A New Detection Method of Oral and Oropharyngeal Squamous Cell Carcinoma Based on Multivariate Analysis of Surface Enhanced Raman Spectra of Salivary Exosomes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Cohorts
2.2. Materials Used for Samples Processing
2.3. Saliva Harvesting and Exosomes Identification
2.4. SERS Examination of Exosomes
2.5. Statistical Analysis
3. Results
3.1. Exosomes Isolation and Characterization
3.2. SERS Spectra of Salivary Exosomes
3.3. SERS Spectra Discrimination between Cancer and Control Groups Samples
3.3.1. Univariate Analysis Results
3.3.2. Multivariate Analysis
4. Discussion
4.1. Exosomes’ Isolation and Characterization
4.2. SERS Examination of the Exosomes
4.3. Statistical Analysis
4.4. Particularities of Our Study
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cohen, N.; Fedewa, S.; Chen, A.Y. Epidemiology and Demographics of the Head and Neck Cancer Population. Oral Maxillofac. Surg. Clin. N. Am. 2018, 30, 381–395. [Google Scholar] [CrossRef] [PubMed]
- Guidi, A.; Codecà, C.; Ferrari, D. Chemotherapy and Immunotherapy for Recurrent and Metastatic Head and Neck Cancer: A Systematic Review. Med. Oncol. 2018, 35, 37. [Google Scholar] [CrossRef] [PubMed]
- Taberna, M.; Mena, M.; Pavón, M.A.; Alemany, L.; Gillison, M.L.; Mesía, R. Human Papillomavirus-Related Oropharyngeal Cancer. Ann. Oncol. Off. J. Eur. Soc. Med. Oncol. 2017, 28, 2386–2398. [Google Scholar] [CrossRef] [PubMed]
- Yamashita, Y.; Ikegami, T.; Hirakawa, H.; Uehara, T.; Deng, Z.; Agena, S.; Uezato, J.; Kondo, S.; Kiyuna, A.; Maeda, H.; et al. Staging and Prognosis of Oropharyngeal Carcinoma According to the 8th Edition of the American Joint Committee on Cancer Staging Manual in Human Papillomavirus Infection. Eur. Arch. Oto-Rhino-Laryngol. 2019, 276, 827–836. [Google Scholar] [CrossRef]
- Marur, S.; Forastiere, A.A. Head and Neck Squamous Cell Carcinoma: Update on Epidemiology, Diagnosis, and Treatment. Mayo Clin. Proc. 2016, 91, 386–396. [Google Scholar] [CrossRef]
- Cohen, E.E.W.; LaMonte, S.J.; Erb, N.L.; Beckman, K.L.; Sadeghi, N.; Hutcheson, K.A.; Stubblefield, M.D.; Abbott, D.M.; Fisher, P.S.; Stein, K.D.; et al. American Cancer Society Head and Neck Cancer Survivorship Care Guideline. CA Cancer J. Clin. 2016, 66, 203–239. [Google Scholar] [CrossRef] [PubMed]
- Connolly, J.M.; Davies, K.; Kazakeviciute, A.; Wheatley, A.M.; Dockery, P.; Keogh, I.; Olivo, M. Non-Invasive and Label-Free Detection of Oral Squamous Cell Carcinoma Using Saliva Surface-Enhanced Raman Spectroscopy and Multivariate Analysis. Nanomed. Nanotechnol. Biol. Med. 2016, 12, 1593–1601. [Google Scholar] [CrossRef] [PubMed]
- Stefanuto, P.; Doucet, J.C.; Robertson, C. Delays in Treatment of Oral Cancer: A Review of the Current Literature. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. 2014, 117, 424–429. [Google Scholar] [CrossRef]
- Butler, H.J.; Cameron, J.M.; Jenkins, C.A.; Hithell, G.; Hume, S.; Hunt, N.T.; Baker, M.J. Shining a Light on Clinical Spectroscopy: Translation of Diagnostic IR, 2D-IR and Raman Spectroscopy towards the Clinic. Clin. Spectrosc. 2019, 1, 100003. [Google Scholar] [CrossRef]
- Darrigues, E.; Dantuluri, V.; Nima, Z.A.; Vang-Dings, K.B.; Griffin, R.J.; Biris, A.R.; Ghosh, A.; Biris, A.S. Raman Spectroscopy Using Plasmonic and Carbon-Based Nanoparticles for Cancer Detection, Diagnosis, and Treatment Guidance. Part 2: Treatment. Drug Metab. Rev. 2017, 49, 253–283. [Google Scholar] [CrossRef]
- Jeanmaire, D.L.; Van Duyne, R.P. Surface Raman Spectroelectrochemistry. Part I. Heterocyclic, Aromatic, and Aliphatic Amines Adsorbed on the Anodized Silver Electrode. J. Electroanal. Chem. 1977, 84, 1–20. [Google Scholar] [CrossRef]
- Revnic, R.N.; Știufiuc, G.F.; Toma, V.; Onaciu, A.; Moldovan, A.; Țigu, A.B.; Fischer-Fodor, E.; Tetean, R.; Burzo, E.; Știufiuc, R.I. Facile Microwave Assisted Synthesis of Silver Nanostars for Ultrasensitive Detection of Biological Analytes by SERS. Int. J. Mol. Sci. 2022, 23, 8830. [Google Scholar] [CrossRef] [PubMed]
- Merdalimova, A.; Chernyshev, V.; Nozdriukhin, D.; Rudakovskaya, P.; Gorin, D.; Yashchenok, A. Identification and Analysis of Exosomes by Surface-Enhanced Raman Spectroscopy. Appl. Sci. 2019, 9, 1135. [Google Scholar] [CrossRef]
- Qian, K.; Wang, Y.; Hua, L.; Chen, A.; Zhang, Y. New Method of Lung Cancer Detection by Saliva Test Using Surface-Enhanced Raman Spectroscopy. Thorac. Cancer 2018, 9, 1556–1561. [Google Scholar] [CrossRef] [PubMed]
- Moisoiu, V.; Stefancu, A.; Gulei, D.; Boitor, R.; Magdo, L.; Raduly, L.; Pasca, S.; Kubelac, P.; Mehterov, N.; Chis, V.; et al. SERS-Based Differential Diagnosis between Multiple Solid Malignancies: Breast, Colorectal, Lung, Ovarian and Oral Cancer. Int. J. Nanomed. 2019, 14, 6165–6178. [Google Scholar] [CrossRef]
- Știufiuc, G.F.; Toma, V.; Buse, M.; Mărginean, R.; Morar-Bolba, G.; Culic, B.; Tetean, R.; Leopold, N.; Pavel, I.; Lucaciu, C.M.C.M.; et al. Solid Plasmonic Substrates for Breast Cancer Detection by Means of SERS Analysis of Blood Plasma. Nanomaterials 2020, 10, 1212. [Google Scholar] [CrossRef] [PubMed]
- Munteanu, V.C.; Munteanu, R.A.; Gulei, D.; Mărginean, R.; Schițcu, V.H.; Onaciu, A.; Toma, V.; Știufiuc, G.F.; Coman, I.; Știufiuc, R.I. New Insights into the Multivariate Analysis of SER Spectra Collected on Blood Samples for Prostate Cancer Detection: Towards a Better Understanding of the Role Played by Different Biomolecules on Cancer Screening: A Preliminary Study. Cancers 2022, 14, 3227. [Google Scholar] [CrossRef]
- Tefas, C.; Mărginean, R.; Toma, V.; Petrushev, B.; Fischer, P.; Tanțău, M.; Știufiuc, R. Surface-Enhanced Raman Scattering for the Diagnosis of Ulcerative Colitis: Will It Change the Rules of the Game? Anal. Bioanal. Chem. 2021, 413, 827–838. [Google Scholar] [CrossRef]
- Fălămaș, A.; Rotaru, H.; Hedeșiu, M. Surface-Enhanced Raman Spectroscopy (SERS) Investigations of Saliva for Oral Cancer Diagnosis. Lasers Med. Sci. 2020, 35, 1393–1401. [Google Scholar] [CrossRef]
- Qiu, S.; Li, C.; Lin, J.; Xu, Y.; Lu, J.; Huang, Q.; Zou, C.; Chen, C.; Xiao, N.; Lin, D.; et al. Early Discrimination of Nasopharyngeal Carcinoma Based on Tissue Deoxyribose Nucleic Acid Surface-Enhanced Raman Spectroscopy Analysis. J. Biomed. Opt. 2016, 21, 125003. [Google Scholar] [CrossRef]
- Tatischeff, I.; Larquet, E.; Falcón-Pérez, J.M.; Turpin, P.Y.; Kruglik, S.G. Fast Characterisation of Cell-Derived Extracellular Vesicles by Nanoparticles Tracking Analysis, Cryo-Electron Microscopy, and Raman Tweezers Microspectroscopy. J. Extracell. Vesicles 2012, 1, 19179. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.; Carney, R.P.; Hazari, S.; Smith, Z.J.; Knudson, A.; Robertson, C.S.; Lam, K.S.; Wachsmann-Hogiu, S. 3D Plasmonic Nanobowl Platform for the Study of Exosomes in Solution. Nanoscale 2015, 7, 9290–9297. [Google Scholar] [CrossRef] [PubMed]
- Tan, Y.; Yan, B.; Xue, L.; Li, Y.; Luo, X.; Ji, P. Surface-Enhanced Raman Spectroscopy of Blood Serum Based on Gold Nanoparticles for the Diagnosis of the Oral Squamous Cell Carcinoma. Lipids Health Dis. 2017, 16, 73. [Google Scholar] [CrossRef]
- Mian, S.A.; Yorucu, C.; Ullah, M.S.; Rehman, I.U.; Colley, H.E. Raman Spectroscopy Can Discriminate between Normal, Dysplastic and Cancerous Oral Mucosa: A Tissue-Engineering Approach. J. Tissue Eng. Regen. Med. 2017, 11, 3253–3262. [Google Scholar] [CrossRef]
- Qiu, S.; Huang, Q.; Huang, L.; Lin, J.; Lu, J.; Lin, D.; Cao, G.; Chen, C.; Pan, J.; Chen, R. Label-Free Discrimination of Different Stage Nasopharyngeal Carcinoma Tissue Based on Raman Spectroscopy. Oncol. Lett. 2016, 11, 2590–2594. [Google Scholar] [CrossRef] [PubMed]
- Brindha, E.; Rajasekaran, R.; Aruna, P.; Koteeswaran, D.; Ganesan, S. High Wavenumber Raman Spectroscopy in the Characterization of Urinary Metabolites of Normal Subjects, Oral Premalignant and Malignant Patients; Elsevier B.V.: Amsterdam, The Netherlands, 2017; Volume 171, ISBN 9144223587. [Google Scholar]
- Anjum, A.; Hosein, M. Diagnostic Importance of Saliva—An Overview. J. Pakistan Dent. Assoc. 2019, 28, 129–135. [Google Scholar] [CrossRef]
- Lousada-Fernandez, F.; Rapado-Gonzalez, O.; Lopez-Cedrun, J.L.; Lopez-Lopez, R.; Muinelo-Romay, L.; Suarez-Cunqueiro, M.M. Liquid Biopsy in Oral Cancer. Int. J. Mol. Sci. 2018, 19, 1704. [Google Scholar] [CrossRef]
- Kaczor-Urbanowicz, K.E.; Carreras-Presas, C.M.; Aro, K.; Tu, M.; Garcia-Godoy, F.; Wong, D.T. Saliva Diagnostics-Current Views and Directions Impact Statement. Exp. Biol. Med. 2017, 242, 459–472. [Google Scholar] [CrossRef]
- Faur, C.I.; Rotaru, H.; Osan, C.; Jurj, A.; Roman, R.C.; Moldovan, M.; Chirila, M.; Hedesiu, M. Salivary Exosomal MicroRNAs as Biomarkers for Head and Neck Cancer Detection—A Literature Review. Maxillofac. Plast. Reconstr. Surg. 2021, 43, 19. [Google Scholar] [CrossRef]
- Zlotogorski-Hurvitz, A.; Dekel, B.Z.; Malonek, D.; Yahalom, R.; Vered, M. FTIR-Based Spectrum of Salivary Exosomes Coupled with Computational-Aided Discriminating Analysis in the Diagnosis of Oral Cancer. J. Cancer Res. Clin. Oncol. 2019, 145, 685–694. [Google Scholar] [CrossRef]
- Dong, S.; Wang, Y.; Liu, Z.; Zhang, W.; Yi, K.; Zhang, X.; Zhang, X.; Jiang, C.; Yang, S.; Wang, F.; et al. Beehive-Inspired Macroporous SERS Probe for Cancer Detection through Capturing and Analyzing Exosomes in Plasma. ACS Appl. Mater. Interfaces 2020, 12, 5136–5146. [Google Scholar] [CrossRef] [PubMed]
- Milman, N.; Ginini, L.; Gil, Z. Exosomes and Their Role in Tumorigenesis and Anticancer Drug Resistance. Drug Resist. Updat. 2019, 45, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Chung, I.-M.; Rajakumar, G.; Venkidasamy, B.; Subramanian, U.; Thiruvengadam, M. Exosomes: Current Use and Future Applications. Clin. Chim. Acta. 2020, 500, 226–232. [Google Scholar] [CrossRef] [PubMed]
- Nonaka, T.; Wong, D.T.W. Saliva-Exosomics in Cancer: Molecular Characterization of Cancer-Derived Exosomes in Saliva. Enzymes 2017, 42, 125–151. [Google Scholar] [CrossRef] [PubMed]
- Yan, Z.; Dutta, S.; Liu, Z.; Yu, X.; Mesgarzadeh, N.; Ji, F.; Bitan, G.; Xie, Y.H. A Label-Free Platform for Identification of Exosomes from Different Sources. ACS Sensors 2019, 4, 488–497. [Google Scholar] [CrossRef]
- Colceriu-Șimon, L.M.; Hedeșiu, M.; Toma, V.; Armencea, G.; Moldovan, A.; Știufiuc, G.; Culic, B.; Țărmure, V.; Dinu, C.; Berindan-Neagoe, L.; et al. The Effects of Low-Dose Irradiation on Human Saliva: A Surface-Enhanced Raman Spectroscopy Study. Diagnostics 2019, 9, 101. [Google Scholar] [CrossRef]
- Bossuyt, P.M.; Reitsma, J.B.; Bruns, D.E.; Gatsonis, C.A.; Glasziou, P.P.; Irwig, L.; Lijmer, J.G.; Moher, D.; Rennie, D.; De Vet, H.C.W.; et al. STARD 2015: An Updated List of Essential Items for Reporting Diagnostic Accuracy Studies. BMJ 2015, 351, h5527. [Google Scholar] [CrossRef]
- Faur, C.I.; Roman, R.C.; Jurj, A.; Raduly, L.; Almășan, O.; Rotaru, H.; Chirilă, M.; Moldovan, M.A.; Hedeșiu, M.; Dinu, C. Salivary Exosomal MicroRNA-486-5p and MicroRNA-10b-5p in Oral and Oropharyngeal Squamous Cell Carcinoma. Medicina 2022, 58, 1478. [Google Scholar] [CrossRef]
- Mann Whitney U Test Calculator. Available onlie: http://www.statskingdom.com/170median_mann_whitney.html (accessed on 15 July 2022).
- Colceriu-Șimon, I.M.; Băciuț, M.; Ştiufiuc, R.I.; Aghiorghiesei, A.; Ţărmure, V.; Lenghel, M.; Hedeşiu, M.; Băciuţ, G. Clinical Indications and Radiation Doses of Cone Beam Computed Tomography in Orthodontics. Med. Pharm. Rep. 2019, 92, 346–351. [Google Scholar] [CrossRef]
- Caldo, G. Development of Methodologies for Raman Spectral Analysis of Human Saliva for Detection of Oral Cancer; Technological University Dublin: Dublin, Ireland, 2020. [Google Scholar]
- Calado, G.; Behl, I.; Byrne, H.J.; Lyng, F.M. Raman Spectroscopic Characterisation of Non Stimulated and Stimulated Human Whole Saliva. Clin. Spectrosc. 2021, 3, 100010. [Google Scholar] [CrossRef]
- Kho, K.W.; Fu, C.Y.; Dinish, U.S.; Olivo, M. Clinical SERS: Are We There Yet? J. Biophotonics 2011, 4, 667–684. [Google Scholar] [CrossRef] [PubMed]
- Cals, F.L.J.; Bakker Schut, T.C.; Hardillo, J.A.; Baatenburg De Jong, R.J.; Koljenović, S.; Puppels, G.J. Investigation of the Potential of Raman Spectroscopy for Oral Cancer Detection in Surgical Margins. Lab. Investig. 2015, 95, 1186–1196. [Google Scholar] [CrossRef] [PubMed]
- Shin, H.; Jeong, H.; Park, J.; Hong, S.; Choi, Y. Correlation between Cancerous Exosomes and Protein Markers Based on Surface-Enhanced Raman Spectroscopy (SERS) and Principal Component Analysis (PCA). ACS Sens. 2018, 3, 2637–2643. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Yang, T.; Lin, J. Spectral Analysis of Human Saliva for Detection of Lung Cancer Using Surface-Enhanced Raman Spectroscopy. J. Biomed. Opt. 2012, 17, 037003. [Google Scholar] [CrossRef]
- Derruau, S.; Robinet, J.; Untereiner, V.; Piot, O.; Sockalingum, G.D.; Lorimier, S. Vibrational Spectroscopy Saliva Profiling as Biometric Tool for Disease Diagnostics: A Systematic Literature Review. Molecules 2020, 25, 4142. [Google Scholar] [CrossRef]
- Ma, L.; Zhang, Z.; Li, X. Non-Invasive Disease Diagnosis Using Surface-Enhanced Raman Spectroscopy of Urine and Saliva. Appl. Spectrosc. Rev. 2020, 55, 197–219. [Google Scholar] [CrossRef]
- Movasaghi, Z.; Rehman, S.; Rehman, I.U. Raman Spectroscopy of Biological Tissues. Appl. Spectrosc. Rev. 2007, 42, 493–541. [Google Scholar] [CrossRef]
- Zhang, H.; Silva, A.C.; Zhang, W.; Rutigliano, H.; Zhou, A. Raman Spectroscopy Characterization Extracellular Vesicles from Bovine Placenta and Peripheral Blood Mononuclear Cells. PLoS ONE 2020, 15, e0235214. [Google Scholar] [CrossRef]
- Buchan, E.; Kelleher, L.; Clancy, M.; Stanley Rickard, J.J.; Oppenheimer, P.G. Spectroscopic Molecular-Fingerprint Profiling of Saliva. Anal. Chim. Acta 2021, 1185, 339074. [Google Scholar] [CrossRef]
- Carmicheal, J.; Hayashi, C.; Huang, X.; Liu, L.; Lu, Y.; Krasnoslobodtsev, A.; Lushnikov, A.; Kshirsagar, P.G.; Patel, A.; Jain, M.; et al. Label-Free Characterization of Exosome via Surface Enhanced Raman Spectroscopy for the Early Detection of Pancreatic Cancer. Nanomed. Nanotechnol. Biol. Med. 2019, 16, 88–96. [Google Scholar] [CrossRef]
- Stremersch, S.; Marro, M.; Pinchasik, B.E.; Baatsen, P.; Hendrix, A.; De Smedt, S.C.; Loza-Alvarez, P.; Skirtach, A.G.; Raemdonck, K.; Braeckmans, K. Identification of Individual Exosome-like Vesicles by Surface Enhanced Raman Spectroscopy. Small 2016, 12, 3292–3301. [Google Scholar] [CrossRef] [PubMed]
- Gonchukov, S.; Sukhinina, A.; Bakhmutov, D.; Minaeva, S. Raman Spectroscopy of Saliva as a Perspective Method for Periodontitis Diagnostics. Laser Phys. Lett. 2012, 9, 73–77. [Google Scholar] [CrossRef]
- Virkler, K.; Lednev, I.K. Forensic Body Fluid Identification: The Raman Spectroscopic Signature of Saliva. Analyst 2010, 135, 512–517. [Google Scholar] [CrossRef] [PubMed]
- Mathivanan, S.; Simpson, R.J. ExoCarta: A compendium of exosomal proteins and RNA. Proteomics 2009, 9, 4997–5000. [Google Scholar] [CrossRef]
- Lötvall, J.; Hill, A.F.; Hochberg, F.; Buzás, E.I.; Vizio, D.D.; Gardiner, C.; Gho, Y.S.; Kurochkin, I.V.; Mathivanan, S.; Quesenberry, P.; et al. Minimal Experimental Requirements for Definition of Extracellular Vesicles and Their Functions: A Position Statement from the International Society for Extracellular Vesicles. J. Extracell. Vesicles 2014, 3, 26913. [Google Scholar] [CrossRef]
- Sivashanmugan, K.; Huang, W.L.; Lin, C.H.; Liao, J.D.; Lin, C.C.; Su, W.C.; Wen, T.C. Bimetallic Nanoplasmonic Gap-Mode SERS Substrate for Lung Normal and Cancer-Derived Exosomes Detection. J. Taiwan Inst. Chem. Eng. 2017, 80, 149–155. [Google Scholar] [CrossRef]
- Tirinato, L.; Gentile, F.; Di Mascolo, D.; Coluccio, M.L.; Das, G.; Liberale, C.; Pullano, S.A.; Perozziello, G.; Francardi, M.; Accardo, A.; et al. SERS Analysis on Exosomes Using Super-Hydrophobic Surfaces. Microelectron Eng. 2012, 97, 337–340. [Google Scholar] [CrossRef]
- Shin, H.; Oh, S.; Hong, S.; Kang, M.; Kang, D.; Ji, Y.G.; Choi, B.H.; Kang, K.W.; Jeong, H.; Park, Y.; et al. Early-Stage Lung Cancer Diagnosis by Deep Learning-Based Spectroscopic Analysis of Circulating Exosomes. ACS Nano 2020, 14, 5435–5444. [Google Scholar] [CrossRef]
- Park, J.; Hwang, M.; Choi, B.; Jeong, H.; Jung, J.; Kim, H.K.; Hong, S.; Park, J.; Choi, Y. Exosome Classification by Pattern Analysis of Surface-Enhanced Raman Spectroscopy Data for Lung Cancer Diagnosis. Anal. Chem. 2017, 89, 6695–6701. [Google Scholar] [CrossRef]
- Chundayil Madathil, G.; Iyer, S.; Thankappan, K.; Gowd, G.S.; Nair, S.; Koyakutty, M. A Novel Surface Enhanced Raman Catheter for Rapid Detection, Classification, and Grading of Oral Cancer. Adv. Healthc. Mater. 2019, 8, e1801557. [Google Scholar] [CrossRef]
- Liu, M.; Lin, J.; Qiu, S.; Wu, W.; Liu, G.; Li, Y.; Gong, H.; Chen, R.; Chen, G. Label-Free Classification of a Nasopharyngeal Carcinoma Tissue Test at Different Stages Based on Raman Spectroscopy. J. AOAC Int. 2017, 100, 429–433. [Google Scholar] [CrossRef] [PubMed]
- Qiu, S.; Xu, Y.; Huang, L.; Zheng, W.; Huang, C.; Huang, S.; Lin, J.; Lin, D.; Feng, S.; Chen, R.; et al. Non-Invasive Detection of Nasopharyngeal Carcinoma Using Saliva Surface-Enhanced Raman Spectroscopy. Oncol. Lett. 2016, 11, 884–890. [Google Scholar] [CrossRef]
- Chen, P.H.; Shimada, R.; Yabumoto, S.; Okajima, H.; Ando, M.; Chang, C.T.; Lee, L.T.; Wong, Y.K.; Chiou, A.; Hamaguchi, H.O. Automatic and Objective Oral Cancer Diagnosis by Raman Spectroscopic Detection of Keratin with Multivariate Curve Resolution Analysis. Sci. Rep. 2016, 6, 20097. [Google Scholar] [CrossRef] [PubMed]
- Brozek-Pluska, B.; Kopec, M.; Niedzwiecka, I.; Morawiec-Sztandera, A. Label-Free Determination of Lipid Composition and Secondary Protein Structure of Human Salivary Noncancerous and Cancerous Tissues by Raman Microspectroscopy. Analyst 2015, 140, 2107–2113. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Chen, Z.; Su, Y.; Lin, D.; Chen, M.; Feng, S.; Zou, C. Metabolic Characteristics Revealing Cell Differentiation of Nasopharyngeal Carcinoma by Combining NMR Spectroscopy with Raman Spectroscopy. Cancer Cell Int. 2019, 19, 37. [Google Scholar] [CrossRef]
- Tenovuo, J.; Pruitt, K.M. Relationship of the Human Salivary Peroxidase System to Oral Health. J. Oral Pathol. 1984, 13, 573–584. [Google Scholar] [CrossRef] [PubMed]
- Chandler, J.D.; Day, B.J. THIOCYANATE: A Potentially Useful Therapeutic Agent with Host Defense and Antioxidant Properties. Biochem. Pharmacol. 2012, 84, 1381–1387. [Google Scholar] [CrossRef]
- Zhang, L.; Fang, C.; Liu, L.; Liu, X.; Fan, S.; Li, J.; Zhao, Y.; Ni, S.; Liu, S.; Wu, Y. A Case-Control Study of Urinary Levels of Iodine, Perchlorate and Thiocyanate and Risk of Papillary Thyroid Cancer. Environ. Int. 2018, 120, 388–393. [Google Scholar] [CrossRef]
- Tsuge, K.; Kataoka, M.; Seto, Y. Cyanide and Thiocyanate Levels in Blood and Saliva of Healthy Adult Volunteers. J. Health Sci. 2000, 46, 343–350. [Google Scholar] [CrossRef]
- Kwon, T.G. Maxillofacial Surgery beyond the Perfect Storm of COVID-19. Maxillofac. Plast. Reconstr. Surg. 2021, 43, 7. [Google Scholar] [CrossRef]
- Moro, J.d.S.; Maroneze, M.C.; Ardenghi, T.M.; Barin, L.M.; Danesi, C.C. Oral and Oropharyngeal Cancer: Epidemiology and Survival Analysis. Einstein 2018, 16, eAO4248. [Google Scholar] [CrossRef] [PubMed]
- Hashibe, M.; Brennan, P.; Chuang, S.C.; Boccia, S.; Castellsague, X.; Chen, C.; Curado, M.P.; Maso, L.D.; Daudt, A.W.; Fabianova, E.; et al. Interaction between Tobacco and Alcohol Use and the Risk of Head and Neck Cancer: Pooled Analysis in the International Head and Neck Cancer Epidemiology Consortium. Cancer Epidemiol. Biomark. Prev. 2009, 18, 541–550. [Google Scholar] [CrossRef] [PubMed]
- Tevetoğlu, F.; Kara, S.; Aliyeva, C.; Yıldırım, R.; Yener, H.M. Delayed Presentation of Head and Neck Cancer Patients during COVID-19 Pandemic. Eur. Arch. Oto-Rhino-Laryngol. 2021, 278, 5081–5085. [Google Scholar] [CrossRef]
- Werner, M.T.; Carey, R.M.; Albergotti, W.G.; Lukens, J.N.; Brody, R.M. Impact of the COVID-19 Pandemic on the Management of Head and Neck Malignancies. Otolaryngol. Head Neck Surg. 2020, 162, 816–817. [Google Scholar] [CrossRef] [PubMed]
- Sahu, A.; Deshmukh, A.; Ghanate, A.D.; Singh, S.P.; Chaturvedi, P.; Murali Krishna, C. Raman Spectroscopy of Oral Buccal Mucosa: A Study on Age-Related Physiological Changes and Tobacco-Related Pathological Changes. Technol. Cancer Res. Treat. 2012, 11, 529–541. [Google Scholar] [CrossRef] [PubMed]
- Singh, S.P.; Sahu, A.; Deshmukh, A.; Chaturvedi, P.; Krishna, C.M. In Vivo Raman Spectroscopy of Oral Buccal Mucosa: A Study on Malignancy Associated Changes (MAC)/Cancer Field Effects (CFE). Analyst 2013, 138, 4175–4182. [Google Scholar] [CrossRef] [PubMed]
- Gallo, A.; Tandon, M.; Alevizos, I.; Illei, G.G. The Majority of MicroRNAs Detectable in Serum and Saliva Is Concentrated in Exosomes. PLoS ONE 2012, 7, e30679. [Google Scholar] [CrossRef]
Cancer Group | Control Group | Student’s T Test (p-Value) | |||
---|---|---|---|---|---|
Age | 59 ± 9 years | 54 ± 14 years | >0.05 | ||
Sex | 25 M, 4 F | 10 M, 12 F | <0.05 | ||
Place of living | 21 U, 8 C | 16 U, 6 C | >0.05 | ||
Alcohol abuse report (more than 1 alcohol unit for women and 2 alcohol units for men) | Deny consumption | 4 | Deny consumption | 8 | <0.001 |
<Twice a month | 10 | <Twice a month | 11 | ||
<Twice a week | 6 | <Twice a week | 1 | ||
>Daily | 9 | >Daily | 2 | ||
Smoking index (cigarettes per day × years of smoking) | 570 ± 383 | 90 ± 199 | <0.01 | ||
Histological grading | G1 SCC—7 patients G2 SCC—16 patients G3 SCC—6 patients | - | - | ||
Keratinization status of SCC | 24 keratinized SCC 5 non-keratinized SCC | - | - | ||
Disease stage | Stage II—6 patients Stage III—4 patients Stage IV—19 patients | - | - |
Vibrational Band (cm−1) | Tentative Assignment | References |
---|---|---|
443 | Thiocyanate | [19,37] |
460 | Saccharides | [42,43] |
498 | Polysaccharide, Glycogen | [44] |
533 | Lysozyme | [45] |
593 | Saccharides | [42,43] |
638 | C-C twisting of Tyrosine | [22,46] |
729 | Tryptophan, coenzyme A, nucleic acids | [47,48,49] |
890 | Proteins | [44,50] |
930 | Proteins, C-C stretch amino acids (proline, hydroxyproline, and valine) | [22,51,52] |
968 | Proteins, Monoester Phosphate group | [36] |
1002 | C-C symmetric stretch of Phenylalanine, symmetric ring breathing mode (tryptophan) | [21,22,51,52] |
1049 | C–N, C-C stretching of Protein and Lipids | [21,22,36,52,53] |
1100 | Nucleic acids | [22] |
1323 | CH2-CH2 of Nucleic Acids | [54] |
1449 | CH2 symmetric bending of collagen, CH2 bending mode of lipids and proteins, CH2, CH3 deformation | [22,46,51,52,53,54] |
1577 | Nucleic acids (guanine), Amide II | [46,51,54] |
1598 | Phenylalanine | [22] |
1655 | Nucleic acids, Amide I | [48,55,56] |
1686 | Amide I | [50] |
2110 | -C≡N Thiocyanate | [19,37] |
Analysis | Full-Range SERS Spectra | 2000–2200 cm−1 Range SERS Spectra |
---|---|---|
PCA | ||
First component | 51.1% | 77.3% |
First two components | 71% | 89.2% |
First three components | 82.5% | 96% |
First nineteen components | 99.03%% | 99.9% |
PCA-LDA | ||
AUC | 65.4% | 75.1% |
Sensitivity | 75.9% | 79.3% |
Specificity | 54.5% | 63.6% |
Precision | 68.8% | 74.2% |
Confusion matrix | TP: 22; TN: 12; FP: 10; FN: 7 | TP: 23; TN: 14; FP: 8; FN: 6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Faur, C.I.; Dinu, C.; Toma, V.; Jurj, A.; Mărginean, R.; Onaciu, A.; Roman, R.C.; Culic, C.; Chirilă, M.; Rotar, H.; et al. A New Detection Method of Oral and Oropharyngeal Squamous Cell Carcinoma Based on Multivariate Analysis of Surface Enhanced Raman Spectra of Salivary Exosomes. J. Pers. Med. 2023, 13, 762. https://doi.org/10.3390/jpm13050762
Faur CI, Dinu C, Toma V, Jurj A, Mărginean R, Onaciu A, Roman RC, Culic C, Chirilă M, Rotar H, et al. A New Detection Method of Oral and Oropharyngeal Squamous Cell Carcinoma Based on Multivariate Analysis of Surface Enhanced Raman Spectra of Salivary Exosomes. Journal of Personalized Medicine. 2023; 13(5):762. https://doi.org/10.3390/jpm13050762
Chicago/Turabian StyleFaur, Cosmin Ioan, Cristian Dinu, Valentin Toma, Anca Jurj, Radu Mărginean, Anca Onaciu, Rareș Călin Roman, Carina Culic, Magdalena Chirilă, Horațiu Rotar, and et al. 2023. "A New Detection Method of Oral and Oropharyngeal Squamous Cell Carcinoma Based on Multivariate Analysis of Surface Enhanced Raman Spectra of Salivary Exosomes" Journal of Personalized Medicine 13, no. 5: 762. https://doi.org/10.3390/jpm13050762
APA StyleFaur, C. I., Dinu, C., Toma, V., Jurj, A., Mărginean, R., Onaciu, A., Roman, R. C., Culic, C., Chirilă, M., Rotar, H., Fălămaș, A., Știufiuc, G. F., Hedeșiu, M., Almășan, O., & Știufiuc, R. I. (2023). A New Detection Method of Oral and Oropharyngeal Squamous Cell Carcinoma Based on Multivariate Analysis of Surface Enhanced Raman Spectra of Salivary Exosomes. Journal of Personalized Medicine, 13(5), 762. https://doi.org/10.3390/jpm13050762