Effects of Sensorimotor Training on Transversus Abdominis Activation in Chronic Low Back Pain Patients
Abstract
:1. Introduction
2. Materials and Methods
2.1. Design
2.2. Sonography of Transversus Abdominis
- supine position with the abdominal muscles relaxed (50° hip flexion and 90° knee flexion) [16],
- supine position during targeted contraction of the muscle using the “abdominal draw-in maneuver” (patient holds his/her breath after expiration and gently draws their navel inwards without moving the pelvis) [17].
2.3. Clinical Tests
2.4. Intervention
2.4.1. Galileo® Training
2.4.2. Posturomed® Training
2.5. Statistics
3. Results
3.1. Participants
3.2. Sonography of Transversus Abdominis Muscle
3.3. Clinical Tests
4. Discussion
Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Schmidt, C.; Kohlmann, T. Was Wissen Wir Über Das Symptom Rückenschmerz? Z. Orthop. 2005, 143, 292–298. [Google Scholar] [CrossRef]
- Hartvigsen, J.; Hancock, M.; Kongsted, A.; Louw, Q.; Ferreira, M.; Genevay, S.; Hoy, D.; Karppinen, J. What Low Back Pain Is and Why We Need to Pay Attention. Lancet 2018, 391, 2356–2367. [Google Scholar] [CrossRef]
- Itz, C.J.; Geurts, J.W.; Nelemans, M.V.K.P. Clinical Course of Non-Specific Low Back Pain: A Systematic Review of Prospective Cohort Studies Set in Primary Care. Eur. J. Pain 2013, 17, 5–15. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, C.; Raspe, H.; Pfingsten, M.; Hasenbring, M.; Basler, H.D.; Eich, W.; Kohlmann, T. Back Pain in the German Adult Population: Prevalence, Severity, and Sociodemographic Correlates in a Multiregional Survey. Spine 2007, 32, 2005–2011. [Google Scholar] [CrossRef]
- Bundesärztekammer (BÄK), Kassenärztliche Bundesvereinigung (KBV), Arbeitsgemeinschaft Der Wissenschaftlichen Medizinischen Fachgesellschaften (AWMF). Nationale VersorgungsLeitlinie Nicht-Spezifischer Kreuzschmerz—Langfassung, 2. Auflage. Version 1. Available online: www.kreuzschmerz.versorgungsleitlinie.de (accessed on 27 March 2023).
- McCaskey, M.; Schuster-amft, C.; Wirth, B.; Bruin, E.D. De Effects of Postural Specific Sensorimotor Training in Patients with Chronic Low Back Pain: Study Protocol for Randomised Controlled Trial. Trials 2015, 16, 571. [Google Scholar] [CrossRef]
- Hodges, P.; Richardson, C. Inefficient Muscular Stabilization of the Lumbar Spine Associated with Low Back Pain: A Motor Control Evaluation of Transversus Abdominis. Spine 1996, 21, 2640–2650. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Chai, H.; Shau, Y.; Wang, C.; Wang, S. Increased Sliding of Transverse Abdominis during Contraction after Myofascial Release in Patients with Chronic Low Back Pain. Man. Ther. 2016, 23, 69–75. [Google Scholar] [CrossRef]
- Kim, J.; Seok, C.; Jeon, H. Abdominal Draw-in Maneuver Combined with Simulated Weight Bearing Increases Transversus Abdominis and Internal Oblique Thickness. Physiother. Theory Pract. 2017, 33, 954–958. [Google Scholar] [CrossRef] [PubMed]
- Tesh, K.; Shaw, J.; Evans, J. The Abdominal Muscles and Vertebral Stability. Spine 1987, 12, 501–508. [Google Scholar] [CrossRef] [PubMed]
- Cresswell, A.G.; Thorstensson, A. Changes in Intra-Abdominal Pressure, Trunk Muscle Activation and Force during Isokinetic Lifting and Lowering. Eur. J. Appl. Physiol. 1994, 68, 315–321. [Google Scholar] [CrossRef]
- Hwang, J.; Bae, S.; Kim, G.; Kim, K. The Effects of Sensorimotor Training on Anticipatory Postural Adjustment of the Trunk in Chronic Low Back Pain Patients. J. Phys. Ther. Sci. 2013, 25, 1189–1192. [Google Scholar] [CrossRef]
- McCaskey, M.; Schuster-amft, C.; Wirth, B.; Suica, Z.; Bruin, E. Effects of Proprioceptive Exercises on Pain and Function in Chronic Neck- and Low Back Pain Rehabilitation: A Systematic Literature Review. BMC Musculoskelet. Disord. 2014, 15, 382. [Google Scholar] [CrossRef]
- Rüger, A.; Laudner, K.; Delank, K.-S.; Schwesig, R.; Steinmetz, A. Effects of Different Forms of Sensorimotor Training on Postural Control and Functional Status in Patients with Chronic Low Back Pain. J. Pers. Med. 2023, 13, 634. [Google Scholar] [CrossRef]
- McMeeken, J.; Beith, I.; Newham, D.; Milligan, P.; Critchley, D. The Relationship between EMG and Change in Thickness of Transversus Abdominis. Clin. Biomech. 2004, 19, 337–342. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, P.H.; Ferreira, M.L.; Maher, C.G.; Refshauge, K.; Herbert, R.D.; Hodges, P.W.; Ferreira, P.H.; Ferreira, M.L.; Maher, C.G.; Refshauge, K.; et al. Changes in Recruitment of Transversus Abdominis Correlate with Disability in People with Chronic Low Back Pain. Br. J. Sports Med. 2009, 44, 1166–1172. [Google Scholar] [CrossRef] [PubMed]
- Richardson, C.; Snijders, C.; Hides, J. The Relation Between the Transversus Abdominis Muscles, Sacroiliac Joint Mechanics, and Low Back Pain. Spine 2002, 27, 399–405. [Google Scholar] [CrossRef]
- Koppenhaver, S.; Parent, E.; Teyhen, D. The Effect of Averaging Multiple Trials on Measurement Error During Ultrasound Imaging of Transversus Abdominis and Lumbar Multifidus Muscles in Individuals With Low Back Pain. J. Orthop. Sport. Phys. Ther. 2009, 39, 604–611. [Google Scholar] [CrossRef] [PubMed]
- Mens, J.; Pool-Goudzwaard, A. The Transverse Abdominal Muscle Is Excessively Active during Active Straight Leg Raising in Pregnancy-Related Posterior Pelvic Girdle Pain: An Observational Study. BMC Musculoskelet. Disord. 2017, 18, 372. [Google Scholar] [CrossRef]
- Shabnam, S.; Massoud, A.; Ebrahimi, E. Ultrasound Measurement of Abdominal Muscles during Clinical Isometric Endurance Tests in Women with and without Low Back Pain. Physiother. Theory Pract. 2019, 35, 130–138. [Google Scholar] [CrossRef]
- Ghamkhar, L.; Emami, M.; Mohammad, A.; Behtash, H. Application of Rehabilitative Ultrasound in the Assessment of Low Back Pain: A Literature Review. J. Bodyw. Mov. Ther. 2011, 15, 465–477. [Google Scholar] [CrossRef]
- Park, S.; Yu, S. The Effects of Abdominal Draw-in Maneuver and Core Exercise on Abdominal Muscle Thickness and Oswestry Disability Index in Subjects with Chronic Low Back Pain. J. Exerc. Rehabil. 2013, 9, 286–291. [Google Scholar] [CrossRef]
- Shamsi, M.; Sarrafzadeh, J.; Jamshhidi, A. The Effect of Core Stability and General Exercise on Abdominal Muscle Thickness in Non-Specific Chronic Low Back Pain Using Ultrasound Imaging. Physiother. Theory Pract. 2016, 32, 277–283. [Google Scholar] [CrossRef] [PubMed]
- Niemier, K.; Schmidt, S.; Engel, K.; Steinmetz, A. Functional diagnostics of mobility control, mobility stabilization and hypermobility. Reliability of clinical tests—Results of a multicenter study. Orthopade 2009, 38, 847–854. [Google Scholar] [CrossRef] [PubMed]
- Bortz, J. Lehrbuch Der Empirischen Forschung; Springer: Berlin/Heidelberg, Germany, 1984; pp. 277–283. [Google Scholar]
- Nabavi, N.; Bandpei, A. The Effect of 2 Different Exercise Programs on Pain Intensity and Muscle Dimensions in Patients With Chronic Low Back Pain: A Randomized Controlled Trial. J. Manipulative Physiol. Ther. 2018, 41, 102–110. [Google Scholar] [CrossRef] [PubMed]
- Hartmann, A.; Herzog, T.; Drinkmann, A. Psychotherapy of Bulimia Nervosa: What Is Effective? A Meta-Analysis. J. Psychosom. Res. 1992, 36, 159–167. [Google Scholar] [CrossRef] [PubMed]
- Mannion, A.; Pulkovski, N.; Loupas, T.; Schenk, P.; Gerber, H.; Sprott, H. Muscle Thickness Changes during Abdominal Hollowing: An Assessment of between-Day Measurement Error in Controls and Patients with Chronic Low Back Pain. Eur. Spine J. 2008, 17, 494–501. [Google Scholar] [CrossRef] [PubMed]
- Akbari, A.; Khorashadizadeh, S.; Abdi, G. The Effect of Motor Control Exercise versus General Exercise on Lumbar Local Stabilizing Muscles Thickness: Randomized Controlled Trial of Patients with Chronic Low Back Pain. J. Back Musculoskelet. Rehabil. 2008, 21, 105–112. [Google Scholar] [CrossRef]
- Folland, J.; Williams, A. The Adaptations to Strength Training. Morphological and Neurological Contributions to Increased Strength. Sport. Med. 2007, 37, 145–168. [Google Scholar] [CrossRef]
- Rankin, G.; Stokes, M.; Newham, D. Abdominal Muscle Size and Symmetry in Normal Subjects. Muscle Nerve. 2006, 34, 320–326. [Google Scholar] [CrossRef]
- Hodges, P.; Richardson, C. Delayed Postural Contraction of Transversus Abdominis in Low Back Pain Assocated with Movement of the Lower Limb. J. Spinal. Disord. 1998, 11, 46–56. [Google Scholar] [CrossRef]
- Hodges, P.; Moseley, G. Pain and Motor Control of the Lumbopelvic Region: Effect and Possible Mechanisms. J. Electrmyogaphy Kinisiology 2003, 13, 361–370. [Google Scholar] [CrossRef] [PubMed]
- Cruz-Diaz, D.; Bergamin, M.; Gobbo, S.; Hita-Contreras, F. Comparative Effects of 12 Weeks of Equipment Based and Mat Pilates in Patients with Chronic Low Back Pain on Pain, Function and Transversus Abdominis Activation. A Randomized Controlled Trial. Complement. Ther. Med. 2017, 33, 72–77. [Google Scholar] [CrossRef] [PubMed]
- Dong, Y.; Wang, H.; Zhu, Y.; Chen, B.; Zheng, Y.; Liu, X.; Qiao, J.; Wang, X. Effects of Whole Body Vibration Exercise on Lumbar-Abdominal Muscles Activation for Patients with Chronic Low Back Pain. BMC Sports Sci. Med. Rehabil. 2020, 12, 78. [Google Scholar] [CrossRef]
- Wang, W.; Wang, S.; Lin, W.; Li, X.; Andersen, L.; Wang, Y. Efficacy of Whole Body Vibration Therapy on Pain and Functional Ability in People with Non-Specific Low Back Pain: A Systematic Review. BMC Complement. Med. Ther. 2020, 20, 158. [Google Scholar] [CrossRef] [PubMed]
- Biely, S.; Silfies, S.; Smith, S.; Hicks, G. Clinical Observation of Standing Trunk Movements: What Do the Aberrant Movement Patterns Tell Us? J. Orthop. Sport. Phys. Ther. 2014, 44, 262–272. [Google Scholar] [CrossRef] [PubMed]
- Beange, K.; Chan, A.; Beaudette, S.; Ryan, B. Concurrent Validity of a Wearable Imu for Objective Assessments of Functionalvmovement Quality and Control of the Lumbar Spine. J. Biomech. 2019, 97, 109356. [Google Scholar] [CrossRef]
- Spinelli, B.; Wattananon, P.; Sil, S.; Talaty, M.; Ebaugh, D. Using Kinematics and a Dynamical Systems Approach to Enhance Understanding of Clinically Observed Aberrant Movement Patterns. Man. Ther. 2015, 20, 221–226. [Google Scholar] [CrossRef]
- Bauer, C.; Rast, F.; Ernst, M.; Kool, J.; Oetiker, S.; Rissanen, S.; Suni, J.; Kankaanpää, M. Concurrent Validity and Reliability of a Novel Wireless Inertial Measurement System to Assess Trunk Movement. J. Electromyogr. Kinesiol. 2015, 25, 782–790. [Google Scholar] [CrossRef]
- Laird, R.; Kent, P.; Keating, J. How Consistent Are Lordosis, Range of Movement and Lumbo-Pelvic Rhythm in People with and without Back Pain? BMC Musculoskelet. Disord. 2016, 17, 403. [Google Scholar] [CrossRef]
Clinical Test | Implementation | Evaluated as Conspicuous at |
---|---|---|
Inspiration in supine position | Spontaneous breathing | Thoracic high breathing |
Hip flexion in supine position | Lifting both legs | Lumbar lordosis, cranialization upper body |
Trunk flexion in supine position | Supine position with feet apart, upper body erect | Heels leave base, scapula does not lift off |
Hip abduction in lateral position | Lift contralateral outstretch leg | Leg rotation |
Vele test in standing position | Shift weight forward | No gripping function of the toes |
Matthias test in standing position | Arm elevation to 90° with internal roation | Scapula winging, Retroflexion upper body |
Single leg stand | Flex contralateral hip and knee | Pelvic tilt to the healthy side (Trendelenburg sign) |
Galileo® | Posturomed® | Control | Variance Analysis | ||
---|---|---|---|---|---|
p | ηp2 | ||||
Age [years] | 58.3 ± 11.6 (53.8–62.9) | 62.0 ± 11.8 (57.4–66.5) | 59.9 ± 10.7 (55.3–64.4) | 0.529 | 0.018 |
Height [m] | 1.70 ± 0.10 (1.66–1.74) | 1.72 ± 0.12 (1.68–1.76) | 1.68 ± 0.07 (1.64–1.72) | 0.343 | 0.029 |
Weight [kg] | 79.6 ± 19.2 (72.9–86.4) | 87.2 ± 15.9 (80.4–93.9) | 81.7 ± 15.6 (75.0–88.5) | 0.277 | 0.035 |
BMI [kg/m²] | 27.6 ± 5.42 (25.5–29.6) | 29.5 ± 4.76 (27.5–31.6) | 29.1 ± 5.34 (27.0–31.1) | 0.385 | 0.026 |
Sex, male:female | 10:15 | 12:13 | 5:20 | p = 0.105 Chi-Squared: 4.51 |
Parameter | Patients with Chronic Low Back Pain (n = 75) | Variance Analysis | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Group | Time | Group × Time | ||||||||||
Examination 1 | Examination 2 | p | ηp2 | p | ηp2 | p | ηp2 | |||||
Galileo® | Posturomed® | Control | Galileo® | Posturomed® | Control | |||||||
Muscle Relaxed [cm] | 0.33 ± 0.12 | 0.30 ± 0.08 | 0.36 ± 0.09 | 0.32 ± 0.10 | 0.37 ± 0.11 | 0.37 ± 0.09 | 0.269 | 0.036 | 0.059 | 0.049 | 0.019 | 0.105 |
Muscle Contracted [cm] | 0.49 ± 0.16 | 0.40 ± 0.13 | 0.50 ± 0.13 | 0.56 ± 0.17 | 0.55 ± 0.15 | 0.53 ± 0.10 | 0.288 | 0.034 | <0.001 | 0.225 | 0.028 | 0.095 |
Muscle Activation [%] | 0.52 ± 0.27 | 0.32 ± 0.22 | 0.43 ± 0.25 | 0.81 ± 0.48 | 0.53 ± 0.25 | 0.49 ± 0.29 | 0.003 | 0.147 | <0.001 | 0.265 | 0.049 | 0.080 |
Clinical Test | Galileo® | Posturomed® | Control | ||||||
---|---|---|---|---|---|---|---|---|---|
Exam 1 | Exam 2 | d | Exam 1 | Exam 2 | d | Exam 1 | Exam 2 | d | |
Inspiration in supine position | 0.12 ± 0.33 | 0.00 ± 0.00 | 0.73 | 0.24 ± 0.44 | 0.08 ± 0.28 | 0.34 | 0.12 ± 0.33 | 0.06 ± 0.22 | 0.22 |
Hip flexion in supine position | 0.04 ± 0.20 | 0.00 ± 0.00 | 0.40 | 0.68 ± 0.48 | 0.12 ± 0.33 | 1.24 | 0.18 ± 0.38 | 0.00 ± 0.00 | 1.00 |
Trunk flexion in supine position | 0.24 ± 0.43 | 0.04 ± 0.02 | 0.63 | 0.60 ± 0.50 | 0.24 ± 0.44 | 0.77 | 0.50 ± 0.50 | 0.48 ± 0.51 | 0.04 |
Hip abduction in lateral position | 0.16 ± 0.37 | 0.04 ± 0.02 | 0.42 | 0.20 ± 0.41 | 0.12 ± 0.33 | 0.22 | 0.16 ± 0.35 | 0.08 ± 0.28 | 0.25 |
Vele test in standing position | 0.08 ± 0.28 | 0.00 ± 0.00 | 0.57 | 0.00 ± 0.00 | 0.00 ± 0.00 | 0.00 | 0.12 ± 0.33 | 0.04 ± 0.02 | 0.30 |
Matthias test in standing position | 0.12 ± 0.03 | 0.00 ± 0.00 | 0.73 | 0.08 ± 0.28 | 0.04 ± 0.20 | 0.16 | 0.12 ± 0.03 | 0.04 ± 0.20 | 0.30 |
Single leg stand | 0.00 ± 0.00 | 0.00 ± 0.00 | 0.00 | 0.08 ± 0.28 | 0.00 ± 0.00 | 0.57 | 0.04 ± 0.20 | 0.00 ± 0.00 | 0.40 |
Clinical Test | Activation M. Transversus Abdominis |
---|---|
Inspiration in supine position | −0.276 |
Matthias test in standing position | 0.212 |
Hip flexion in supine position | −0.211 |
Trunk flexion in supine position | −0.178 |
Single leg stand | 0.155 |
Hip abduction in lateral position | 0.095 |
Vele test in standing position | −0.060 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marchand, F.; Laudner, K.; Delank, K.-S.; Schwesig, R.; Steinmetz, A. Effects of Sensorimotor Training on Transversus Abdominis Activation in Chronic Low Back Pain Patients. J. Pers. Med. 2023, 13, 817. https://doi.org/10.3390/jpm13050817
Marchand F, Laudner K, Delank K-S, Schwesig R, Steinmetz A. Effects of Sensorimotor Training on Transversus Abdominis Activation in Chronic Low Back Pain Patients. Journal of Personalized Medicine. 2023; 13(5):817. https://doi.org/10.3390/jpm13050817
Chicago/Turabian StyleMarchand, Felix, Kevin Laudner, Karl-Stefan Delank, René Schwesig, and Anke Steinmetz. 2023. "Effects of Sensorimotor Training on Transversus Abdominis Activation in Chronic Low Back Pain Patients" Journal of Personalized Medicine 13, no. 5: 817. https://doi.org/10.3390/jpm13050817
APA StyleMarchand, F., Laudner, K., Delank, K.-S., Schwesig, R., & Steinmetz, A. (2023). Effects of Sensorimotor Training on Transversus Abdominis Activation in Chronic Low Back Pain Patients. Journal of Personalized Medicine, 13(5), 817. https://doi.org/10.3390/jpm13050817