] [CrossRef]
- Chen, X.; Ba, Y.; Ma, L.; Cai, X.; Yin, Y.; Wang, K.; Guo, J.; Zhang, Y.; Chen, J.; Guo, X.; et al. Characterization of microRNAs in serum: A novel class of biomarkers for diagnosis of cancer and other diseases. Cell. Res. 2008, 18, 997–1006. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.; Kim, H.H.; Lee, C.H.; Kim, S.; Cheon, G.J.; Kang, K.W.; Chung, J.K.; Youn, H. Therapeutic efficacy of modified anti-miR21 in metastatic prostate cancer. Biochem. Biophys. Res. Commun. 2020, 529, 707–713. [Google Scholar] [CrossRef] [PubMed]
- Jones, D.Z.; Schmidt, M.L.; Suman, S.; Hobbing, K.R.; Barve, S.S.; Gobejishvili, L.; Brock, G.; Klinge, C.M.; Rai, S.N.; Park, J.; et al. Micro-RNA-186-5p inhibition attenuates proliferation, anchorage independent growth and invasion in metastatic prostate cancer cells. BMC Cancer 2018, 18, 421. [Google Scholar] [CrossRef] [PubMed]
- Oh-Hohenhorst, S.J.; Lange, T. Role of Metastasis-Related microRNAs in Prostate Cancer Progression and Treatment. Cancers 2021, 13, 4492. [Google Scholar] [CrossRef]
- Ren, D.; Yang, Q.; Dai, Y.; Guo, W.; Du, H.; Song, L.; Peng, X. Oncogenic miR-210-3p promotes prostate cancer cell EMT and bone metastasis via NF-κB signaling pathway. Mol. Cancer 2017, 16, 117. [Google Scholar] [CrossRef]
- Zhang, H.L.; Qin, X.J.; Cao, D.L.; Zhu, Y.; Yao, X.D.; Zhang, S.L.; Dai, B.; Ye, D.W. An elevated serum miR-141 level in patients with bone-metastatic prostate cancer is correlated with more bone lesions. Asian J. Androl. 2013, 15, 231–235. [Google Scholar] [CrossRef]
- Kelly, B.D.; Miller, N.; Sweeney, K.J.; Durkan, G.C.; Rogers, E.; Walsh, K.; Kerin, M.J. A Circulating MicroRNA Signature as a Biomarker for Prostate Cancer in a High Risk Group. J. Clin. Med. 2015, 4, 1369–1379. [Google Scholar] [CrossRef]
- Das, R.; Gregory, P.A.; Fernandes, R.C.; Denis, I.; Wang, Q.; Townley, S.L.; Zhao, S.G.; Hanson, A.R.; Pickering, M.A.; Armstrong, H.K.; et al. MicroRNA-194 Promotes Prostate Cancer Metastasis by Inhibiting SOCS2. Cancer Res. 2017, 77, 1021–1034. [Google Scholar] [CrossRef]
- Stejskal, P.; Goodarzi, H.; Srovnal, J.; Hajdúch, M.; van ‘t Veer, L.J.; Magbanua, M.J.M. Circulating tumor nucleic acids: Biology, release mechanisms, and clinical relevance. Mol. Cancer 2023, 22, 15. [Google Scholar] [CrossRef]
- Snow, A.; Chen, D.; Lang, J.E. The current status of the clinical utility of liquid biopsies in cancer. Expert. Rev. Mol. Diagn. 2019, 19, 1031–1041. [Google Scholar] [CrossRef]
- Fan, G.; Zhang, K.; Yang, X.; Ding, J.; Wang, Z.; Li, J. Prognostic value of circulating tumor DNA in patients with colon cancer: Systematic review. PLoS ONE 2017, 12, e0171991. [Google Scholar] [CrossRef] [PubMed]
- Choudhury, A.D.; Werner, L.; Francini, E.; Wei, X.X.; Ha, G.; Freeman, S.S.; Rhoades, J.; Reed, S.C.; Gydush, G.; Rotem, D.; et al. Tumor fraction in cell-free DNA as a biomarker in prostate cancer. JCI Insight 2018, 3, e122109. [Google Scholar] [CrossRef] [PubMed]
- Pegtel, D.M.; Gould, S.J. Exosomes. Annu. Rev. Biochem. 2019, 88, 487–514. [Google Scholar] [CrossRef] [PubMed]
- Valadi, H.; Ekström, K.; Bossios, A.; Sjöstrand, M.; Lee, J.J.; Lötvall, J.O. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat. Cell. Biol. 2007, 9, 654–659. [Google Scholar] [CrossRef] [PubMed]
- Brinkman, K.; Meyer, L.; Bickel, A.; Enderle, D.; Berking, C.; Skog, J.; Noerholm, M. Extracellular vesicles from plasma have higher tumour RNA fraction than platelets. J. Extracell. Vesicles 2020, 9, 1741176. [Google Scholar] [CrossRef] [PubMed]
- Yu, W.; Hurley, J.; Roberts, D.; Chakrabortty, S.K.; Enderle, D.; Noerholm, M.; Breakefield, X.O.; Skog, J.K. Exosome-based liquid biopsies in cancer: Opportunities and challenges. Ann. Oncol. 2021, 32, 466–477. [Google Scholar] [CrossRef]
- Krug, A.K.; Enderle, D.; Karlovich, C.; Priewasser, T.; Bentink, S.; Spiel, A.; Brinkmann, K.; Emenegger, J.; Grimm, D.G.; Castellanos-Rizaldos, E.; et al. Improved EGFR mutation detection using combined exosomal RNA and circulating tumor DNA in NSCLC patient plasma. Ann. Oncol. 2018, 29, 700–706. [Google Scholar] [CrossRef]
- Lorenc, T.; Klimczyk, K.; Michalczewska, I.; Słomka, M.; Kubiak-Tomaszewska, G.; Olejarz, W. Exosomes in Prostate Cancer Diagnosis, Prognosis and Therapy. Int. J. Mol. Sci. 2020, 21, 2118. [Google Scholar] [CrossRef]
- Li, S.L.; An, N.; Liu, B.; Wang, S.Y.; Wang, J.J.; Ye, Y. Exosomes from LNCaP cells promote osteoblast activity through miR-375 transfer. Oncol. Lett. 2019, 17, 4463–4473. [Google Scholar] [CrossRef]
- Huang, X.; Yuan, T.; Liang, M.; Du, M.; Xia, S.; Dittmar, R.; Wang, D.; See, W.; Costello, B.A.; Quevedo, F.; et al. Exosomal miR-1290 and miR-375 as prognostic markers in castration-resistant prostate cancer. Eur. Urol. 2015, 67, 33–41. [Google Scholar] [CrossRef]
- Hashimoto, K.; Ochi, H.; Sunamura, S.; Kosaka, N.; Mabuchi, Y.; Fukuda, T.; Yao, K.; Kanda, H.; Ae, K.; Okawa, A.; et al. Cancer-secreted hsa-miR-940 induces an osteoblastic phenotype in the bone metastatic microenvironment via targeting ARHGAP1 and FAM134A. Proc. Natl. Acad. Sci. USA 2018, 115, 2204–2209. [Google Scholar] [CrossRef] [PubMed]
- Furesi, G.; de Jesus Domingues, A.M.; Alexopoulou, D.; Dahl, A.; Hackl, M.; Schmidt, J.R.; Kalkhof, S.; Kurth, T.; Taipaleenmäki, H.; Conrad, S.; et al. Exosomal miRNAs from Prostate Cancer Impair Osteoblast Function in Mice. Int. J. Mol. Sci. 2022, 23, 1285. [Google Scholar] [CrossRef] [PubMed]
- Joković, S.M.; Dobrijević, Z.; Kotarac, N.; Filipović, L.; Popović, M.; Korać, A.; Vuković, I.; Savić-Pavićević, D.; Brajušković, G. MiR-375 and miR-21 as Potential Biomarkers of Prostate Cancer: Comparison of Matching Samples of Plasma and Exosomes. Genes 2022, 13, 2320. [Google Scholar] [CrossRef] [PubMed]
- Barceló, M.; Castells, M.; Bassas, L.; Vigués, F.; Larriba, S. Semen miRNAs Contained in Exosomes as Non-Invasive Biomarkers for Prostate Cancer Diagnosis. Sci. Rep. 2019, 9, 13772. [Google Scholar] [CrossRef] [PubMed]
- Logozzi, M.; Angelini, D.F.; Giuliani, A.; Mizzoni, D.; Di Raimo, R.; Maggi, M.; Gentilucci, A.; Marzio, V.; Salciccia, S.; Borsellino, G.; et al. Increased Plasmatic Levels of PSA-Expressing Exosomes Distinguish Prostate Cancer Patients from Benign Prostatic Hyperplasia: A Prospective Study. Cancers 2019, 11, 1449. [Google Scholar] [CrossRef]
- Borel, M.; Lollo, G.; Magne, D.; Buchet, R.; Brizuela, L.; Mebarek, S. Prostate cancer-derived exosomes promote osteoblast differentiation and activity through phospholipase D2. Biochim. Biophys. Acta Mol. Basis Dis. 2020, 1866, 165919. [Google Scholar] [CrossRef] [PubMed]
- Josefsson, A.; Larsson, K.; Månsson, M.; Björkman, J.; Rohlova, E.; Åhs, D.; Brisby, H.; Damber, J.E.; Welén, K. Circulating tumor cells mirror bone metastatic phenotype in prostate cancer. Oncotarget 2018, 9, 29403–29413. [Google Scholar] [CrossRef]
Bone formation markers | • Alkaline Phosphatase (ALP) |
• Osteocalcin (OC) | |
• Pro-collagen type I N-terminal pro-peptide(PINP)/Pro-collagen type I C-terminal pro-peptide(PICP) | |
• Osteopontin (OPN) | |
• Osteoprotegerin (OPG) | |
Bone resorption markers | • Bone sialoprotein (BSP) |
• C-telopeptide of type I collagen (CTx)/N-telopeptide of type I collagen (NTx) | |
• Tartrate-resistant acid phosphatase (TRACP) | |
• C-terminal pyridinoline cross-linked telopeptide of type I collagen (ICTP) | |
• Pyridinoline (PYD) and deoxypyridinoline (D-PYD) | |
PSA | • Prostate-specific antigen (PSA) |
Neuroendocrine markers | • Chromogranin A (CgA) |
• Neurone-specific enolase (NSE) | |
• Pro-gastrin-releasing peptide (ProGRP) | |
Liquid biopsy markers | • MicroRNA |
• Cell free DNA (cfDNA)/Circulating tumor DNA (ctDNA) | |
• Exosomes | |
• Circulating tumor cells (CTCs) |
Marker | Reference | Sample Location | Sample Size (N) | Finding |
---|---|---|---|---|
ALP | Zaninotto et al. [24] | Serum | 65 | BALP was more specific (90% vs. 57%) than TALP in diagnosing BM, although both had comparable sensitivity (around 65%). |
Zhao et al. [25] | Serum | 792 | When BALP level is above 15.55 ng/mL, it has the greatest accuracy for diagnosing PCa BM. | |
Jung et al. [26] | Serum | 187 | At a C/O value of 15.2 ng/mL, BALP’s sensitivity and specificity for diagnosing PCa BM are 75% and 93% respectively. | |
Rasch et al. [27] | Serum | 111 | The sensitivity and specificity of the diagnosis of PCa BM at a mean BALP value of 29.28 ng/mL were 83.8% and 78%, respectively. | |
Piedra et al. [28] | Serum | 67 | In PCa patients, with 18.4 ng/mL as the C/O value, BALP levels exhibited a specificity of 92% and a sensitivity of 92% in BM diagnosis. | |
Fizazi et al. [29] | Serum | 1901 | Lower BALP level (<146 U/L) is a highly important predictor of greater OS in CRPC BM patients. | |
OC | Arai et al. [30] | Serum | 63 | OC levels were significantly higher in patients with BM than in those without, and OC responded to endocrine therapy in BM patients. |
Jung et al. [26] | Serum | 187 | OC is rather ineffective as a diagnostic or prognosis indicator of bone metastatic spread. | |
Maeda et al. [31] | Serum | 70 | Other bone formation/resorption markers, except for OC, were considerably lower in PCa patients without BM than those with. | |
PINP/PICP | Koopmans et al. [32] | Serum | 64 | PINP has a specificity of 78% and sensitivity of 68% in BM defemination when the C/O value is set at 58 mcg/L. Elevation of PINP can occur earlier than BM. |
Jung et al. [26] | Serum | 187 | Logistic regression analysis shows the overall correct classification for PINP to predict BM was 84%. | |
Brasso et al. [33] | Serum | 153 | Those with elevated serum levels of PINP had shorter survival. | |
OPN | Khodavirdi et al. [34] | Tissue | 20 | PCa OPN expression showed a gradient increase from early local infiltration to stage of distant metastasis in mice. |
Thoms et al. [35] | Serum | 245 | OPN is predictive of prognosis in mCRPC patients after chemotherapy. OPN has limited ability to differentiate metastatic PCa from localized PCa. | |
OPG | Jung et al. [36] | Serum | 164 | At a C/O value given in the text, the diagnostic sensitivity and specificity of OPG in discriminating PCa patients experiencing BM are 88% and 93%, respectively. |
Jung et al. [26] | Serum | 187 | OPG, at 3.44 pmol/L, had a specificity of 94% and sensitivity of 93%, respectively. | |
Zhang et al. [37] | Serum | 30 | Prevention of metastatic tibial PCa tumor formation was observed after OPG treatment. |
Marker | Reference | Sample Location | Sample Size (N) | Finding |
---|---|---|---|---|
BSP | Bellahcène et al. [77] | Tissue | 454 | Among breast cancer patients, those with high BSP expression exhibit higher metastasis rates. |
Wei et al. [79] | Serum | 83 | The sensitivity and specificity of BSP for diagnosing PCa BM were 80.95% and 72.8%, higher than other markers mentioned in the text. | |
Wang et al. [80] | Serum | 356 | At a C/O value of 33.26 ng/mL, the sensitivity and specificity for differentiating PCa BM are 78.21% and 79.28%. | |
Withold et al. [81] | Serum/Urine | 132 | Serum BSP have lower diagnostic potency than all other discovered bone conversion indicators in patients with cancer BM. | |
Jung et al. [26] | Serum | 187 | Both lymph node metastases and BM can cause an increase in BSP, thus reducing the diagnostic accuracy. | |
Jain et al. [82] | Serum | 302 | Only in the final stage of the illness do serum BSP levels rise in PCa, raising doubts about BSP’s early diagnostic utility in this disease. | |
CTx/NTx | Rajpar et al. [83] | Urine | 94 | In CRPC BM patients, lower urine NTx levels often had some connections with more favorable OS. |
Coleman et al. [50] | Urine | 1824 | In many cancers, including PCa, high levels of urinary NTx mean a higher incidence of SRE. | |
Jung et al. [61] | Serum | 52 | PCa patients who had elevated NTx levels exhibited higer risk of bone lesion. The increases in NTx were observed 6 months before the occurrence of SREs | |
Jung et al. [26] | Serum | 187 | With a C/O value of 26.9 nmol/L BCE, the sensitivity of NTx is 61%. The sensitivity of CTx is 30% with a C/O value of 0.627 μg/L. | |
Piedra et al. [28] | Urine | 67 | NTx and CTx both had a 100% sensitivity in the detection of BM in PCa without and with BM | |
TRACP | Jung et al. [26] | Serum | 187 | At a C/O value of 4.62 U/L, TRACP-5b’s accuracy in diagnosing PCa BM was 77% in sensitivity and 85% in specificity, respectively. |
Yamamichi et al. [84] | Serum | 282 | Combined application of TRACP 5b and PSA can accurately detect PCa BM (AUC = 0.95). | |
Ozu et al. [85] | Serum | 215 | There is a strong interrelationship between serum TRACP-5b levels and the condition on bone scintigraphy | |
Salminen et al. [86] | Serum | 84 | At a C/O value of 4.98 U/L, TRACP-5b levels had high diagnostic accuracy in diagnosing PCa BM (AUC = 0.82). TRACP-5b predicts OS. | |
I-CTP | Wei et al. [79] | Serum | 83 | ICTP showed a sensitivity of 69.05% and specificity of 76.8% for the identification of PCa BM at a positive critical value of 4.3 U/L. |
Kataoka et al. [87] | Serum | 155 | ICTP’s sensitivity and specificity in diagnosing BCa BM are 78.6% and 88.0%, respectively, at a C/O value of 5.0 ng/mL. | |
Kamiya et al. [88] | Serum | 222 | ICTP has a fairly high accuracy in predicting PCa BM (AUC = 0.85). | |
Jung et al. [61] | Serum | 52 | Cox regression model shows that ICTP was an appropriate predictor of OS. | |
PYD/D-PYD | Lara et al. [89] | Serum | 778 | Cox regression analysis reveals that OS was negatively correlated with higher PYD levels. |
Marker | Reference | Sample Location | Sample Size (N) | Finding |
---|---|---|---|---|
ALP | Oesterling et al. [100] | Serum | 2064 | It is unnecessary for newly diagnosed PCa patients (without skeletal symptoms) with serum PSA levels equal to or below 10.0 mg/L to have a staging radionuclide bone scan. |
Salminen et al. [86] | Serum | 84 | PSA has a good degree of diagnostic precision for BM (AUC = 0.87). | |
Kataoka et al. [87] | Serum | 155 | Sensitivity and specificity of PSA in identifying BM are, respectively, 100% and 79.8% at a threshold value of 40.0 ng/mL. | |
Ozu et al. [85] | Serum | 215 | PSA, TRACP, and ALP were important independent predictors of BM. PSA expressing the highest OR through multivariate logistic regression analysis | |
CgA/NSE | Szarvas et al. [105] | Serum | 395 | Patients diagnosed with mCRPC displayed 2–3 times higher levels of CgA and NSE compared to those with localized PCa. |
Niedworok et al. [106] | Serum | 237 | CgA levels were higher in advanced PCa patients than clinically localized cases (45 ng vs. 23 ng/mL, p < 0.001;41 vs. 22 ng/mL, p = 0.002) | |
Heck et al. [107] | Serum | 45 | OS was considerably reduced when CgA or NSE levels exceeded the baseline values (85 ng/mL and 16 ng/mL, respectively). | |
Kamiya et al. [108] | Serum | 163 | NSE blood levels were considerably higher in PCa BM patients than in patients without PCa BM (p < 0.05). Patients with higher NSE levels have poorer survival. | |
ProGRP | Yu et al. [113] | Serum | 163 | Mean ProGRP level in PCa BM patients was 36.81 pg/mL, compared to 22 pg/mL in those without BM. ProGRP along with total PSA have high accuracy in diagnosing PCa BM (AUC = 0.941). |
Marker | Reference | Sample Location | Sample Size (N) | Finding |
---|---|---|---|---|
miRNA | Colden et al. [114] | Tissue | 96 | Compared with normal tissues, miR-466 was significantly downregulated in PCa tissues (p < 0.0001), and patients with high miR-466 expression had lower recurrence rates and better prognostic outcomes. |
Brase et al. [115] | Serum/Tissue | 674 | Both miR-141 and miR-375 levels are elevated in serum or tissue samples of PCa BM patients. | |
Peng et al. [116] | Serum/Tissue | 223 | Serum miR-218-5p levels were considerably lower in PCa BM than in PCa patients without BM (AUC = 0.86). | |
Nguyen et al. [117] | Serum | 84 | Serum MiR-375, miR-378 and miR-141 are significantly elevated in mCRPC patients. | |
cfDNA/ctDNA | Jung et al. [118] | Serum | 184 | CfDNA levels were much higher in patients with metastatic PCa and cfDNA has predictive value for OS. |
Morrison et al. [119] | Serum | 22 | Discovered a strong correlation between cfDNA and the CT bone scan results in metastatic CRPC patients. | |
Kohli et al. [120] | Serum | 303 | mCRPC and mHSPC patients with large percentage of ctDNA were observed a poor prognosis. | |
Exsomes | Yaman et al. [121] | Serum | 51 | Levels of miR-141, miR-21, miR-221 were significantly higher in metastatic PCa compared to localized PCa. MiR-141 was the most significant difference (p < 0.001; AUC = 75.5%). |
Foj et al. [122] | Urine | 162 | Urine exosomal miR-141, miR-21 and miR-375 levels of patients with high-risk PCa were significantly higher compared to patients with low-risk PCa or normal subjects. | |
Bhagirath et al. [123] | Serum | 12 | MiR-1246 level differ between benign, aggressive, and normal types of PCa. miR-1246 level of aggressive PCa increased 31- and 23-fold in contrast to normal prostatic hyperplasia and BPH. | |
Wani et al. [124] | Urine | 210 | Levels of miR-2909 can show changes in the aggressiveness of PCa. | |
Ruiz et al. [125] | Semen | 97 | Semen-derived exosomes miR-221-3p, miR-222-3p have high accuracy in determining the prognosis of PCa (AUC = 0.857, p = 0.001). | |
Bijnsdorp et al. [126] | Urine | 13 | Exosomal proteins ITGA3 and ITGB1 were found in higher amounts in the urine of individuals with metastatic Pca. | |
CTC | Danila et al. [127] | Serum | 120 | Individuals with BM had a CTC counts of 10.5 cells, against 2.5 cells in patients without BM, and baseline CTC was predictive of survival. |
Chen et al. [128] | Serum/Tissue | 80 | Ezrin was found to be more expressed in both CTCs and PCa cells with BM characteristics than in those without. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ying, M.; Mao, J.; Sheng, L.; Wu, H.; Bai, G.; Zhong, Z.; Pan, Z. Biomarkers for Prostate Cancer Bone Metastasis Detection and Prediction. J. Pers. Med. 2023, 13, 705. https://doi.org/10.3390/jpm13050705
Ying M, Mao J, Sheng L, Wu H, Bai G, Zhong Z, Pan Z. Biomarkers for Prostate Cancer Bone Metastasis Detection and Prediction. Journal of Personalized Medicine. 2023; 13(5):705. https://doi.org/10.3390/jpm13050705
Chicago/Turabian StyleYing, Mingshuai, Jianshui Mao, Lingchao Sheng, Hongwei Wu, Guangchao Bai, Zhuolin Zhong, and Zhijun Pan. 2023. "Biomarkers for Prostate Cancer Bone Metastasis Detection and Prediction" Journal of Personalized Medicine 13, no. 5: 705. https://doi.org/10.3390/jpm13050705
APA StyleYing, M., Mao, J., Sheng, L., Wu, H., Bai, G., Zhong, Z., & Pan, Z. (2023). Biomarkers for Prostate Cancer Bone Metastasis Detection and Prediction. Journal of Personalized Medicine, 13(5), 705. https://doi.org/10.3390/jpm13050705