Prognostic Role of Clinical Features of Moderate Forms of COVID-19 Requiring Hospitalization
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Peñalvo, J.L.; Mertens, E.; Ademović, E.; Akgun, S.; Baltazar, A.L.; Buonfrate, D.; Čoklo, M.; Devleesschauwer, B.; Diaz Valencia, P.A.; Fernandes, J.C.; et al. Unravelling Data for Rapid Evidence-Based Response to COVID-19: A Summary of the UnCoVer Protocol. BMJ Open 2021, 11, e055630. [Google Scholar] [CrossRef] [PubMed]
- Khan, M.; Khan, H.; Khan, S.; Nawaz, M. Epidemiological and clinical characteristics of coronavirus disease (COVID-19) cases at a screening clinic during the early outbreak period: A single-centre study. J. Med. Microbiol. 2020, 69, 1114–1123. [Google Scholar] [CrossRef] [PubMed]
- Lian, J.; Jin, X.; Hao, S.; Jia, H.; Cai, H.; Zhang, X.; Hu, J.; Zheng, L.; Wang, X.; Zhang, S.; et al. Epidemiological, clinical, and virological characteristics of 465 hospitalized cases of coronavirus disease 2019 (COVID-19) from Zhejiang province in China. Influenza Other Respi. Viruses 2020, 14, 564–574. [Google Scholar] [CrossRef] [PubMed]
- Tharakan, S.; Nomoto, K.; Miyashita, S.; Ishikawa, K. Body temperature correlates with mortality in COVID-19 patients. Crit. Care 2020, 24, 298. [Google Scholar] [CrossRef]
- Lai, F.; Li, X.; Liu, T.; Wang, X.; Wang, Q.; Chen, S.; Wei, S.; Xiong, Y.; Hou, Q.; Zeng, X.; et al. Optimal diagnostic fever thresholds using non-contact infrared thermometers under COVID-19. Front. Public Health 2022, 10, 985553. [Google Scholar] [CrossRef]
- Grünebaum, A.; Chervenak, F.A.; McCullough, L.B.; Dudenhausen, J.W.; Bornstein, E.; Mackowiak, P.A. How fever is defined in COVID-19 publications: A disturbing lack of precision. J. Perinat. Med. 2021, 49, 255–261. [Google Scholar] [CrossRef]
- Liang, W.; Liang, H.; Ou, L.; Chen, B.; Chen, A.; Li, C.; Li, Y.; Guan, W.; Sang, L.; Lu, J.; et al. Development and Validation of a Clinical Risk Score to Predict the Occurrence of Critical Illness in Hospitalized Patients With COVID-19. JAMA Intern. Med. 2020, 180, 1081. [Google Scholar] [CrossRef]
- Mudatsir, M.; Fajar, J.K.; Wulandari, L.; Soegiarto, G.; Ilmawan, M.; Purnamasari, Y.; Mahdi, B.A.; Jayanto, G.D.; Suhendra, S.; Setianingsih, Y.A.; et al. Predictors of COVID-19 severity: A systematic review and meta-analysis. F1000Research 2021, 9, 1107. [Google Scholar] [CrossRef]
- Lopez-Leon, S.; Wegman-Ostrosky, T.; Perelman, C.; Sepulveda, R.; Rebolledo, P.A.; Cuapio, A.; Villapol, S. More than 50 long-term effects of COVID-19: A systematic review and meta-analysis. Sci. Rep. 2021, 11, 16144. [Google Scholar] [CrossRef]
- Misra, S.; Kolappa, K.; Prasad, M.; Radhakrishnan, D.; Thakur, K.T.; Solomon, T.; Michael, B.D.; Winkler, A.S.; Beghi, E.; Guekht, A.; et al. Frequency of Neurologic Manifestations in COVID-19: A Systematic Review and Meta-analysis. Neurology 2021, 97, e2269–e2281. [Google Scholar] [CrossRef]
- Islam, M.A.; Cavestro, C.; Alam, S.S.; Kundu, S.; Kamal, M.A.; Reza, F. Encephalitis in Patients with COVID-19: A Systematic Evidence-Based Analysis. Cells 2022, 11, 2575. [Google Scholar] [CrossRef]
- Islam, M.A.; Alam, S.S.; Kundu, S.; Hossan, T.; Kamal, M.A.; Cavestro, C. Prevalence of Headache in Patients With Coronavirus Disease 2019 (COVID-19): A Systematic Review and Meta-Analysis of 14,275 Patients. Front. Neurol. 2020, 11, 562634. [Google Scholar] [CrossRef]
- Gonzalez-Martinez, A.; Fanjul, V.; Ramos, C.; Serrano Ballesteros, J.; Bustamante, M.; Villa Martí, A.; Álvarez, C.; García del Álamo, Y.; Vivancos, J.; Gago-Veiga, A.B. Headache during SARS-CoV-2 infection as an early symptom associated with a more benign course of disease: A case–control study. Eur. J. Neurol. 2021, 28, 3426–3436. [Google Scholar] [CrossRef]
- Fernández-de-las-Peñas, C.; Gómez-Mayordomo, V.; Cuadrado, M.L.; Palacios-Ceña, D.; Florencio, L.L.; Guerrero, A.L.; García-Azorín, D.; Hernández-Barrera, V.; Arendt-Nielsen, L. The presence of headache at onset in SARS-CoV-2 infection is associated with long-term post-COVID headache and fatigue: A case-control study. Cephalalgia 2021, 41, 1332–1341. [Google Scholar] [CrossRef]
- Uygun, Ö.; Ertaş, M.; Ekizoğlu, E.; Bolay, H.; Özge, A.; Kocasoy Orhan, E.; Çağatay, A.A.; Baykan, B. Headache characteristics in COVID-19 pandemic-a survey study. J. Headache Pain 2020, 21, 121. [Google Scholar] [CrossRef]
- Caronna, E.; Pozo-Rosich, P. Headache as a Symptom of COVID-19: Narrative Review of 1-Year Research. Curr. Pain Headache Rep. 2021, 25, 73. [Google Scholar] [CrossRef]
- Togha, M.; Hashemi, S.M.; Yamani, N.; Martami, F.; Salami, Z. A Review on Headaches Due to COVID-19 Infection. Front. Neurol. 2022, 13, 942956. [Google Scholar] [CrossRef]
- Göbel, C.H.; Heinze, A.; Karstedt, S.; Morscheck, M.; Tashiro, L.; Cirkel, A.; Hamid, Q.; Halwani, R.; Temsah, M.-H.; Ziemann, M.; et al. Clinical characteristics of headache after vaccination against COVID-19 (coronavirus SARS-CoV-2) with the BNT162b2 mRNA vaccine: A multicentre observational cohort study. Brain Commun. 2021, 3, fcab169. [Google Scholar] [CrossRef]
- Eliezer, M.; Hautefort, C.; Hamel, A.-L.; Verillaud, B.; Herman, P.; Houdart, E.; Eloit, C. Sudden and Complete Olfactory Loss of Function as a Possible Symptom of COVID-19. JAMA Otolaryngol. Head Neck Surg. 2020, 146, 674. [Google Scholar] [CrossRef]
- Lechien, J.R.; Chiesa-Estomba, C.M.; De Siati, D.R.; Horoi, M.; Le Bon, S.D.; Rodriguez, A.; Dequanter, D.; Blecic, S.; El Afia, F.; Distinguin, L.; et al. Olfactory and gustatory dysfunctions as a clinical presentation of mild-to-moderate forms of the coronavirus disease (COVID-19): A multicenter European study. Eur. Arch. Oto-Rhino-Laryngol. 2020, 277, 2251–2261. [Google Scholar] [CrossRef]
- Lee, M.-H.; Perl, D.P.; Nair, G.; Li, W.; Maric, D.; Murray, H.; Dodd, S.J.; Koretsky, A.P.; Watts, J.A.; Cheung, V.; et al. Microvascular Injury in the Brains of Patients with COVID-19. N. Engl. J. Med. 2021, 384, 481–483. [Google Scholar] [CrossRef] [PubMed]
- Brann, D.H.; Tsukahara, T.; Weinreb, C.; Lipovsek, M.; Van den Berge, K.; Gong, B.; Chance, R.; Macaulay, I.C.; Chou, H.-J.; Fletcher, R.B.; et al. Non-neuronal expression of SARS-CoV-2 entry genes in the olfactory system suggests mechanisms underlying COVID-19-associated anosmia. Sci. Adv. 2020, 6, eabc5801. [Google Scholar] [CrossRef] [PubMed]
- Brandão Neto, D.; Fornazieri, M.A.; Dib, C.; Di Francesco, R.C.; Doty, R.L.; Voegels, R.L.; de Rezende Pinna, F. Chemosensory Dysfunction in COVID-19: Prevalences, Recovery Rates, and Clinical Associations on a Large Brazilian Sample. Otolaryngol.-Head Neck Surg. 2021, 164, 512–518. [Google Scholar] [CrossRef] [PubMed]
- Favas, T.T.; Dev, P.; Chaurasia, R.N.; Chakravarty, K.; Mishra, R.; Joshi, D.; Mishra, V.N.; Kumar, A.; Singh, V.K.; Pandey, M.; et al. Neurological manifestations of COVID-19: A systematic review and meta-analysis of proportions. Neurol. Sci. 2020, 41, 3437–3470. [Google Scholar] [CrossRef] [PubMed]
- Porta-Etessam, J.; Núñez-Gil, I.J.; González García, N.; Fernandez-Perez, C.; Viana-Llamas, M.C.; Eid, C.M.; Romero, R.; Molina, M.; Uribarri, A.; Becerra-Muñoz, V.M.; et al. COVID-19 anosmia and gustatory symptoms as a prognosis factor: A subanalysis of the HOPE COVID-19 (Health Outcome Predictive Evaluation for COVID-19) registry. Infection 2021, 49, 677–684. [Google Scholar] [CrossRef]
- Mercier, J.; Osman, M.; Bouiller, K.; Tipirdamaz, C.; Gendrin, V.; Chirouze, C.; Lepiller, Q.; Bouvier, E.; Royer, P.; Pierron, A.; et al. Olfactory dysfunction in COVID-19, new insights from a cohort of 353 patients: The ANOSVID study. J. Med. Virol. 2022, 94, 4762–4775. [Google Scholar] [CrossRef]
- Hoong, C.W.S.; Amin, M.N.M.E.; Tan, T.C.; Lee, J.E. Viral arthralgia a new manifestation of COVID-19 infection? A cohort study of COVID-19-associated musculoskeletal symptoms. Int. J. Infect. Dis. 2021, 104, 363–369. [Google Scholar] [CrossRef]
- Jiang, X.; Coffee, M.; Bari, A.; Wang, J.; Jiang, X.; Huang, J.; Shi, J.; Dai, J.; Cai, J.; Zhang, T.; et al. Towards an Artificial Intelligence Framework for Data-Driven Prediction of Coronavirus Clinical Severity. Comput. Mater. Contin. 2020, 62, 537–551. [Google Scholar] [CrossRef]
- Lippi, G.; Wong, J.; Henry, B.M. Myalgia may not be associated with severity of coronavirus disease 2019 (COVID-19). World J. Emerg. Med. 2020, 11, 193. [Google Scholar] [CrossRef]
- Herndon, C.M.; Nguyen, V. Patterns of Viral Arthropathy and Myalgia Following COVID-19: A Cross-Sectional National Survey. JPR 2022, 15, 3069–3077. [Google Scholar] [CrossRef]
- Pal, A.; Roongta, R.; Mondal, S.; Sinha, D.; Sinhamahapatra, P.; Ghosh, A.; Chattopadhyay, A. Does post-COVID reactive arthritis exist? Experience of a tertiary care centre with a review of the literature. Reumatol. Clínica 2023, 19, 67–73. [Google Scholar] [CrossRef]
- Vojdani, A.; Vojdani, E.; Kharrazian, D. Reaction of Human Monoclonal Antibodies to SARS-CoV-2 Proteins With Tissue Antigens: Implications for Autoimmune Diseases. Front. Immunol. 2021, 11, 617089. [Google Scholar] [CrossRef]
- Anaya, J.-M.; Rojas, M.; Salinas, M.L.; Rodríguez, Y.; Roa, G.; Lozano, M.; Rodríguez-Jiménez, M.; Montoya, N.; Zapata, E.; Monsalve, D.M.; et al. Post-COVID syndrome. A case series and comprehensive review. Autoimmun. Rev. 2021, 20, 102947. [Google Scholar] [CrossRef]
- Guan, W.; Ni, Z.; Hu, Y.; Liang, W.; Ou, C.; He, J.; Liu, L.; Shan, H.; Lei, C.; Hui, D.S.C.; et al. Clinical Characteristics of Coronavirus Disease 2019 in China. N. Engl. J. Med. 2020, 382, 1708–1720. [Google Scholar] [CrossRef]
- Hoffmann, M.; Kleine-Weber, H.; Schroeder, S.; Krüger, N.; Herrler, T.; Erichsen, S.; Schiergens, T.S.; Herrler, G.; Wu, N.-H.; Nitsche, A.; et al. SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor. Cell 2020, 181, 271–280.e8. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.; Liu, P.; Shi, X.L.; Chu, Y.L.; Zhang, J.; Xia, J.; Gao, X.Z.; Qu, T.; Wang, M.Y. SARS-CoV-2 induced diarrhoea as onset symptom in patient with COVID-19. Gut 2020, 69, 1143–1144. [Google Scholar] [CrossRef]
- Wang, M.-K.; Yue, H.-Y.; Cai, J.; Zhai, Y.-J.; Peng, J.-H.; Hui, J.-F.; Hou, D.-Y.; Li, W.-P.; Yang, J.-S. COVID-19 and the digestive system: A comprehensive review. WJCC 2021, 9, 3796–3813. [Google Scholar] [CrossRef]
- Li, K.; Wu, J.; Wu, F.; Guo, D.; Chen, L.; Fang, Z.; Li, C. The Clinical and Chest CT Features Associated With Severe and Critical COVID-19 Pneumonia. Investig. Radiol. 2020, 55, 327–331. [Google Scholar] [CrossRef] [PubMed]
- Hedayat, B.; Hosseini, K. Chest pain and high troponin level without significant respiratory symptoms in young patients with COVID-19. Casp. J. Intern. Med. 2020, 11 (Suppl. S1), 561. [Google Scholar] [CrossRef]
- Puntmann, V.O.; Carerj, M.L.; Wieters, I.; Fahim, M.; Arendt, C.; Hoffmann, J.; Shchendrygina, A.; Escher, F.; Vasa-Nicotera, M.; Zeiher, A.M.; et al. Outcomes of Cardiovascular Magnetic Resonance Imaging in Patients Recently Recovered From Coronavirus Disease 2019 (COVID-19). JAMA Cardiol. 2020, 5, 1265. [Google Scholar] [CrossRef]
- Filippetti, L.; Pace, N.; Marie, P.Y. Cardiac Involvement After Recovering From COVID-19. JAMA Cardiol. 2021, 6, 243. [Google Scholar] [CrossRef] [PubMed]
- Ammirati, E.; Lupi, L.; Palazzini, M.; Hendren, N.S.; Grodin, J.L.; Cannistraci, C.V.; Schmidt, M.; Hekimian, G.; Peretto, G.; Bochaton, T.; et al. Prevalence, Characteristics, and Outcomes of COVID-19–Associated Acute Myocarditis. Circulation 2022, 145, 1123–1139. [Google Scholar]
- Guo, T.; Fan, Y.; Chen, M.; Wu, X.; Zhang, L.; He, T.; Wang, H.; Wan, J.; Wang, X.; Lu, Z. Cardiovascular Implications of Fatal Outcomes of Patients With Coronavirus Disease 2019 (COVID-19). JAMA Cardiol. 2020, 5, 811. [Google Scholar] [CrossRef]
- Jia, J.L.; Kamceva, M.; Rao, S.A.; Linos, E. Cutaneous manifestations of COVID-19: A preliminary review. J. Am. Acad. Dermatol. 2020, 83, 687–690. [Google Scholar] [CrossRef]
- Bartleson, J.M.; Radenkovic, D.; Covarrubias, A.J.; Furman, D.; Winer, D.A.; Verdin, E. SARS-CoV-2, COVID-19 and the aging immune system. Nat. Aging 2021, 1, 769–782. [Google Scholar] [CrossRef]
- Wang, L.; He, W.; Yu, X.; Hu, D.; Bao, M.; Liu, H.; Zhou, J.; Jiang, H. Coronavirus disease 2019 in elderly patients: Characteristics and prognostic factors based on 4-week follow-up. J. Infect. 2020, 80, 639–645. [Google Scholar] [CrossRef]
- Herrera-Esposito, D.; de los Campos, G. Age-specific rate of severe and critical SARS-CoV-2 infections estimated with multi-country seroprevalence studies. BMC Infect. Dis. 2022, 22, 311. [Google Scholar] [CrossRef]
Clinical Feature | Present at Admission |
---|---|
cough | 312 (69%) |
shortness of breath | 250 (55.3%) |
fatigue | 219 (48.4%) |
fever | 203 (44.9%) |
myalgia | 96 (21.2%) |
headache | 95 (21%) |
anorexia | 73 (16.1%) |
chest pain | 62 (13.7%) |
diarrhea | 51 (11.2%) |
smell loss | 51 (11.2%) |
nausea | 50 (11%) |
arthralgia | 45 (9.9%) |
sore throat | 41 (9%) |
abdominal pain | 24 (5.3%) |
taste loss | 21 (4.6%) |
confusion | 20 (4.4%) |
nasal discharge | 15 (3.3%) |
convulsions | 3 (0.6%) |
wheezing | 3 (0.6%) |
skin rash | 0 (0%) |
Recovered | Transferred | Deceased | p Value (Chi Square) | ||
---|---|---|---|---|---|
confusion | absent | 350 (77.7%) | 41 (9.1%) | 39 (8.6%) | <0.001 |
present | 8 (1.7%) | 6 (1.3%) | 6 (1.3%) | ||
shortness of breath | absent | 176 (39%) | 6 (1.3%) | 19 (4.2%) | <0.001 |
present | 183 (40.6%) | 41 (9.1%) | 26 (5.7%) |
Age ≤ 60 Years | Age > 60 Years | Age ≤ 60 Years (%) | Age > 60 Years (%) | p Value (Chi Square) | |
---|---|---|---|---|---|
cough | 119 | 190 | 67.2 | 70.1 | |
shortness of breath | 76 | 174 | 42.9 | 64.2 | <0.001 * |
fatigue | 72 | 146 | 40.6 | 54.4 | 0.005 |
fever | 90 | 111 | 50.8 | 40.9 | 0.025 |
myalgia | 41 | 53 | 23.1 | 19.7 | |
headache | 42 | 52 | 23.7 | 19.3 | |
anorexia | 24 | 48 | 13.6 | 17.8 | |
chest pain | 22 | 39 | 12.4 | 14.4 | |
diarrhea | 17 | 34 | 9.6 | 12.5 | |
nausea | 19 | 31 | 10.7 | 11.5 | |
arthralgia | 17 | 28 | 9.6 | 10.3 | |
smell loss | 30 | 20 | 17 | 7.5 | 0.002 |
confusion | 4 | 16 | 2.2 | 5.9 | |
abdominal pain | 9 | 14 | 5 | 5.1 | |
sore throat | 27 | 13 | 15.2 | 4.8 | <0.001 * |
taste loss | 13 | 8 | 7.7 | 3.1 | 0.028 |
runny nose | 7 | 8 | 3.9 | 2.9 | |
wheezing | 1 | 2 | 0.5 | 0.7 | |
convulsions | 2 | 1 | 1.1 | 0.3 |
Odds Ratio | 95% IC | p Value | |
---|---|---|---|
confusion | 5.73 | 2.17–15.17 | 0.0001 |
shortness of breath | 2.08 | 1.22–3.53 | 0.007 |
age > 60 years | 3.29 | 1.81–5.97 | 0.0001 |
Shortness of Breath Absent | Present | p Value (Chi Square) | ||
---|---|---|---|---|
Arterial hypertension | absent | 117 (26.1%) | 91 (20.3%) | <0.001 * |
present | 83 (18.5%) | 157 (35%) | ||
Cardiovascular disease | absent | 156 (34.8%) | 156 (34.8%) | 0.001 * |
present | 45 (10%) | 93 (20.7%) | ||
COPD | absent | 189 (42.1%) | 217 (48.4%) | 0.016 |
present | 12 (2.6%) | 32 (7.1%) | ||
Confusion absent | present | p value (chi square) | ||
Neurological disease | absent | 391 (87.2%) | 11 (2.4%) | <0.001 * |
present | 35 (7.8) | 8 (1.7%) | ||
Hepatic disease | absent | 391 (87.2%) | 14 (3.1%) | 0.001 * |
present | 37 (8.2%) | 6 (1.3%) | ||
Cardiovascular disease | absent | 302 (67.4%) | 9 (2%) | 0.024 |
present | 127 (28.3%) | 11 (2.4%) | ||
Arterial hypertension | absent | 203 (45.3%) | 4 (0.8%) | 0.02 |
present | 224 (50%) | 16 (3.5%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Trofor, A.C.; Cernomaz, A.T.; Lotrean, L.M.; Crișan-Dabija, R.A.; Penalvo, J.L.; Melinte, O.E.; Popa, D.R.; Man, M.A. Prognostic Role of Clinical Features of Moderate Forms of COVID-19 Requiring Hospitalization. J. Pers. Med. 2023, 13, 900. https://doi.org/10.3390/jpm13060900
Trofor AC, Cernomaz AT, Lotrean LM, Crișan-Dabija RA, Penalvo JL, Melinte OE, Popa DR, Man MA. Prognostic Role of Clinical Features of Moderate Forms of COVID-19 Requiring Hospitalization. Journal of Personalized Medicine. 2023; 13(6):900. https://doi.org/10.3390/jpm13060900
Chicago/Turabian StyleTrofor, Antigona Carmen, Andrei Tudor Cernomaz, Lucia Maria Lotrean, Radu Adrian Crișan-Dabija, Jose L. Penalvo, Oana Elena Melinte, Daniela Robu Popa, and Milena Adina Man. 2023. "Prognostic Role of Clinical Features of Moderate Forms of COVID-19 Requiring Hospitalization" Journal of Personalized Medicine 13, no. 6: 900. https://doi.org/10.3390/jpm13060900
APA StyleTrofor, A. C., Cernomaz, A. T., Lotrean, L. M., Crișan-Dabija, R. A., Penalvo, J. L., Melinte, O. E., Popa, D. R., & Man, M. A. (2023). Prognostic Role of Clinical Features of Moderate Forms of COVID-19 Requiring Hospitalization. Journal of Personalized Medicine, 13(6), 900. https://doi.org/10.3390/jpm13060900