Recent Developments in Pharmacotherapy of Depression: Bench to Bedside
Abstract
:1. Introduction
2. Selective Partial Agonist and Reuptake Inhibitor (SPARI)—Vilazodone
3. Serotonin Norepinephrine Reuptake Inhibitor (SNRI)—Levomilnacipran
4. Multimodal Antidepressants (MMAs)—Vortioxetine
5. Glutamate Receptor Antagonists (GRAs)—Ketamine/Esketamine, Dextromethorphan-Bupropion
5.1. Ketamine and Esketamine
5.2. Dextromethorphan–Bupropion
6. GABA Positive Allosteric Modulator (GPAM)—Brexanolone
7. Conclusions
Funding
Conflicts of Interest
Abbreviations
AD | Antidepressant |
BDNF | Brain-derived neurotrophic factor |
BUP | Bupropion |
CYP | Cytochrome P450 |
D2 | Dopamine type 2 |
DXM | Dextromethorphan |
FDA | Food and Drug Administration |
GABA | Gamma amino butyric acid |
GPAM | GABA-positive allosteric modulator |
GRA | Glutamate receptor antagonist |
5HT | 5-hydroxytryptamine |
HDRS | Hamilton Depression Rating Scale |
IV | Intravenous |
MADRS | Montogomery Asberg Depression Rating Sclae |
MDD | Major depressive disorder |
MMA | Multimodal antidepressant |
NE | Norepinephrine |
NET | Norepinephrine transporter |
NMDA | N-methyl-D-aspartate |
PAM | Positive allosteric modulator |
RCT | Randomized controlled trial |
REMS | Risk evaluation and mitigation strategy |
SERT | Serotonin transporter |
SNRIs | Serotonin and norepinephrine reuptake inhibitors |
SPARI | Serotonin partial agonist and reuptake inhibitor |
SSRIs | Selective serotonin reupdate inhibitors |
TRD | Treatment-resistant depression |
TSH | Thyroid-stimulating hormone |
Wk | Week |
References
- Sanacora, G.; Treccani, G.; Popoli, M. Towards a glutamate hypothesis of depression: An emerging frontier of neuropsychopharmacology for mood disorders. Neuropharmacology 2012, 62, 63–77. [Google Scholar] [CrossRef]
- Luscher, B.; Shen, Q.; Sahir, N. The GABAergic deficit hypothesis of major depressive disorder. Mol. Psychiatry 2011, 16, 383–406. [Google Scholar] [CrossRef]
- Salahudeen, M.S.; Wright, C.M.; Peterson, G.M. Esketamine: New hope for the treatment of treatment-resistant depression? A narrative review. Ther. Adv. Drug Saf. 2020, 11, 2042098620937899. [Google Scholar] [CrossRef] [PubMed]
- Stahl, S.M. Dextromethorphan/bupropion: A novel oral NMDA (N-methyl-d-aspartate) receptor antagonist with multimodal activity-Addendum. CNS Spectr. 2020, 25, 803. [Google Scholar] [CrossRef] [PubMed]
- Althaus, A.L.; Ackley, M.A.; Belfort, G.M.; Gee, S.M.; Dai, J.; Nguyen, D.P.; Kazdoba, T.M.; Modgil, A.; Davies, P.A.; Moss, S.J.; et al. Preclinical characterization of zuranolone (SAGE-217), a selective neuroactive steroid GABAA receptor positive allosteric modulator. Neuropharmacology 2020, 181, 108333. [Google Scholar] [CrossRef] [PubMed]
- Bullock, A.; Kaul, I.; Li, S.; Silber, C.; Doherty, J.; Kanes, S.J. Zuranolone as an oral adjunct to treatment of Parkinsonian tremor: A phase 2, open-label study. J. Neurol. Sci. 2021, 421, 117277. [Google Scholar] [CrossRef] [PubMed]
- Czeisler, M.E.; Marynak, K.; Clarke, K.E.N.; Salah, Z.; Shakya, I.; Thierry, J.M.; Ali, N.; McMillan, H.; Wiley, J.F.; Weaver, M.D.; et al. Delay or Avoidance of Medical Care Because of COVID-19-Related Concerns—United States, June 2020. MMWR Morb. Mortal Wkly. Rep. 2020, 69, 1250–1257. [Google Scholar] [CrossRef] [PubMed]
- Czeisler, M.E.; Tynan, M.A.; Howard, M.E.; Honeycutt, S.; Fulmer, E.B.; Kidder, D.P.; Robbins, R.; Barger, L.K.; Facer-Childs, E.R.; Baldwin, G.; et al. Public Attitudes, Behaviors, and Beliefs Related to COVID-19, Stay-at-Home Orders, Nonessential Business Closures, and Public Health Guidance—United States, New York City, and Los Angeles, May 5–12, 2020. MMWR Morb. Mortal Wkly. Rep. 2020, 69, 751–758. [Google Scholar] [CrossRef]
- Ashby, C.R., Jr.; Kehne, J.H.; Bartoszyk, G.D.; Renda, M.J.; Athanasiou, M.; Pierz, K.A.; Seyfried, C.A. Electrophysiological evidence for rapid 5-HT(1)A autoreceptor inhibition by vilazodone, a 5-HT(1)A receptor partial agonist and 5-HT reuptake inhibitor. Eur. J. Pharm. 2013, 714, 359–365. [Google Scholar] [CrossRef]
- Carr, G.V.; Lucki, I. The role of serotonin receptor subtypes in treating depression: A review of animal studies. Psychopharmacology 2011, 213, 265–287. [Google Scholar] [CrossRef]
- Blier, P.; Ward, N.M. Is there a role for 5-HT1A agonists in the treatment of depression? Biol. Psychiatry 2003, 53, 193–203. [Google Scholar] [CrossRef] [PubMed]
- Stahl, S.M. Mechanism of action of serotonin selective reuptake inhibitors. Serotonin receptors and pathways mediate therapeutic effects and side effects. J. Affect. Disord. 1998, 51, 215–235. [Google Scholar] [CrossRef] [PubMed]
- Artigas, F.; Adell, A.; Celada, P. Pindolol augmentation of antidepressant response. Curr. Drug Targets 2006, 7, 139–147. [Google Scholar] [CrossRef] [PubMed]
- Martiny, K.; Lunde, M.; Bech, P.; Plenge, P. A short-term double-blind randomized controlled pilot trial with active or placebo pindolol in patients treated with venlafaxine for major depression. Nord. J. Psychiatry 2012, 66, 147–154. [Google Scholar] [CrossRef] [PubMed]
- Rickels, K.; Athanasiou, M.; Robinson, D.S.; Gibertini, M.; Whalen, H.; Reed, C.R. Evidence for efficacy and tolerability of vilazodone in the treatment of major depressive disorder: A randomized, double-blind, placebo-controlled trial. J. Clin. Psychiatry 2009, 70, 326–333. [Google Scholar] [CrossRef]
- Trivedi, M.H.; Fava, M.; Wisniewski, S.R.; Thase, M.E.; Quitkin, F.; Warden, D.; Ritz, L.; Nierenberg, A.A.; Lebowitz, B.D.; Biggs, M.M.; et al. Medication augmentation after the failure of SSRIs for depression. N. Engl. J. Med. 2006, 354, 1243–1252. [Google Scholar] [CrossRef]
- Rush, A.J.; Fava, M.; Wisniewski, S.R.; Lavori, P.W.; Trivedi, M.H.; Sackeim, H.A.; Thase, M.E.; Nierenberg, A.A.; Quitkin, F.M.; Kashner, T.M.; et al. Sequenced treatment alternatives to relieve depression (STAR*D): Rationale and design. Control. Clin. Trials 2004, 25, 119–142. [Google Scholar] [CrossRef]
- Portella, M.J.; de Diego-Adelino, J.; Puigdemont, D.; Perez-Egea, R.; Alvarez, E.; Artigas, F.; Perez, V. Pindolol augmentation enhances response outcomes in first depressive episodes. Eur. Neuropsychopharmacol. 2009, 19, 516–519. [Google Scholar] [CrossRef]
- Portella, M.J.; de Diego-Adelino, J.; Ballesteros, J.; Puigdemont, D.; Oller, S.; Santos, B.; Alvarez, E.; Artigas, F.; Perez, V. Can we really accelerate and enhance the selective serotonin reuptake inhibitor antidepressant effect? A randomized clinical trial and a meta-analysis of pindolol in nonresistant depression. J. Clin. Psychiatry 2011, 72, 962–969. [Google Scholar] [CrossRef]
- Perez, V.; Soler, J.; Puigdemont, D.; Alvarez, E.; Artigas, F. A double-blind, randomized, placebo-controlled trial of pindolol augmentation in depressive patients resistant to serotonin reuptake inhibitors. Grup de Recerca en Trastorns Afectius. Arch. Gen. Psychiatry 1999, 56, 375–379. [Google Scholar] [CrossRef]
- Perry, E.B.; Berman, R.M.; Sanacora, G.; Anand, A.; Lynch-Colonese, K.; Charney, D.S. Pindolol augmentation in depressed patients resistant to selective serotonin reuptake inhibitors: A double-blind, randomized, controlled trial. J. Clin. Psychiatry 2004, 65, 238–243. [Google Scholar] [CrossRef]
- Segrave, R.; Nathan, P.J. Pindolol augmentation of selective serotonin reuptake inhibitors: Accounting for the variability of results of placebo-controlled double-blind studies in patients with major depression. Hum. Psychopharmacol. 2005, 20, 163–174. [Google Scholar] [CrossRef] [PubMed]
- Maes, M.; Libbrecht, I.; van Hunsel, F.; Campens, D.; Meltzer, H.Y. Pindolol and mianserin augment the antidepressant activity of fluoxetine in hospitalized major depressed patients, including those with treatment resistance. J. Clin. Psychopharmacol. 1999, 19, 177–182. [Google Scholar] [CrossRef] [PubMed]
- Perez, V.; Gilaberte, I.; Faries, D.; Alvarez, E.; Artigas, F. Randomised, double-blind, placebo-controlled trial of pindolol in combination with fluoxetine antidepressant treatment. Lancet 1997, 349, 1594–1597. [Google Scholar] [CrossRef] [PubMed]
- Berman, R.M.; Darnell, A.M.; Miller, H.L.; Anand, A.; Charney, D.S. Effect of pindolol in hastening response to fluoxetine in the treatment of major depression: A double-blind, placebo-controlled trial. Am. J. Psychiatry 1997, 154, 37–43. [Google Scholar] [PubMed]
- Berman, R.M.; Anand, A.; Cappiello, A.; Miller, H.L.; Hu, X.S.; Oren, D.A.; Charney, D.S. The use of pindolol with fluoxetine in the treatment of major depression: Final results from a double-blind, placebo-controlled trial. Biol. Psychiatry 1999, 45, 1170–1177. [Google Scholar] [CrossRef]
- Bordet, R.; Thomas, P.; Dupuis, B. Effect of pindolol on onset of action of paroxetine in the treatment of major depression: Intermediate analysis of a double-blind, placebo-controlled trial. Reseau de Recherche et d’Experimentation Psychopharmacologique. Am. J. Psychiatry. 1998, 155, 1346–1351. [Google Scholar] [CrossRef]
- Geretsegger, C.; Bitterlich, W.; Stelzig, R.; Stuppaeck, C.; Bondy, B.; Aichhorn, W. Paroxetine with pindolol augmentation: A double-blind, randomized, placebo-controlled study in depressed in-patients. Eur. Neuropsychopharmacol. 2008, 18, 141–146. [Google Scholar] [CrossRef]
- Tome, M.B.; Isaac, M.T.; Harte, R.; Holland, C. Paroxetine and pindolol: A randomized trial of serotonergic autoreceptor blockade in the reduction of antidepressant latency. Int. Clin. Psychopharmacol. 1997, 12, 81–89. [Google Scholar] [CrossRef]
- Zanardi, R.; Artigas, F.; Franchini, L.; Sforzini, L.; Gasperini, M.; Smeraldi, E.; Perez, J. How long should pindolol be associated with paroxetine to improve the antidepressant response? J. Clin. Psychopharmacol. 1997, 17, 446–450. [Google Scholar] [CrossRef]
- Khan, A.; Cutler, A.J.; Kajdasz, D.K.; Gallipoli, S.; Athanasiou, M.; Robinson, D.S.; Whalen, H.; Reed, C.R. A randomized, double-blind, placebo-controlled, 8-week study of vilazodone, a serotonergic agent for the treatment of major depressive disorder. J. Clin. Psychiatry 2011, 72, 441–447. [Google Scholar] [CrossRef] [PubMed]
- Frampton, J.E. Vilazodone: In major depressive disorder. CNS Drugs 2011, 25, 615–627. [Google Scholar] [CrossRef] [PubMed]
- Citrome, L. Vilazodone for major depressive disorder: A systematic review of the efficacy and safety profile for this newly approved antidepressant—what is the number needed to treat, number needed to harm and likelihood to be helped or harmed? Int. J. Clin. Pract. 2012, 66, 356–368. [Google Scholar] [CrossRef] [PubMed]
- Clayton, A.H.; Kennedy, S.H.; Edwards, J.B.; Gallipoli, S.; Reed, C.R. The effect of vilazodone on sexual function during the treatment of major depressive disorder. J. Sex. Med. 2013, 10, 2465–2476. [Google Scholar] [CrossRef]
- Hughes, S.; Lacasse, J.; Fuller, R.R.; Spaulding-Givens, J. Adverse effects and treatment satisfaction among online users of four antidepressants. Psychiatry Res. 2017, 255, 78–86. [Google Scholar] [CrossRef]
- Boinpally, R.; Gad, N.; Gupta, S.; Periclou, A. Influence of CYP3A4 induction/inhibition on the pharmacokinetics of vilazodone in healthy subjects. Clin. Ther. 2014, 36, 1638–1649. [Google Scholar] [CrossRef]
- Stahl, S.M. Mechanism of action of the SPARI vilazodone: Serotonin 1A partial agonist and reuptake inhibitor. CNS Spectr. 2014, 19, 105–109. [Google Scholar] [CrossRef] [PubMed]
- Jain, R.; Chen, D.; Edwards, J.; Mathews, M. Early and sustained improvement with vilazodone in adult patients with major depressive disorder: Post hoc analyses of two phase III trials. Curr. Med. Res. Opin. 2014, 30, 263–270. [Google Scholar] [CrossRef] [PubMed]
- Deecher, D.C.; Beyer, C.E.; Johnston, G.; Bray, J.; Shah, S.; Abou-Gharbia, M.; Andree, T.H. Desvenlafaxine succinate: A new serotonin and norepinephrine reuptake inhibitor. J. Pharmacol. Exp. Ther. 2006, 318, 657–665. [Google Scholar] [CrossRef] [PubMed]
- Auclair, A.L.; Martel, J.C.; Assie, M.B.; Bardin, L.; Heusler, P.; Cussac, D.; Marien, M.; Newman-Tancredi, A.; O’Connor, J.A.; Depoortere, R. Levomilnacipran (F2695), a norepinephrine-preferring SNRI: Profile in vitro and in models of depression and anxiety. Neuropharmacology 2013, 70, 338–347. [Google Scholar] [CrossRef] [PubMed]
- Asnis, G.M.; Bose, A.; Gommoll, C.P.; Chen, C.; Greenberg, W.M. Efficacy and safety of levomilnacipran sustained release 40 mg, 80 mg, or 120 mg in major depressive disorder: A phase 3, randomized, double-blind, placebo-controlled study. J. Clin. Psychiatry 2013, 74, 242–248. [Google Scholar] [CrossRef] [PubMed]
- Citrome, L. Levomilnacipran for major depressive disorder: A systematic review of the efficacy and safety profile for this newly approved antidepressant—what is the number needed to treat, number needed to harm and likelihood to be helped or harmed? Int. J. Clin. Pract. 2013, 67, 1089–1104. [Google Scholar] [CrossRef] [PubMed]
- Wright, C.L.; Mist, S.D.; Ross, R.L.; Jones, K.D. Duloxetine for the treatment of fibromyalgia. Expert Rev. Clin. Immunol. 2010, 6, 745–756. [Google Scholar] [CrossRef] [PubMed]
- Wright, A.; Luedtke, K.E.; Vandenberg, C. Duloxetine in the treatment of chronic pain due to fibromyalgia and diabetic neuropathy. J. Pain. Res. 2010, 4, 1–10. [Google Scholar] [CrossRef]
- Asnis, G.M.; Henderson, M.A. Levomilnacipran for the treatment of major depressive disorder: A review. Neuropsychiatr. Dis. Treat. 2015, 11, 125–135. [Google Scholar] [CrossRef]
- Papakostas, G.I.; Fava, M. Does the probability of receiving placebo influence clinical trial outcome? A meta-regression of double-blind, randomized clinical trials in MDD. Eur. Neuropsychopharmacol. 2009, 19, 34–40. [Google Scholar] [CrossRef] [PubMed]
- Nelson, J.C.; Delucchi, K.; Schneider, L.S. Efficacy of second generation antidepressants in late-life depression: A meta-analysis of the evidence. Am. J. Geriatr. Psychiatry 2008, 16, 558–567. [Google Scholar] [CrossRef]
- Montgomery, S.A.; Gommoll, C.P.; Chen, C.; Greenberg, W.M. efficacy of levomilnacipran extended-release in major depressive disorder: Pooled analysis of 5 double-blind, placebo-controlled trials. CNS Spectr. 2015, 20, 148–156. [Google Scholar] [CrossRef] [PubMed]
- Kornstein, S.G.; Schatzberg, A.F.; Thase, M.E.; Yonkers, K.A.; McCullough, J.P.; Keitner, G.I.; Gelenberg, A.J.; Davis, S.M.; Harrison, W.M.; Keller, M.B. Gender differences in treatment response to sertraline versus imipramine in chronic depression. Am. J. Psychiatry 2000, 157, 1445–1452. [Google Scholar] [CrossRef]
- Young, E.A.; Kornstein, S.G.; Marcus, S.M.; Harvey, A.T.; Warden, D.; Wisniewski, S.R.; Balasubramani, G.K.; Fava, M.; Trivedi, M.H.; John Rush, A. Sex differences in response to citalopram: A STAR*D report. J. Psychiatry Res. 2009, 43, 503–511. [Google Scholar] [CrossRef] [PubMed]
- Trivedi, M.H.; Rush, A.J.; Wisniewski, S.R.; Nierenberg, A.A.; Warden, D.; Ritz, L.; Norquist, G.; Howland, R.H.; Lebowitz, B.; McGrath, P.J.; et al. Evaluation of outcomes with citalopram for depression using measurement-based care in STAR*D: Implications for clinical practice. Am. J. Psychiatry 2006, 163, 28–40. [Google Scholar] [CrossRef] [PubMed]
- Faquih, A.E.; Memon, R.I.; Hafeez, H.; Zeshan, M.; Naveed, S. A Review of Novel Antidepressants: A Guide for Clinicians. Cureus 2019, 11, e4185. [Google Scholar] [CrossRef] [PubMed]
- Harvey, A.T.; Rudolph, R.L.; Preskorn, S.H. Evidence of the dual mechanisms of action of venlafaxine. Arch. Gen. Psychiatry 2000, 57, 503–509. [Google Scholar] [CrossRef]
- Chen, L.; Boinpally, R.; Gad, N.; Greenberg, W.M.; Wangsa, J.; Periclou, A.; Ghahramani, P. Evaluation of Cytochrome P450 (CYP) 3A4-Based Interactions of Levomilnacipran with Ketoconazole, Carbamazepine or Alprazolam in Healthy Subjects. Clin. Drug Investig. 2015, 35, 601–612. [Google Scholar] [CrossRef] [PubMed]
- Bakish, D.; Bose, A.; Gommoll, C.; Chen, C.; Nunez, R.; Greenberg, W.M.; Liebowitz, M.; Khan, A. Levomilnacipran ER 40 mg and 80 mg in patients with major depressive disorder: A phase III, randomized, double-blind, fixed-dose, placebo-controlled study. J. Psychiatry Neurosci. 2014, 39, 40–49. [Google Scholar] [CrossRef]
- Sanchez, C.; Asin, K.E.; Artigas, F. Vortioxetine, a novel antidepressant with multimodal activity: Review of preclinical and clinical data. Pharm. Pharmacol. Ther. 2015, 145, 43–57. [Google Scholar] [CrossRef]
- Anttila, S.A.; Leinonen, E.V. A review of the pharmacological and clinical profile of mirtazapine. CNS Drug Rev. 2001, 7, 249–264. [Google Scholar] [CrossRef] [PubMed]
- Mork, A.; Pehrson, A.; Brennum, L.T.; Nielsen, S.M.; Zhong, H.; Lassen, A.B.; Miller, S.; Westrich, L.; Boyle, N.J.; Sanchez, C.; et al. Pharmacological effects of Lu AA21004: A novel multimodal compound for the treatment of major depressive disorder. J. Pharm. Exp. Ther. 2012, 340, 666–675. [Google Scholar] [CrossRef] [PubMed]
- Andersen, J.; Stuhr-Hansen, N.; Zachariassen, L.; Toubro, S.; Hansen, S.M.; Eildal, J.N.; Bond, A.D.; Bogeso, K.P.; Bang-Andersen, B.; Kristensen, A.S.; et al. Molecular determinants for selective recognition of antidepressants in the human serotonin and norepinephrine transporters. Proc. Natl. Acad. Sci. USA 2011, 108, 12137–12142. [Google Scholar] [CrossRef] [PubMed]
- Westrich, L.; Sprouse, J.; Sanchez, C. The effects of combining serotonin reuptake inhibition and 5-HT7 receptor blockade on circadian rhythm regulation in rodents. Physiol. Behav. 2013, 110, 42–50. [Google Scholar] [CrossRef]
- McIntyre, R.S.; Lophaven, S.; Olsen, C.K. A randomized, double-blind, placebo-controlled study of vortioxetine on cognitive function in depressed adults. Int. J. Neuropsychopharmacol. 2014, 17, 1557–1567. [Google Scholar] [CrossRef] [PubMed]
- Mahableshwarkar, A.R.; Zajecka, J.; Jacobson, W.; Chen, Y.; Keefe, R.S. A Randomized, Placebo-Controlled, Active-Reference, Double-Blind, Flexible-Dose Study of the Efficacy of Vortioxetine on Cognitive Function in Major Depressive Disorder. Neuropsychopharmacology 2015, 40, 2025–2037. [Google Scholar] [CrossRef]
- Katona, C.; Hansen, T.; Olsen, C.K. A randomized, double-blind, placebo-controlled, duloxetine-referenced, fixed-dose study comparing the efficacy and safety of Lu AA21004 in elderly patients with major depressive disorder. Int. Clin. Psychopharmacol. 2012, 27, 215–223. [Google Scholar] [CrossRef] [PubMed]
- Stahl, S.M. Modes and nodes explain the mechanism of action of vortioxetine, a multimodal agent (MMA): Actions at serotonin receptors may enhance downstream release of four procognitive neurotransmitters. CNS Spectr. 2015, 20, 515–519. [Google Scholar] [CrossRef]
- D’Agostino, A.; English, C.D.; Rey, J.A. Vortioxetine (brintellix): A new serotonergic antidepressant. Pharm. Ther. 2015, 40, 36–40. [Google Scholar]
- Bennabi, D.; Haffen, E.; Van Waes, V. Vortioxetine for Cognitive Enhancement in Major Depression: From Animal Models to Clinical Research. Front. Psychiatry 2019, 10, 771. [Google Scholar] [CrossRef]
- Stahl, S.M. Modes and nodes explain the mechanism of action of vortioxetine, a multimodal agent (MMA): Enhancing serotonin release by combining serotonin (5HT) transporter inhibition with actions at 5HT receptors (5HT1A, 5HT1B, 5HT1D, 5HT7 receptors). CNS Spectr. 2015, 20, 93–97. [Google Scholar] [CrossRef]
- Banasr, M.; Duman, R.S. Regulation of neurogenesis and gliogenesis by stress and antidepressant treatment. CNS Neurol. Disord. Drug Targets 2007, 6, 311–320. [Google Scholar] [CrossRef] [PubMed]
- Pae, C.U.; Wang, S.M.; Han, C.; Lee, S.J.; Patkar, A.A.; Masand, P.S.; Serretti, A. Vortioxetine: A meta-analysis of 12 short-term, randomized, placebo-controlled clinical trials for the treatment of major depressive disorder. J. Psychiatry Neurosci. 2015, 40, 174–186. [Google Scholar] [CrossRef]
- Chen, G.; Lee, R.; Hojer, A.M.; Buchbjerg, J.K.; Serenko, M.; Zhao, Z. Pharmacokinetic drug interactions involving vortioxetine (Lu AA21004), a multimodal antidepressant. Clin. Drug Investig. 2013, 33, 727–736. [Google Scholar] [CrossRef] [PubMed]
- Spina, E.; Santoro, V. Drug interactions with vortioxetine, a new multimodal antidepressant. Riv. Psichiatr. 2015, 50, 210–215. [Google Scholar]
- Carvalho, A.F.; Sharma, M.S.; Brunoni, A.R.; Vieta, E.; Fava, G.A. The Safety, Tolerability and Risks Associated with the Use of Newer Generation Antidepressant Drugs: A Critical Review of the Literature. Psychother. Psychosom. 2016, 85, 270–288. [Google Scholar] [CrossRef] [PubMed]
- Jacobsen, P.L.; Mahableshwarkar, A.R.; Palo, W.A.; Chen, Y.; Dragheim, M.; Clayton, A.H. Treatment-emergent sexual dysfunction in randomized trials of vortioxetine for major depressive disorder or generalized anxiety disorder: A pooled analysis. CNS Spectr. 2016, 21, 367–378. [Google Scholar] [CrossRef] [PubMed]
- Mahableshwarkar, A.R.; Affinito, J.; Reines, E.H.; Xu, J.; Nomikos, G.; Jacobsen, P.L. Suicidal ideation and behavior in adults with major depressive disorder treated with vortioxetine: Post hoc pooled analyses of randomized, placebo-controlled, short-term and open-label, long-term extension trials. CNS Spectr. 2020, 25, 352–362. [Google Scholar] [CrossRef] [PubMed]
- Gonda, X.; Sharma, S.R.; Tarazi, F.I. Vortioxetine: A novel antidepressant for the treatment of major depressive disorder. Expert Opin. Drug Discov. 2019, 14, 81–89. [Google Scholar] [CrossRef] [PubMed]
- Fava, M.; Freeman, M.P.; Flynn, M.; Judge, H.; Hoeppner, B.B.; Cusin, C.; Ionescu, D.F.; Mathew, S.J.; Chang, L.C.; Iosifescu, D.V.; et al. Double-blind, placebo-controlled, dose-ranging trial of intravenous ketamine as adjunctive therapy in treatment-resistant depression (TRD). Mol. Psychiatry 2018, 25, 1592–1603. [Google Scholar] [CrossRef] [PubMed]
- Ballard, E.D.; Yarrington, J.S.; Farmer, C.A.; Richards, E.; Machado-Vieira, R.; Kadriu, B.; Niciu, M.J.; Yuan, P.; Park, L.; Zarate, C.A., Jr. Characterizing the course of suicidal ideation response to ketamine. J. Affect. Disord. 2018, 241, 86–93. [Google Scholar] [CrossRef] [PubMed]
- Soleimani, L.; Welch, A.; Murrough, J.W. “Does Ketamine Have Rapid Antisuicidal Ideation Effects?”. Curr. Treat. Options Psychiatry 2015, 2, 383–393. [Google Scholar] [CrossRef] [PubMed]
- Krystal, J.H.; Abdallah, C.G.; Sanacora, G.; Charney, D.S.; Duman, R.S. Ketamine: A Paradigm Shift for Depression Research and Treatment. Neuron 2019, 101, 774–778. [Google Scholar] [CrossRef] [PubMed]
- Aleksandrova, L.R.; Phillips, A.G.; Wang, Y.T. Antidepressant effects of ketamine and the roles of AMPA glutamate receptors and other mechanisms beyond NMDA receptor antagonism. J. Psychiatry Neurosci. 2017, 42, 222–229. [Google Scholar] [CrossRef] [PubMed]
- Stahl, S.M. Mechanism of action of ketamine. CNS Spectr. 2013, 18, 171–174. [Google Scholar] [CrossRef] [PubMed]
- Loix, S.; De Kock, M.; Henin, P. The anti-inflammatory effects of ketamine: State of the art. Acta Anaesthesiol. Belg. 2011, 62, 47–58. [Google Scholar] [PubMed]
- Williams, N.R.; Heifets, B.D.; Bentzley, B.S.; Blasey, C.; Sudheimer, K.D.; Hawkins, J.; Lyons, D.M.; Schatzberg, A.F. Attenuation of antidepressant and antisuicidal effects of ketamine by opioid receptor antagonism. Mol. Psychiatry 2019, 24, 1779–1786. [Google Scholar] [CrossRef]
- McIntyre, R.S. Ketamine and esketamine for treatment-resistant depression: Response to Reus, Mattes, and Schatzberg. Am. J. Psychiatry 2021, 178, 1130–1132. [Google Scholar] [CrossRef]
- Zarate, C.A.; Singh, J.B.; Carlson, P.J.; Brutsche, N.E.; Ameli, R.; Luckenbaugh, D.A.; Charney, D.S.; Manji, H.K. A randomized trial of an N-methyl-D-aspartate antagonist in treatment-resistant major depression. Arch. Gen. Psychiatry 2006, 63, 856–864. [Google Scholar] [CrossRef]
- Berman, R.M.; Cappiello, A.; Anand, A.; Oren, D.A.; Heninger, G.R.; Charney, D.S.; Krystal, J.H. Antidepressant effects of ketamine in depressed patients. Biol. Psychiatry 2000, 47, 351–354. [Google Scholar] [CrossRef]
- Wilkinson, S.T.; Ballard, E.D.; Bloch, M.H.; Mathew, S.J.; Murrough, J.W.; Feder, A.; Sos, P.; Wang, G.; Zarate, C.A., Jr.; Sanacora, G. The Effect of a Single Dose of Intravenous Ketamine on Suicidal Ideation: A Systematic Review and Individual Participant Data Meta-Analysis. Am. J. Psychiatry 2018, 175, 150–158. [Google Scholar] [CrossRef] [PubMed]
- Ochs-Ross, R.; Daly, E.J.; Zhang, Y.; Lane, R.; Lim, P.; Morrison, R.L.; Hough, D.; Manji, H.; Drevets, W.C.; Sanacora, G.; et al. Efficacy and Safety of Esketamine Nasal Spray Plus an Oral Antidepressant in Elderly Patients With Treatment-Resistant Depression-TRANSFORM-3. Am. J. Geriatr. Psychiatry 2019, 28, 121–141. [Google Scholar] [CrossRef]
- Canuso, C.M.; Singh, J.B.; Fedgchin, M.; Alphs, L.; Lane, R.; Lim, P.; Pinter, C.; Hough, D.; Sanacora, G.; Manji, H.; et al. Efficacy and Safety of Intranasal Esketamine for the Rapid Reduction of Symptoms of Depression and Suicidality in Patients at Imminent Risk for Suicide: Results of a Double-Blind, Randomized, Placebo-Controlled Study. Am. J. Psychiatry 2018, 175, 620–630. [Google Scholar] [CrossRef]
- Fu, D.J.; Ionescu, D.F.; Li, X.; Lane, R.; Lim, P.; Sanacora, G.; Hough, D.; Manji, H.; Drevets, W.C.; Canuso, C.M. Esketamine Nasal Spray for Rapid Reduction of Major Depressive Disorder Symptoms in Patients Who Have Active Suicidal Ideation With Intent: Double-Blind, Randomized Study (ASPIRE I). J. Clin. Psychiatry 2020, 81, 6605. [Google Scholar] [CrossRef] [PubMed]
- Garay, R.P.; Zarate, C.A., Jr.; Charpeaud, T.; Citrome, L.; Correll, C.U.; Hameg, A.; Llorca, P.M. Investigational drugs in recent clinical trials for treatment-resistant depression. Expert Rev. Neurother. 2017, 17, 593–609. [Google Scholar] [CrossRef]
- Luckenbaugh, D.A.; Niciu, M.J.; Ionescu, D.F.; Nolan, N.M.; Richards, E.M.; Brutsche, N.E.; Guevara, S.; Zarate, C.A. Do the dissociative side effects of ketamine mediate its antidepressant effects? J. Affect. Disord 2014, 159, 56–61. [Google Scholar] [CrossRef]
- Taylor, C.P.; Traynelis, S.F.; Siffert, J.; Pope, L.E.; Matsumoto, R.R. Pharmacology of dextromethorphan: Relevance to dextromethorphan/quinidine (Nuedexta(R)) clinical use. Pharm. Pharmacol. Ther. 2016, 164, 170–182. [Google Scholar] [CrossRef]
- Majeed, A.; Xiong, J.; Teopiz, K.M.; Ng, J.; Ho, R.; Rosenblat, J.D.; Phan, L.; Cao, B.; McIntyre, R.S. Efficacy of dextromethorphan for the treatment of depression: A systematic review of preclinical and clinical trials. Expert Opin. Emerg. Drugs 2021, 26, 63–74. [Google Scholar] [CrossRef] [PubMed]
- Lauterbach, E.C. Dextromethorphan as a potential rapid-acting antidepressant. Med. Hypotheses 2011, 76, 717–719. [Google Scholar] [CrossRef]
- Rianprakaisang, T.N.; Prather, C.T.; Lin, A.L.; Murray, B.P.; Hendrickson, R.G.; Toxicology Investigators, C. Factors associated with seizure development after bupropion overdose: A review of the toxicology investigators consortium. Clin. Toxicol. 2021, 59, 1234–1238. [Google Scholar] [CrossRef] [PubMed]
- Thase, M.E.; Haight, B.R.; Johnson, M.C.; Hunt, T.; Krishen, A.; Fleck, R.J.; Modell, J.G. A randomized, double-blind, placebo-controlled study of the effect of sustained-release bupropion on blood pressure in individuals with mild untreated hypertension. J. Clin. Psychopharmacol. 2008, 28, 302–307. [Google Scholar] [CrossRef] [PubMed]
- Kotlyar, M.; Brauer, L.H.; Tracy, T.S.; Hatsukami, D.K.; Harris, J.; Bronars, C.A.; Adson, D.E. Inhibition of CYP2D6 activity by bupropion. J. Clin. Psychopharmacol. 2005, 25, 226–229. [Google Scholar] [CrossRef] [PubMed]
- Shad, M.U.; Preskorn, S.H. A possible bupropion and imipramine interaction. J. Clin. Psychopharmacol. 1997, 17, 118–119. [Google Scholar] [CrossRef] [PubMed]
- Tabuteau, H.; Jones, A.; Anderson, A.; Jacobson, M.; Iosifescu, D.V. Effect of AXS-05 (Dextromethorphan-Bupropion) in Major Depressive Disorder: A Randomized Double-Blind Controlled Trial. Am. J. Psychiatry 2022, 179, 490–499. [Google Scholar] [CrossRef] [PubMed]
- Iosifescu, D.V.; Jones, A.; O’Gorman, C.; Streicher, C.; Feliz, S.; Fava, M.; Tabuteau, H. Efficacy and Safety of AXS-05 (Dextromethorphan-Bupropion) in Patients With Major Depressive Disorder: A Phase 3 Randomized Clinical Trial (GEMINI). J. Clin. Psychiatry 2022, 83, 41226. [Google Scholar] [CrossRef]
- Edinoff, A.N.; Odisho, A.S.; Lewis, K.; Kaskas, A.; Hunt, G.; Cornett, E.M.; Kaye, A.D.; Kaye, A.; Morgan, J.; Barrilleaux, P.S.; et al. Brexanolone, a GABAA Modulator, in the Treatment of Postpartum Depression in Adults: A Comprehensive Review. Front. Psychiatry 2021, 12, 699740. [Google Scholar] [CrossRef]
- Leader, L.D.; O’Connell, M.; VandenBerg, A. Brexanolone for Postpartum Depression: Clinical Evidence and Practical Considerations. Pharmacotherapy 2019, 39, 1105–1112. [Google Scholar] [CrossRef] [PubMed]
- Porcu, P.; Barron, A.M.; Frye, C.A.; Walf, A.A.; Yang, S.Y.; He, X.Y.; Morrow, A.L.; Panzica, G.C.; Melcangi, R.C. Neurosteroidogenesis Today: Novel Targets for Neuroactive Steroid Synthesis and Action and Their Relevance for Translational Research. J. Neuroendocrinol. 2016, 28, 12351. [Google Scholar] [CrossRef] [PubMed]
- Luscher, B.; Mohler, H. Brexanolone, a neurosteroid antidepressant, vindicates the GABAergic deficit hypothesis of depression and may foster resilience. F1000Res. 2019, 8, F1000 Faculty Rev-751. [Google Scholar] [CrossRef] [PubMed]
- Powell, J.G.; Garland, S.; Preston, K.; Piszczatoski, C. Brexanolone (Zulresso): Finally, an FDA-Approved Treatment for Postpartum Depression. Ann. Pharmacother. 2020, 54, 157–163. [Google Scholar] [CrossRef]
- Zhu, S.; Noviello, C.M.; Teng, J.; Walsh, R.M., Jr.; Kim, J.J.; Hibbs, R.E. Structure of a human synaptic GABAA receptor. Nature 2018, 559, 67–72. [Google Scholar] [CrossRef]
- Nutt, D.J.; Malizia, A.L. New insights into the role of the GABA(A)-benzodiazepine receptor in psychiatric disorder. Br. J. Psychiatry 2001, 179, 390–396. [Google Scholar] [CrossRef]
- Pehrson, A.L.; Sanchez, C. Altered gamma-aminobutyric acid neurotransmission in major depressive disorder: A critical review of the supporting evidence and the influence of serotonergic antidepressants. Drug Des. Devel. Ther. 2015, 9, 603–624. [Google Scholar] [CrossRef]
- Lloyd, K.G.; Zivkovic, B.; Scatton, B.; Morselli, P.L.; Bartholini, G. The gabaergic hypothesis of depression. Prog. Neuropsychopharmacol. Biol. Psychiatry 1989, 13, 341–351. [Google Scholar] [CrossRef]
- Dreher, J.C.; Schmidt, P.J.; Kohn, P.; Furman, D.; Rubinow, D.; Berman, K.F. Menstrual cycle phase modulates reward-related neural function in women. Proc. Natl. Acad. Sci. USA 2007, 104, 2465–2470. [Google Scholar] [CrossRef]
- Hellgren, C.; Akerud, H.; Skalkidou, A.; Backstrom, T.; Sundstrom-Poromaa, I. Low serum allopregnanolone is associated with symptoms of depression in late pregnancy. Neuropsychobiology 2014, 69, 147–153. [Google Scholar] [CrossRef]
- Osborne, L.M.; Gispen, F.; Sanyal, A.; Yenokyan, G.; Meilman, S.; Payne, J.L. Lower allopregnanolone during pregnancy predicts postpartum depression: An exploratory study. Psychoneuroendocrinology 2017, 79, 116–121. [Google Scholar] [CrossRef] [PubMed]
- Kanes, S.; Colquhoun, H.; Gunduz-Bruce, H.; Raines, S.; Arnold, R.; Schacterle, A.; Doherty, J.; Epperson, C.N.; Deligiannidis, K.M.; Riesenberg, R.; et al. Brexanolone (SAGE-547 injection) in postpartum depression: A randomised controlled trial. Lancet 2017, 390, 480–489. [Google Scholar] [CrossRef]
- Meltzer-Brody, S.; Colquhoun, H.; Riesenberg, R.; Epperson, C.N.; Deligiannidis, K.M.; Rubinow, D.R.; Li, H.; Sankoh, A.J.; Clemson, C.; Schacterle, A.; et al. Brexanolone injection in postpartum depression: Two multicentre, double-blind, randomised, placebo-controlled, phase 3 trials. Lancet 2018, 392, 1058–1070. [Google Scholar] [CrossRef] [PubMed]
- Cristea, I.A.; Naudet, F. US Food and Drug Administration approval of esketamine and brexanolone. Lancet Psychiatry 2019, 6, 975–977. [Google Scholar] [CrossRef] [PubMed]
- Scarff, J.R. Use of Brexanolone for Postpartum Depression. Innov. Clin. Neurosci. 2019, 16, 32–35. [Google Scholar] [PubMed]
Name | Class | Indication | Half-Life Hours | Dose mg/day | Route | PK Drug-Drug Interactions | Gene-Drug Interactions | Molecular Targets | Clinical Utility | Common AEs |
---|---|---|---|---|---|---|---|---|---|---|
Vilazodone | SPARI | Adult MDD | 25 | 40 | Oral | Concurrent use of CYP3A4 substrates, Inhibitors, or Inducers | CYP3A4 polymorphisms are clinically insignificant | -SERT, inhibitor -5HT1A receptor partial agonist | Compared to SSRIs: -Lower sexual dysfunction -Lesser initial anxiety -Lesser emotional blunting -Faster onset of efficacy, -Lower risk for long-term loss or decrease in efficacy | Frequent GI upset, dizziness, insomnia, fatigue, jitteriness |
Levomilnacipran | SNRI | Adult MDD & Fibromyalgia | 12 | 40–120 | Oral | Concurrent use of CYP3A4 substrates, Inhibitors, or Inducers | CYP3A4 polymorphisms are clinically insignificant | -NET inhibition more than SET inhibition | Activating, less emotional and cognitive blunting, improves fatigue, low weight gain, | Nausea, headache, dry mouth, hyperhidrosis, tachycardia, hypertension |
Vortioxetine | MMA | Adult MDD | 57 | 5–20 | Oral | Concurrent use of CYP2D6 substrates or Inhibitors | CYP2D6 polymorphisms are clinically significant | -5-HT3, 5HT7, & 5HT1D receptor antagonist, -5-HT1B receptor partial agonist -5-HT1A receptor agonist -SERT inhibitor | Minimal sleep effects, improved psychomotor speed, fewer discontinuation symptoms | Less GI upset, minimal sexual dysfunction |
Esketamine | GRA | -Adult TRD -Augmentation treatment | 7–12 | -Day 1—56 mg -Wk. 1–8—56 or 84 mg twice/wk. -Wk. 9—56 or 84 mg once or twice/wk. | Intranasal spray | Concurrent use of CYP2A6, CYP2B6, CYP2C9, or CYP3A4 substrates, inhibitors, or inducers | Polymorphisms in CYP2B6 can be clinically significant | -NMDA receptor antagonism, -mu-opioid receptor blockade | Rapid antidepressant and antisuicidal effects | Dissociation, dizziness, nausea, sleepiness, vertigo, headache, dysgeusia, numbness, anxiety, flushing, hypertension |
Dextromethorphan (DXM) -Bupropion (BUP) | GRA | Adult MDD | 22 | DXM = 45 mg plus BUP = 105 mg. 1 tab once/day × 3 days, then -1 tab two times a day | Oral | Concurrent use of CYP2D6 substrates or inhibtors for DXM Concurrent use of CYP2B6, substrates, inhibitors, or inducers for BUP | Polymorphisms in CYP2D6 and CYP2B6 are clinically significant | -DXM - NMDA receptor antagonism -BUP – NE and DA reuptake pump blockade | Rapid antidepressant effects | Anxiety, psychosis, hypomania, confusion, decreased concentration, seizures, hypertension |
Brexanolone | GPAM | PPD | 9 | 90 mcg/kg/h | 60-h IV infusion | Concurrent use of substrate inhibitors, or inducers of phase II enzymes ketoreductase, Glucuronyl transferase, and sulfatase | Polymorphisms of ketoreductase, glucuronyl transferase, and sulfatase) | -PAM for GABA-A receptors | Rapid antidepressant effects | Sedation, injection site discomfort/erythema, pain/rash, dizziness, flushing, oropharyngeal pain, increased TSH, loss of or altered consciousness |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shad, M.U. Recent Developments in Pharmacotherapy of Depression: Bench to Bedside. J. Pers. Med. 2023, 13, 773. https://doi.org/10.3390/jpm13050773
Shad MU. Recent Developments in Pharmacotherapy of Depression: Bench to Bedside. Journal of Personalized Medicine. 2023; 13(5):773. https://doi.org/10.3390/jpm13050773
Chicago/Turabian StyleShad, Mujeeb U. 2023. "Recent Developments in Pharmacotherapy of Depression: Bench to Bedside" Journal of Personalized Medicine 13, no. 5: 773. https://doi.org/10.3390/jpm13050773
APA StyleShad, M. U. (2023). Recent Developments in Pharmacotherapy of Depression: Bench to Bedside. Journal of Personalized Medicine, 13(5), 773. https://doi.org/10.3390/jpm13050773