Impact of Thyroid Cancer Treatment on Renal Function: A Relevant Issue to Be Addressed
Abstract
:1. Introduction
2. Materials and Methods
2.1. Conduct of Review
2.2. Search Strategy and Study Selection
3. Renal Function Biomarkers
4. Total/Subtotal Thyroidectomy
5. I131 Radiotherapy
6. Chemotherapy
Conventional Drugs
7. Biological Agents
7.1. Tyrosine Kinase Inhibitors (TKI)
7.2. MEK and BRAF Kinases Inhibition
8. Immunotherapy
9. Discussion
10. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Schmidbauer, B.; Menhart, K.; Hellwig, D.; Grosse, J. Differentiated Thyroid Cancer—Treatment: State of the Art. Int. J. Mol. Sci. 2017, 18, 1292. [Google Scholar] [CrossRef] [PubMed]
- Lorusso, L.; Cappagli, V.; Valerio, L.; Giani, C.; Viola, D.; Puleo, L.; Gambale, C.; Minaldi, E.; Campopiano, M.C.; Matrone, A.; et al. Thyroid Cancers: From Surgery to Current and Future Systemic Therapies through Their Molecular Identities. Int. J. Mol. Sci. 2021, 22, 3117. [Google Scholar] [CrossRef] [PubMed]
- Greco, M.; Foti, D.P.; Aversa, A.; Fuiano, G.; Brunetti, A.; Simeoni, M. Cystatin C, a Controversial Biomarker in Hypothyroid Patients under Levothyroxine Therapy: THYRenal, a Pilot Cohort Observational Study. J. Clin. Med. 2020, 9, 2958. [Google Scholar] [CrossRef]
- Simeoni, M.; Cerantonio, A.; Pastore, I.; Liguori, R.; Greco, M.; Foti, D.; Gulletta, E.; Brunetti, A.; Fuiano, G. The correct renal function evaluation in patients with thyroid dysfunction. J. Endocrinol. Investig. 2016, 39, 495–507. [Google Scholar] [CrossRef]
- Cianfrone, P.; Simeoni, M.; Comi, N.; Piraina, V.; Talarico, R.; Cerantonio, A.; Gentile, I.; Fabiano, F.F.; Lucisano, G.; Foti, D.; et al. How to improve duration and efficiency of the antiproteinuric response to Ramipril: RamiPROT—A prospective cohort study. J. Nephrol. 2017, 30, 95–102. [Google Scholar] [CrossRef]
- Janowitz, T.; Williams, E.H.; Marshall, A.; Ainsworth, N.; Thomas, P.; Sammut, S.J.; Shepherd, S.; White, J.; Mark, P.; Lynch, A.; et al. New Model for Estimating Glomerular Filtration Rate in Patients With Cancer. J. Clin. Oncol. 2017, 35, 2798–2805. [Google Scholar] [CrossRef]
- Jones, M.; Denieffe, S.; Griffin, C.; Tinago, W.; Fitzgibbon, M.C. Evaluation of cystatin C in malignancy and comparability of estimates of GFR in oncology patients. Pract. Lab. Med. 2017, 8, 95–104. [Google Scholar] [CrossRef]
- Ning, M.; Mao, X.; Niu, Y.; Tang, B.; Shen, H. Usefulness and limitations of neutrophil gelatinase-associated lipocalin in the assessment of kidney diseases. J. Lab. Precis. Med. 2018, 3, 1. [Google Scholar] [CrossRef]
- Strazzulla, A.; Coppolino, G.; Barreca, G.S.; Gentile, I.; Rivoli, L.; Postorino, M.C.; Mazzitelli, M.; Greco, G.; Costa, C.; Pisani, V.; et al. Evolution of glomerular filtration rates and neutrophil gelatinase-associated lipocalin during treatment with direct acting antivirals. Clin. Mol. Hepatol. 2018, 24, 151–162. [Google Scholar] [CrossRef] [PubMed]
- Coppolino, G.; Simeoni, M.; Summaria, C.; Postorino, M.C.; Rivoli, L.; Strazzulla, A.; Torti, C.; Fuiano, G. The case of chronic hepatitis B treatment with tenofovir: An update for nephrologists. J. Nephrol. 2015, 28, 393–402. [Google Scholar] [CrossRef]
- Iannetti, A.; Pacifico, F.; Acquaviva, R.; Lavorgna, A.; Crescenzi, E.; Vascotto, C.; Tell, G.; Salzano, A.M.; Scaloni, A.; Vuttariello, E.; et al. The neutrophil gelatinase-associated lipocalin (NGAL), a NF-κB-regulated gene, is a survival factor for thyroid neoplastic cells. Proc. Natl. Acad. Sci. USA 2008, 105, 14058–14063. [Google Scholar] [CrossRef] [PubMed]
- Sato, Y.; Yanagita, M. Immune cells and inflammation in AKI to CKD progression. Am. J. Physiol. Physiol. 2018, 315, F1501–F1512. [Google Scholar] [CrossRef]
- Tang, Y.-Z.; Wang, Q.; Zhi, L.; Liu, X.; Le, Y.; Liao, Q.; Li, B.; Zhang, W. Intraoperative dexmedetomidine use is associated with lower incidence of acute kidney injury after non-cardiac surgery. Ren. Fail. 2023, 45, 2192285. [Google Scholar] [CrossRef]
- Joo, E.-Y.; Kim, Y.J.; Go, Y.; Song, J.-G. Relationship between perioperative thyroid function and acute kidney injury after thyroidectomy. Sci. Rep. 2018, 8, 13539. [Google Scholar] [CrossRef]
- Kreisman, S.H.; Hennessey, J.V. Consistent Reversible Elevations of Serum Creatinine Levels in Severe Hypothyroidism. Arch. Intern. Med. 1999, 159, 79–82. [Google Scholar] [CrossRef]
- Karanikas, G.; Schütz, M.; Szabo, M.; Becherer, A.; Wiesner, K.; Dudczak, R.; Kletter, K. Isotopic Renal Function Studies in Severe Hypothyroidism and after Thyroid Hormone Replacement Therapy. Am. J. Nephrol. 2004, 24, 41–45. [Google Scholar] [CrossRef]
- Iglesias, P.; Bajo, M.A.; Selgas, R.; Díez, J.J. Thyroid dysfunction and kidney disease: An update. Rev. Endocr. Metab. Disord. 2016, 18, 131–144. [Google Scholar] [CrossRef]
- Kim, K.; Bae, J.S.; Kim, J.S. Long-Term Oncological Outcome Comparison between Intermediate- and High-Dose Radioactive Iodine Ablation in Patients with Differentiated Thyroid Carcinoma: A Propensity Score Matching Study. Int. J. Endocrinol. 2021, 2021, 6642971. [Google Scholar] [CrossRef] [PubMed]
- Haugen, B.R.; Alexander, E.K.; Bible, K.C.; Doherty, G.M.; Mandel, S.J.; Nikiforov, Y.E.; Pacini, F.; Randolph, G.W.; Sawka, A.M.; Schlumberger, M.; et al. 2015 American Thyroid Association Management Guidelines for Adult Patients with Thyroid Nodules and Differentiated Thyroid Cancer: The American Thyroid Association Guidelines Task Force on Thyroid Nodules and Differentiated Thyroid Cancer. Thyroid 2016, 26, 1–133. [Google Scholar] [CrossRef]
- Ciarallo, A.; Rivera, J. Radioactive Iodine Therapy in Differentiated Thyroid Cancer: 2020 Update. Am. J. Roentgenol. 2020, 215, 285–291. [Google Scholar] [CrossRef] [PubMed]
- Hays, M.T.; Wegner, L.H. A mathematical and physiological model for early distribution of radioiodine in man. J. Appl. Physiol. 1965, 20, 1319–1328. [Google Scholar] [CrossRef]
- Pauwels, E.K.; Smit, J.W.; Slats, A.; Bourguignon, M.; Overbeek, F. Health effects of therapeutic use of 131I in hyperthyroidism. Q. J. Nucl. Med. Mol. Imaging 2000, 44, 333. [Google Scholar]
- Demko, T.M.; Tulchinsky, M.; Miller, K.L.; Cheung, J.Y.; Groff, J.A. Diagnosis and radioablation treatment of toxic multinodular goiter in a hemodialysis patient. Am. J. Kidney Dis. 1998, 31, 698–700. [Google Scholar] [CrossRef] [PubMed]
- Holst, J.P.; Burman, K.D.; Atkins, F.; Umans, J.G.; Jonklaas, J. Radioiodine Therapy for Thyroid Cancer and Hyperthyroidism in Patients with End-Stage Renal Disease on Hemodialysis. Thyroid 2005, 15, 1321–1331. [Google Scholar] [CrossRef]
- Andresen, N.S.; Buatti, J.M.; Tewfik, H.H.; Pagedar, N.A.; Anderson, C.M.; Watkins, J.M. Radioiodine Ablation following Thyroidectomy for Differentiated Thyroid Cancer: Literature Review of Utility, Dose, and Toxicity. Eur. Thyroid. J. 2017, 6, 187–196. [Google Scholar] [CrossRef]
- Rhee, C.M. The interaction between thyroid and kidney disease. Curr. Opin. Endocrinol. Diabetes 2016, 23, 407–415. [Google Scholar] [CrossRef]
- Cho, Y.Y.; Kim, S.K.; Jung, J.H.; Hahm, J.R.; Kim, T.H.; Chung, J.H.; Kim, S.W. Long-term outcomes of renal function after radioactive iodine therapy for thyroid cancer according to preparation method: Thyroid hormone withdrawal vs. recombinant human thyrotropin. Endocrine 2019, 64, 293–298. [Google Scholar] [CrossRef] [PubMed]
- Riesco-Eizaguirre, G.; Santisteban, P.; De la Vieja, A. The complex regulation of NIS expression and activity in thyroid and extrathyroidal tissues. Endocr. Relat. Cancer 2021, 28, T141–T165. [Google Scholar] [CrossRef] [PubMed]
- Spitzweg, C.; Dutton, C.M.; Castro, M.R.; Bergert, E.R.; Goellner, J.R.; Heufelder, A.E.; Morris, J.C. Expression of the sodium iodide symporter in human kidney. Kidney Int. 2001, 59, 1013–1023. [Google Scholar] [CrossRef]
- Aktoz, T.; Durmus-Altun, G.; Usta, U.; Torun, N.; Ergulen, A.; Atakan, I.H. Radioiodine-induced kidney damage and protective effect of amifostine: An experimental study. Hippokratia 2012, 16, 40–45. [Google Scholar]
- Schreuder, N.; de Romijn, I.; Jager, P.L.; Kosterink, J.G.W.; van Puijenbroek, E.P. Safe use of radiopharmaceuticals in patients with chronic kidney disease: A systematic review. EJNMMI Radiopharm. Chem. 2021, 6, 27. [Google Scholar] [CrossRef]
- Yeyin, N.; Cavdar, I.; Uslu, L.; Abuqbeitah, M.; Demir, M. Effects of hemodialysis on iodine-131 biokinetics in thyroid carcinoma patients with end-stage chronic renal failure. Nucl. Med. Commun. 2016, 37, 283–287. [Google Scholar] [CrossRef] [PubMed]
- Ortega, A.; Vázquez, R.; Cuenca, J.; Brocca, M.; Castilla, J.; Martínez, J.; González, E. 131I treatment in Differentiated Thyroid Cancer and End-Stage Renal Disease. Rev. Esp. De Med. Nucl. E Imagen Mol. 2016, 35, 29–33. [Google Scholar] [CrossRef]
- Kaptein, E.M.; Levenson, H.; Siegel, M.E.; Gadallah, M.; Akmal, M. Radioiodine Dosimetry in Patients with End-Stage Renal Disease Receiving Continuous Ambulatory Peritoneal Dialysis Therapy 1. J. Clin. Endocrinol. Metab. 2000, 85, 3058–3064. [Google Scholar] [CrossRef] [PubMed]
- Pabla, N.; Dong, Z. Cisplatin nephrotoxicity: Mechanisms and renoprotective strategies. Kidney Int. 2008, 73, 994–1007. [Google Scholar] [CrossRef] [PubMed]
- Francis, G.L.; Waguespack, S.G.; Bauer, A.J.; Angelos, P.; Benvenga, S.; Cerutti, J.M.; Dinauer, C.A.; Hamilton, J.; Hay, I.D.; Luster, M.; et al. Management Guidelines for Children with Thyroid Nodules and Differentiated Thyroid Cancer. Thyroid 2015, 25, 716–759. [Google Scholar] [CrossRef] [PubMed]
- Li, A.; Zhang, W.; Zhang, L.; Liu, Y.; Li, K.; Du, G.; Qin, X. Elucidating the time-dependent changes in the urinary metabolome under doxorubicin-induced nephrotoxicity. Toxicol. Lett. 2020, 319, 204–212. [Google Scholar] [CrossRef]
- Yemm, K.E.; Alwan, L.M.; Malik, A.B.; Salazar, L.G. Renal toxicity with liposomal doxorubicin in metastatic breast cancer. J. Oncol. Pharm. Pract. 2019, 25, 1738–1742. [Google Scholar] [CrossRef] [PubMed]
- Shavit, L.; Lifschitz, M.D.; Gabizon, A.; Kwa, M.; Muggia, F.; Slotki, I. Pegylated liposomal doxorubicin and renal thrombotic microangiopathy: An under-recognized complication of prolonged treatment for ovarian cancer. Kidney Int. 2014, 85, 213. [Google Scholar] [CrossRef]
- Carron, P.-L.; Padilla, M.; Balzan, J.M. Nephrotic syndrome and acute renal failure during pegylated liposomal doxorubicin treatment. Hemodial. Int. 2014, 18, 846–847. [Google Scholar] [CrossRef]
- Afsar, T.; Razak, S.; Almajwal, A.; Al-Disi, D. Doxorubicin-induced alterations in kidney functioning, oxidative stress, DNA damage, and renal tissue morphology; Improvement by Acacia hydaspica tannin-rich ethyl acetate fraction. Saudi J. Biol. Sci. 2020, 27, 2251–2260. [Google Scholar] [CrossRef] [PubMed]
- Jan, R.; Chaudhry, G.-E. Understanding Apoptosis and Apoptotic Pathways Targeted Cancer Therapeutics. Adv. Pharm. Bull. 2019, 9, 205–218. [Google Scholar] [CrossRef]
- Ibrahim, K.M.; Mantawy, E.M.; Elanany, M.M.; Abdelgawad, H.S.; Khalifa, N.M.; Hussien, R.H.; El-Agroudy, N.N.; El-Demerdash, E. Protection from doxorubicin-induced nephrotoxicity by clindamycin: Novel antioxidant, anti-inflammatory and anti-apoptotic roles. Naunyn-Schmiedeberg’s Arch. Pharmacol. 2020, 393, 739–748. [Google Scholar] [CrossRef] [PubMed]
- Kintzel, P.E. Anticancer drug renal toxicity and elimination: Dosing guidelines for altered renal function. Cancer Treat. Rev. 1995, 21, 33–64. [Google Scholar] [CrossRef]
- Bennett, W.M.; Aronoff, G.R.; Morrison, G.; Golper, T.A.; Pulliam, J.; Wolfson, M.; Singer, I. Drug Prescribing in Renal Failure: Dosing Guidelines for Adults. Am. J. Kidney Dis. 1983, 3, 155–193. [Google Scholar] [CrossRef]
- Karasawa, T.; Steyger, P.S. An integrated view of cisplatin-induced nephrotoxicity and ototoxicity. Toxicol. Lett. 2015, 237, 219–227. [Google Scholar] [CrossRef] [PubMed]
- Hino, A.; Muto, S.; Shimada, Y.; Hori, S.; Isotani, S.; Nagata, M.; Horie, S. Impact of cisplatin-induced acute kidney injury on long-term renal function in patients with solid tumors. Clin. Exp. Nephrol. 2023. [Google Scholar] [CrossRef]
- Crona, D.J.; Faso, A.; Nishijima, T.F.; McGraw, K.A.; Galsky, M.D.; Milowsky, M.I. A Systematic Review of Strategies to Prevent Cisplatin-Induced Nephrotoxicity. Oncol. 2017, 22, 609–619. [Google Scholar] [CrossRef]
- Solanki, M.H.; Chatterjee, P.K.; Xue, X.; Gupta, M.; Rosales, I.; Yeboah, M.M.; Kohn, N.; Metz, C.N. Magnesium protects against cisplatin-induced acute kidney injury without compromising cisplatin-mediated killing of an ovarian tumor xenograft in mice. Am. J. Physiol. Renal Physiol. 2015, 309, F35–F47. [Google Scholar] [CrossRef]
- Saito, Y.; Okamoto, K.; Kobayashi, M.; Narumi, K.; Yamada, T.; Iseki, K. Magnesium attenuates cisplatin-induced nephrotoxicity by regulating the expression of renal transporters. Eur. J. Pharmacol. 2017, 811, 191–198. [Google Scholar] [CrossRef]
- Grassi, E.S.; Ghiandai, V.; Persani, L. Thyroid Cancer Stem-Like Cells: From Microenvironmental Niches to Therapeutic Strategies. J. Clin. Med. 2021, 10, 1455. [Google Scholar] [CrossRef] [PubMed]
- Valerio, L.; Pieruzzi, L.; Giani, C.; Agate, L.; Bottici, V.; Lorusso, L.; Cappagli, V.; Puleo, L.; Matrone, A.; Viola, D.; et al. Targeted Therapy in Thyroid Cancer: State of the Art. Clin. Oncol. 2017, 29, 316–324. [Google Scholar] [CrossRef] [PubMed]
- Cataldi, M.; Gaudino, A.; Lariccia, V.; Russo, M.; Amoroso, S.; di Renzo, G.; Annunziato, L. Imatinib-Mesylate Blocks Recombinant T-Type Calcium Channels Expressed in Human Embryonic Kidney-293 Cells by a Protein Tyrosine Kinase-Independent Mechanism. Experiment 2004, 309, 208–215. [Google Scholar] [CrossRef]
- François, H.; Daugas, E.; Bensman, A.; Ronco, P. Unexpected Efficacy of Rituximab in Multirelapsing Minimal Change Nephrotic Syndrome in the Adult: First Case Report and Pathophysiological Considerations. Am. J. Kidney Dis. 2007, 49, 158–161. [Google Scholar] [CrossRef] [PubMed]
- Sorich, M.J.; Rowland, A.; Kichenadasse, G.; Woodman, R.J.; Mangoni, A.A. Risk factors of proteinuria in renal cell carcinoma patients treated with VEGF inhibitors: A secondary analysis of pooled clinical trial data. Br. J. Cancer 2016, 114, 1313–1317. [Google Scholar] [CrossRef]
- Massicotte, M.-H.; Brassard, M.; Claude-Desroches, M.; Borget, I.; Bonichon, F.; Giraudet, A.-L.; Cao, C.D.; Chougnet, C.N.; Leboulleux, S.; Baudin, E.; et al. Tyrosine kinase inhibitor treatments in patients with metastatic thyroid carcinomas: A retrospective study of the TUTHYREF network. Eur. J. Endocrinol. 2014, 170, 575–582. [Google Scholar] [CrossRef] [PubMed]
- Silvestris, N.; Argentiero, A.; Cosmai, L.; Porta, C.; Gesualdo, L.; Brunori, G.; Brunetti, O.; Rampino, T.; Secondino, S.; Rizzo, G.; et al. Management of targeted therapies in cancer patients with chronic kidney disease, or on haemodialysis: An Associazione Italiana di Oncologia Medica (AIOM)/Societa’ Italiana di Nefrologia (SIN) multidisciplinary consensus position paper. Crit. Rev. Oncol. 2019, 140, 39–51. [Google Scholar] [CrossRef]
- Oya, M.; Kaneko, S.; Imai, T.; Tsujino, T.; Sunaya, T.; Okayama, Y. Effectiveness and safety of sorafenib for renal cell, hepatocellular and thyroid carcinoma: Pooled analysis in patients with renal impairment. Cancer Chemother. Pharmacol. 2022, 89, 761–772. [Google Scholar] [CrossRef]
- Al-Jundi, M.; Thakur, S.; Gubbi, S.; Klubo-Gwiezdzinska, J. Novel Targeted Therapies for Metastatic Thyroid Cancer—A Comprehensive Review. Cancers 2020, 12, 2104. [Google Scholar] [CrossRef]
- Cavalieri, S.; Cosmai, L.; Genderini, A.; Nebuloni, M.; Tosoni, A.; Favales, F.; Pistillo, P.; Bergamini, C.; Bossi, P.; Licitra, L.; et al. Lenvatinib-induced renal failure: Two first-time case reports and review of literature. Expert Opin. Drug Metab. Toxicol. 2018, 14, 379–385. [Google Scholar] [CrossRef]
- Zhang, W.; Feng, L.-J.; Teng, F.; Li, Y.-H.; Zhang, X.; Ran, Y.-G. Incidence and risk of proteinuria associated with newly approved vascular endothelial growth factor receptor tyrosine kinase inhibitors in cancer patients: An up-to-date meta-analysis of randomized controlled trials. Expert Rev. Clin. Pharmacol. 2020, 13, 311–320. [Google Scholar] [CrossRef] [PubMed]
- Schlumberger, M.; Jarzab, B.; Cabanillas, M.E.; Robinson, B.G.; Pacini, F.; Ball, D.W.; McCaffrey, J.C.; Newbold, K.L.; Allison, R.; Martins, R.G.; et al. A Phase II Trial of the Multitargeted Tyrosine Kinase Inhibitor Lenvatinib (E7080) in Advanced Medullary Thyroid Cancer. Clin. Cancer Res. 2016, 22, 44–53. [Google Scholar] [CrossRef] [PubMed]
- Haddad, R.I.; Schlumberger, M.; Wirth, L.J.; Sherman, E.J.; Shah, M.H.; Robinson, B.; Dutcus, C.E.; Teng, A.; Gianoukakis, A.G.; Sherman, S.I. Incidence and timing of common adverse events in Lenvatinib-treated patients from the SELECT trial and their association with survival outcomes. Endocrine 2017, 56, 121–128. [Google Scholar] [CrossRef] [PubMed]
- Iwasaki, H.; Yamazaki, H.; Takasaki, H.; Suganuma, N.; Sakai, R.; Nakayama, H.; Toda, S.; Masudo, K. Renal dysfunction in patients with radioactive iodine-refractory thyroid cancer treated with tyrosine kinase inhibitors. Medicine 2019, 98, e17588. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.H.; Chen, K.T.; Lin, Y.S.; Hsu, C.Y.; Ou, Y.C.; Tung, M.C. Improvement of lenvatinib-induced nephrotic syndrome after adaptation to sorafenib in thyroid cancer: A case report. World J. Clin. Cases 2020, 8, 4883–4894. [Google Scholar] [CrossRef]
- Oliinyk, D.; Augustin, T.; Koehler, V.F.; Rauch, J.; Belka, C.; Spitzweg, C.; Käsmann, L. Hypofractionated Radiotherapy for Anaplastic Thyroid Cancer: Systematic Review and Pooled Analysis. Cancers 2020, 12, 2506. [Google Scholar] [CrossRef]
- Ho, A.L.; Grewal, R.K.; Leboeuf, R.; Sherman, E.J.; Pfister, D.G.; Deandreis, D.; Pentlow, K.S.; Zanzonico, P.B.; Haque, S.; Gavane, S.; et al. Selumetinib-Enhanced Radioiodine Uptake in Advanced Thyroid Cancer. N. Engl. J. Med. 2013, 368, 623–632. [Google Scholar] [CrossRef]
- Capolongo, G.; Suzumoto, Y.; D’acierno, M.; Simeoni, M.; Capasso, G.; Zacchia, M. ERK1,2 Signalling Pathway along the Nephron and Its Role in Acid-base and Electrolytes Balance. Int. J. Mol. Sci. 2019, 20, 4153. [Google Scholar] [CrossRef]
- Falchook, G.S.; Millward, M.; Hong, D.; Naing, A.; Piha-Paul, S.; Waguespack, S.G.; Cabanillas, M.E.; Sherman, S.I.; Ma, B.; Curtis, M.; et al. BRAF Inhibitor Dabrafenib in Patients with Metastatic BRAF-Mutant Thyroid Cancer. Thyroid 2015, 25, 71–77. [Google Scholar] [CrossRef]
- Abbas, A.; Mirza, M.M.; Ganti, A.K.; Tendulkar, K. Renal Toxicities of Targeted Therapies. Target. Oncol. 2015, 10, 487–499. [Google Scholar] [CrossRef]
- Wanchoo, R.; Jhaveri, K.D.; Deray, G.; Launay-Vacher, V. Renal effects of BRAF inhibitors: A systematic review by the Cancer and the Kidney International Network. Clin. Kidney J. 2016, 9, 245–251. [Google Scholar] [CrossRef]
- Launay-Vacher, V.; Zimner-Rapuch, S.; Poulalhon, N.; Fraisse, T.; Garrigue, V.; Gosselin, M.; Amet, S.; Janus, N.; Deray, G. Acute renal failure associated with the new BRAF inhibitor vemurafenib: A case series of 8 patients. Cancer 2014, 120, 2158–2163. [Google Scholar] [CrossRef] [PubMed]
- Teuma, C.; Perier-Muzet, M.; Pelletier, S.; Nouvier, M.; Amini-Adl, M.; Dijoud, F.; Duru, G.; Thomas, L.; Fouque, D.; Laville, M.; et al. New insights into renal toxicity of the B-RAF inhibitor, vemurafenib, in patients with metastatic melanoma. Cancer Chemother. Pharmacol. 2016, 78, 419–426. [Google Scholar] [CrossRef]
- Flaherty, K.T.; Infante, J.R.; Daud, A.; Gonzalez, R.; Kefford, R.F.; Sosman, J.; Hamid, O.; Schuchter, L.; Cebon, J.; Ibrahim, N.; et al. Combined BRAF and MEK Inhibition in Melanoma with BRAF V600 Mutations. N. Engl. J. Med. 2012, 367, 1694–1703. [Google Scholar] [CrossRef]
- US Food and Drug Administration. Tefinlar Highlights of Prescribing Information. Available online: http://www.accessdata.fda.gov/drugsatfda_docs/lbel/2013/202806s000lbl.pdf (accessed on 11 May 2013).
- Antonelli, A.; Ferrari, S.M.; Fallahi, P. Current and future immunotherapies for thyroid cancer. Expert Rev. Anticancer. Ther. 2017, 18, 149–159. [Google Scholar] [CrossRef]
- Borówka, M.; Łącki-Zynzeling, S.; Nicze, M.; Kozak, S.; Chudek, J. Adverse Renal Effects of Anticancer Immunotherapy: A Review. Cancers 2022, 14, 4086. [Google Scholar] [CrossRef]
- Vaddepally, R.K.; Kharel, P.; Pandey, R.; Garje, R.; Chandra, A.B. Review of Indications of FDA-Approved Immune Checkpoint Inhibitors per NCCN Guidelines with the Level of Evidence. Cancers 2020, 12, 738. [Google Scholar] [CrossRef] [PubMed]
- Sacks, D.; Baxter, B.; Campbell, B.C.V.; Carpenter, J.S.; Cognard, C.; Dippel, D.; Eesa, M.; Fischer, U.; Hausegger, K.; Hirsch, J.A.; et al. Multisociety Consensus Quality Improvement Revised Consensus Statement for Endovascular Therapy of Acute Ischemic Stroke. Int. J. Stroke 2018, 13, 612–632. [Google Scholar] [CrossRef]
- Chen, W.; Li, J.; Peng, S.; Hong, S.; Xu, H.; Lin, B.; Liang, X.; Liu, Y.; Liang, J.; Zhang, Z.; et al. Association of Total Thyroidectomy or Thyroid Lobectomy With the Quality of Life in Patients With Differentiated Thyroid Cancer With Low to Intermediate Risk of Recurrence. JAMA Surg. 2022, 157, 200. [Google Scholar] [CrossRef] [PubMed]
- Mohamedali, M.; Maddika, S.R.; Vyas, A.; Iyer, V.; Cheriyath, P. Thyroid Disorders and Chronic Kidney Disease. Int. J. Nephrol. 2014, 2014, 520281. [Google Scholar] [CrossRef]
- Al Fahdi, I.; Al Salmi, I.; Al Rahbi, F.; Shaheen, F.; Hannawi, S. Thyroid Dysfunction and Kidney Dysfunction. Oman Med. J. 2022, 37, e377. [Google Scholar] [CrossRef] [PubMed]
- Lakhal, K.; Ehrmann, S.; Robert-Edan, V. Iodinated contrast medium: Is there a re(n)al problem? A clinical vignette-based review. Crit. Care 2020, 24, 641. [Google Scholar] [CrossRef]
- Basté, N.; Mora, M.; Grau, J.J. Emerging systemic antitarget treatment for differentiated thyroid carcinoma. Curr. Opin. Oncol. 2021, 33, 184–195. [Google Scholar] [CrossRef]
- Wang, T.S.; Sosa, J.A. Thyroid surgery for differentiated thyroid cancer—Recent advances and future directions. Nat. Rev. Endocrinol. 2018, 14, 670–683. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.; Harris, E.J.; Lorch, J.H. Treatment of Aggressive Thyroid Cancer. Surg. Pathol. Clin. 2019, 12, 943–950. [Google Scholar] [CrossRef] [PubMed]
DCT Treatments | Reference | Renal Adverse Event | Study Design | Study Group | Intervention |
---|---|---|---|---|---|
Surgery | Joo EY et al. [14] | ↑AKI incidence in post-surgical hypothyroidism | Retrospettive Observational | 486 patients | Total thyroidectomy (81.5%), Hemithyroidectomy (16.0%), Complete thyroidectomy (2.5%) |
Kreismann SH et al. [15] | ↑serum creatinine levels | Retrospective Observational | 24 patients | Total thyroidectomy | |
Radiotherapy | Aktoz T et al. [30] | ↑ tubular damage | Experimental | 50 Wistar albino rat females | Treatment with Radioactive Iodine131 |
Kaptein EM et al. [34] | ↓ 20% I131 clearance in the patients with ESRD | Prospective Observational | -10 patients with thyroid carcinoma -8 patients with ESRD | Treatment with Radioactive Iodine131 | |
Chemotherapy | Pabla N et al. [35] | ↑ risk of tubulotoxicity ↓ glomerular filtration rate ↑serum creatinine | Systematic Review | Patients, cells and experimental animals | Treatment with Cisplatin |
Li A et al. [37] | ↑nephropathy | Experimental | Male Sprague Dawley Rats | Treatment with Doxorubicin | |
Yemm KE et al. [38] Shavit L et al. [39] Carron PL et al. [40] | ↑AKI ↑nephrotic syndrome ↑renal thrombotic microangiopathy | Prospective Observational | Cohort of patients | Treated with L-Doxo | |
Kintzel PE et al. [44] Karasawa T et al. [46] | ↑activation of ROS, p53 and MAP-ERK kinase cascades in tubular cells ↑mitochondrial damage ↑apoptosis | Systematic Review | Patients, cells and experimental animals | Treatment with Cisplatin | |
Target therapy-TKI | Al-Jundi M et al. [59] | ↑glomerular damage with secondary proteinuria ↑tubulo-interstitial damage without proteinuria | Systematic Review | Cohort of patients | Treatment with Lenvatinib |
Zhang W et al. [61] | ↑proteinuria of any degree | Meta-analysis | 9446 patients | Treatment with Lenvatinib | |
Schlumberger M et al. [62] | ↑proteinuria | Clinical trial | 59 patients with thyroid carcinoma | Treatment with Lenvatinib | |
Haddad RI et al. [63] | ↑proteinuria | Clinical trial | 392 patients | Treatment with Lenvatinib | |
Iwasaki H et al. [64] | development nephrotic syndrome at 1-month follow-up | Case report | 56-year-old man with DTC refractory | Treatment with Lenvatinib | |
Target therapy-MEK and BRAF inhibitors | Falchook GS et al. [69] | ↓glomerular filtration rate ↑creatinine levels | Prospective Observational | 14 patients with thyroid carcinoma | Treatment with Dabrafenib |
Wanchoo R et al. [71] | allergic interstitial nephritis hypophosphatemia, hyponatremia, hypokalemia, subnephrotic proteinuria acute tubular toxicity | Systematic Review | Cohort of patients | Treatment with BRAF and MEK inhibitors | |
Launay-Vacher V et al. [72] | ↓ glomerular filtration | Case reports | 8 patients | Treatment with BRAF inhibitors | |
Teuma C et al. [73] | ↑creatinine levels | Retrospective Observational | 74 patients | Treatment with BRAF inhibitors | |
Flaherty KT et al. [74] | hyponatremia hypophosphatemia ↑serum creatinine and hypokalaemia | Clinical trial | 162 patients | Treatment with BRAF and MEK inhibitors | |
Immunotherapy | Borówka M et al. [77] | Tubulointerstitial nephritis Nephrotic syndrome Tubulointerstitial nephritis | Systematic Review | Cohort of patients | Treatment with Ipilimumab |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Di Paola, R.; De, A.; Capasso, A.; Giuliana, S.; Ranieri, R.; Ruosi, C.; Sciarra, A.; Vitagliano, C.; Perna, A.F.; Capasso, G.; et al. Impact of Thyroid Cancer Treatment on Renal Function: A Relevant Issue to Be Addressed. J. Pers. Med. 2023, 13, 813. https://doi.org/10.3390/jpm13050813
Di Paola R, De A, Capasso A, Giuliana S, Ranieri R, Ruosi C, Sciarra A, Vitagliano C, Perna AF, Capasso G, et al. Impact of Thyroid Cancer Treatment on Renal Function: A Relevant Issue to Be Addressed. Journal of Personalized Medicine. 2023; 13(5):813. https://doi.org/10.3390/jpm13050813
Chicago/Turabian StyleDi Paola, Rossella, Ananya De, Anna Capasso, Sofia Giuliana, Roberta Ranieri, Carolina Ruosi, Antonella Sciarra, Caterina Vitagliano, Alessandra F. Perna, Giovambattista Capasso, and et al. 2023. "Impact of Thyroid Cancer Treatment on Renal Function: A Relevant Issue to Be Addressed" Journal of Personalized Medicine 13, no. 5: 813. https://doi.org/10.3390/jpm13050813
APA StyleDi Paola, R., De, A., Capasso, A., Giuliana, S., Ranieri, R., Ruosi, C., Sciarra, A., Vitagliano, C., Perna, A. F., Capasso, G., & Simeoni, M. (2023). Impact of Thyroid Cancer Treatment on Renal Function: A Relevant Issue to Be Addressed. Journal of Personalized Medicine, 13(5), 813. https://doi.org/10.3390/jpm13050813