Critical Assessment of Phenotyping Cocktails for Clinical Use in an African Context †
Abstract
:1. Introduction
2. Review of Phenotyping Cocktails Developed over the Last Two Decades
Cocktail (n) | Matrix | PKP | Probe Drugs and Doses | Phenotyping Metrics | Analytical Methods | Ref. |
---|---|---|---|---|---|---|
1999 “GW cocktail” (n = not specified) | Plasma and Urine | CYP1A2 CYP2C9 CYP2C19 CYP2D6 CYP2E1 CYP3A4 | caffeine 100 mg diclofenac 10 mg mephenytoin 25 mg debrisoquine 10 mg chloroxazone 250 mg midazolam 5 mg | Concentration–time profiles for caffeine, chloroxazone, midazolam and metabolites. Absolute urinary recovery over 12 h for S-mephenytoin and diclofenac. | Online-SPE LC-MS/MS | [39] |
2001 Zhu et al. (n = 14) | Plasma and Urine | CYP1A2 CYP2C19 CYP2D6 CYP2E1 CYP3A4 | caffeine 100 mg mephenytoin 100 mg metoprolol 100 mg chloroxazone 200 mg midazolam 7.5 mg | [par]/[caf] 6 h plasma [mep]/[OH-mep] 8 h collective urine [met]/[OH-met] 8 h collective urine [OH-chlor]/[chlor] 4 h plasma [OH-mdz]/[mdz] 1 h plasma | β-glucuronidation + liquid extraction LLE HPLC-UV | [40] |
2003 Karolinska cocktail (n = 24) | Plasma and Urine | CYP1A2 CYP2C9 CYP2C19 CYP2D6 CYP3A4 | caffeine 100 mg losartan 25 mg omeprazole 20 mg debrisoquine 10 mg quinine 250 mg | [par]/[caf] 3.5, 4 h plasma [los]/[E 3174] 8 h collective urine [OH-opz]/[opz] 3, 3.5 h plasma [deb]/[OH-deb] 8 h collective urine [OH-qui] 16 h plasma | PPT of plasma with ACN, LLE HPLC-UV HPLC-FL detection | [41] |
2003 Cooperstown 5 + 1 cocktail (n = 12) | Plasma and Urine | CYP1A2, NAT2, XO CYP2C19 CYP2D6 CYP3A4 | caffeine 2 mg/kg caffeine 2 mg/kg caffeine 2 mg/kg omeprazole 40 mg dextromethorphan 30 mg midazolam 0.025 mg/kg (plus, vit K) S-warfarin 10 mg | [1X + 1U + AFMU]/[17U]12 h collective urine [AFMU]/[1X + 1U] 12 h collective urine [1U]/[1X + 1U] 12 h collective urine [OH-opz]/[opz] plasma [dtp]/[dex] 12 h collective urine [OH-mdz]/[mdz] plasma AUC 0–∞ S-warfarin | LLE, SPE HPLC-UV HPLC-FL detection | [47] |
2004 Quebec cocktail Sharma et al. (n = 10) | Urine | CYP1A2, NAT2, XO CYP2C9 CYP2D6 CYP2E1 CYP3A4 | caffeine 100 mg caffeine 100 mg caffeine 100 mg tolbutamide 250 mg metoprolol 25 mg chloroxazone 250 mg dapsone 100 mg | [1X + 1U + AFMU]/[17U]8 h collective urine [AFMU]/[AFMU + 1X + 1U] 8 h collective urine [1U]/[1X + 1U] 8 h collective urine [COOH-tol + OH-tol]/[tol] 8 h collective urine [Met]/[OH-met] 8 h collective urine [OH-chlor]/[chlor] 8 h collective urine [dap-HA]/[dap + dap-HA] 8 h collective urine | β-glucuronidase/arylsulphatase + LLE HPLC-UV LC-MS/MS | [48] |
2004 Loughborough -Blakey et al. (n = 12) | Plasma and Urine | CYP1A2 CYP2C9 CYP2D6 CYP2E1 CYP3A4 | caffeine 100 mg tolbutamide 250 mg debrisoquine 5 mg chloroxazone 250 mg midazolam 0.025 mg/kg | [par]/[caf] 6.5 h plasma [COOH-tol + OH-tol]/[tol] 6–12 h urine [deb]/[OH-deb] 0–6 h urine [OH-chlor]/[[chlor] 2 h 32 min plasma AUC last plasma MDZ | Dilute and shoot/β-glucuronidase +/SPE/ACN PPT LC-MS | [42] |
2004 Jerdi et al. (Geneva University Hospital) (n = 10) | Plasma | CYP1A2 CYP2C9 CYP2C19 CYP2D6 CYP3A4 | caffeine 100 mg flurbiprofen 50 mg omeprazole 40 mg dextromethorphan 25 mg midazolam 7.5 mg | PK parameters and clinical study were to be published elsewhere. No reference found in English language. | LLE/PPT HPLC-UV and HPLC-FL detection | [54] |
2004 Yin et al. (n = 16) | Plasma and Urine | CYP1A2 CYP2C9 CYP2C19 CYP2D6 CYP3A4 | caffeine 100 mg tolbutamide 500 mg omeprazole 40 mg debrisoquine 10 mg midazolam 3.75 mg | [par]/[caf] 2/3 h plasma [COOH-tol + OH-tol]/[tol] 6–12 h urine [OH-opz]/[opz] 2/3 h plasma [OH-deb]/[deb] 0–6 h urine [OH-mdz]/[mdz] 2/3 h | SPE LC-MS | [43] |
2005 Tomalik-Scharte et al. (Note: 30 mg of dextromethorphan-HBr also given, results not reported) (n = 16) | Plasma and Urine | CYP1A2 CYP2C9 CYP2C19 CYP3A4 Hepatic CYP3A4 Intestinal | caffeine 150 mg tolbutamide 125 mg mephenytoin 50 mg midazolam 2 mg iv midazolam 1 mg po | [par]/[caf] 6 h plasma [COOH-tol + OH-tol]/[tol] 6–12 h urine AND AUC0–∞, Cmax oral, tmax oral, t 1/2, λz, CL/F, [tol] 24 h plasma 4′-Hydroxymephenytoin 0–8 h urine AUC 0–∞ i.v., CL i.v. mid, Fhepatic Foral, Fintestinal, AUC0--∞ oral, Cmax oral, tmax oral, t 1/2, λz | β-glucuronidase deconjugation/SPE/plasma PPT HPLC-UV LC-MS/MS | [44] |
2006 Pittsburg + 1 (n = 24) | Plasma and Urine | CYP1A2 CYP2C9 CYP2C19 CYP2D6 CYP2E1 NAT2 | caffeine 100 mg flurbiprofen 50 mg mephenytoin 100 mg debrisoquine 10 mg chloroxazone 250 mg dapsone 100 mg | [par]/[caf] 8 h plasma [OH-flb]/[OH-flb + flb] 0–8 h urine 4′-Hydroxymephenytoin 0–8 h urine [OH-deb]/[OH-deb + deb] 0–8 h urine [OH-chlor]/[chlor] 4 h plasma [MA-dap]/[dap] 8 h plasma | No sample prep mentioned HPLC | [49] |
2006 Darmstadt-Krösser et al. (n = 18) | Plasma and Urine | CYP1A2 CYP2C9 CYP2C19 CYP2D6 CYP3A4 | caffeine 100 mg diclofenac 50 mg mephenytoin 100 mg metoprolol 100 mg midazolam 7.5 mg | AUC 0–24 h par/AUC 0–24 h caf AUC 0–24 h OH-dic/AUC 0–24 h dic 4′-Hydroxymephenytoin 0–8 h urine AUC 0–72 h OH-met/AUC 0–72 h met AUC0–24 mdz | SPE HPLC-FL LC-MS/MS | [46] |
2007 Inje cocktail (n = 12) | Plasma and Urine | CYP1A2 CYP2C9 CYP2C19 CYP2D6 CYP3A4 | caffeine 93 mg losartan 30 mg omeprazole 20 mg dextromethorphan 30 mg midazolam 2 mg | [par]/[caf] 4 h plasma [los]/[E 3174] 8 h collective urine [OH-opz]/[opz] 4 h plasma log[dtp]/[dex] 8 h collective urine [mdz] 4 h plasma | LLE LC-MS/MS HPLC-FL detection | [45] |
2008 Petsalo et al. (n = not specified) | Urine | CYP1A2 CYP2A6 CYP2B6 CYP2C8 CYP2C9 CYP2C19 CYP2D6 CYP2E1 CYP3A4 CYP3A4 | melatonin 3 mg nicotine 2 mg bupropion 150 mg repaglinide 1 mg losartan 50 mg omeprazole 20 mg dextromethorphan 12.5 mg chloroxazone 62.5 mg midazolam 3.75 mg omeprazole 20 mg | [mel] AND [OH-mel] 8 h collective urine [nic] AND [cot] 8 h collective urine [bup] AND [OH-bup] 8 h collective urine [rep] AND [OH-rep] 8 h collective urine [los] AND [E 3174] 8 h collective urine [opz] AND [OH-opz] 8 h collective urine [dex] AND [dtp] 8 h collective urine [chlor] AND [OH-chlor] 8 h collective urine [mdz] AND [OH-mdz] 8 h collective urine [opz] AND [opz-sulphone] 8 h collective urine | β-glucuronidase hydrolysis UPLC-MS/MS LC-MS/MS | [55] |
2009 Ghassabian et al. (n = 11) | Plasma | CYP1A2 CYP2C9 CYP2C19 CYP2D6 CYP3A4 | caffeine 100 mg losartan 25 mg omeprazole 20 mg dextromethorphan 30 mg midazolam 2 mg | [par]/[caf] 4 h AUC 0–6 h E-3174/AUC 0–6 h los [OH-opz]/[opz] 4 or 6 h AUC 0–6 h dtp/AUC 0–6 h dex AUC 0–6 h OH-mdz/AUC 0–6 h mdz | SPE and LLE after initial PPT with CAN HPLC-MS/MS | [56] |
2009 Sanofi-Aventis cocktail-Turpault et al. (n = 30) | Plasma | CYP1A2 CYP2C9 CYP2C19 CYP2D6 CYP3A4 | caffeine 100 mg S-warfarin 10 mg omeprazole 20 mg metoprolol 100 mg midazolam 0.03 mg/kg IV | AUC0–∞ caffeine AUC0–∞ S-warfarin AUC0–∞ omeprazole AUC0–∞ metoprolol AUC0–∞ midazolam | SPE and LLE LC-MS/MS separate analysis | [57] |
2010 CIME cocktail NOTE: initial cocktail included amodiaquine as CYP2C8 probe. Repaglinide was added in 2016 (n = not specified) | Plasma | CYP1A2 CYP2C8 CYP2C9 CYP2C19 CYP2D6 CYP3A4 OATP UGT Renal P-gp | caffeine 73 mg repaglinide 0.25 mg * tolbutamide 10 mg omeprazole 10 mg dextromethorphan 18 mg midazolam 4 mg rosuvastatin 5 mg acetaminophen 60 mg memantine 5 mg digoxin 0.25 mg | Cmax, AUC∞, t1/2, CL/F were calculated for all substrates in addition to AUC∞substrate/AUC∞metabolite for CYP450 substrates and metabolites. | SPE UPLC-MS/MS | [50,58] |
2012 Inje–low dose Oh et al. (n = 13) | Plasma | CYP1A2 CYP2C9 CYP2C19 CYP2D6 CYP3A4 | caffeine 10 mg losartan 2 mg omeprazole 200 µg dextromethorphan 2 mg midazolam 100 µg | AUC0–12 h caf, AUC 0–12 h par AUC0–12 h los, AUC 0–12 h EXP3174 [OH-opz] 1.5 h, [opz] 1.5 h AUC0–12 h dex, AUC 0–12 h dtp Cmax OH-mdz at 6 h, AUC 0–12 h OH-mdz | LLE LC-MS/MS | [59] |
2012 Wohlfarth et al. (n = 14) | Plasma | CYP1A2 CYP2C9 CYP2C19 CYP2D6 CYP3A4 | caffeine 100 mg tolbutamide 125 mg omeprazole 20 mg dextromethorphan 30 mg midazolam 2 mg | [par]/[caf] 4 h [tol] 24 h plasma [OH-opz]/[opz] 4 h [dex]/[dtp] 4 h [mdz] 4 h | SPE LC-MS/MS | [60] |
2014 Geneva cocktail (n = 10) | Plasma and DBS | CYP1A2 CYP2B6 CYP2C9 CYP2C19 CYP2D6 CYP3A4 P-gp | caffeine 50 mg bupropion 20 mg flurbiprofen 10 mg omeprazole 10 mg dextromethorphan 10 mg midazolam 1 mg fexofenadine 25 mg | [par]/[caf] 2 h [OH-bup]/[bup] 3 h [OH-flb]/[flb] 3 h AUC2,3,6 h opz/AUC2,3,6 h OH-opz [dtp]/[dex] 3 h [OH-mdz]/[mdz] 2 h Limited sampling AUC2,3,6 h | DBS—MeOH Plasma—ACN PPT LC-MS/MS | [51,61] |
2014 Basel cocktail (n = 16) | Plasma, saliva and DBS | CYP1A2 CYP2B6 CYP2C9 CYP2C19 CYP2D6 CYP3A4 | caffeine 100 mg efavirenz 50 mg losartan 12.5 mg omeprazole 10 mg metoprolol 12.5 mg midazolam 2 mg | [par]/[caf] 8 h plasma; [par]/[caf] 8 h DBS; [par]/[caf] 8 h saliva [efv]/[OH-efv] 8 h plasma [los]/[E 3174] 8 h plasma [opz]/[OH-opz] 2h plasma; [opz]/[OH-opz] 2 h DBS; [opz]/[OH-opz] 2 h saliva [met]/[OH-met] 8 h plasma [mdz]/[OH-mdz] 2 h plasma | PPT LC-MS/MS | [53] |
2016 Lammers et al. (n = not specified) | Plasma | CYP1A2 CYP2C9 CYP2C19 CYP2D6 CYP3A4 | caffeine 100 mg warfarin 5 mg omeprazole 20 mg metoprolol 100 mg midazolam 0.03 mg/kg IV | AUC0–∞ caffeine AUC0–∞ S-warfarin AUC0–∞ omeprazole AUC0–∞ metoprolol AUC0–∞ midazolam | PPT with 42:8 ACN: MeOH LC-MS/MS nonchiral and chiral methods | [62] |
2017 Puris et al. NOTE: repaglinide excluded as metabolite 3′-hydroxyrepaglinide not detected from samples and interference of another compound with similar m/z (n = 4) | Urine and Serum | CYP1A2 CYP2A6 CYP2B6 CYP2C8 CYP2C9 CYP2C19 CYP2D6 CYP2E1 CYP3A4 CYP3A4 | melatonin 2 mg nicotine 1 mg bupropion 37.5 mg repaglinide 0.25 mg losartan 12.5 mg omeprazole 10 mg dextromethorphan 30 mg chloroxazone 62.5 mg midazolam 1.85 mg omeprazole 10 mg | AUC0–6 h limited sampling, Cmax and tmax and cumulative concentration in urine for probe drugs and metabolites calculated. 5-Hydroxyomeprazole indicative of CYP2C19 metabolism and omeprazole sulfone of CYP3A4 metabolism. | β-glucuronidase hydrolysis for urine SPE, PPT (method of choice), LLE LC-MS/MS—3 separate runs | [63] |
2017 Grangeon et al. NOTE: chlorzoxazone administered separately to avoid interaction with CYP3A4 (n = not specified) | Plasma and Urine | CYP1A2 CYP2B6 CYP2C9 CYP2C19 CYP2D6 CYP3A4 CYP2E1 | caffeine 100 mg bupropion 100 mg tolbutamide 250 mg omeprazole 20 mg dextromethorphan 30 mg midazolam 2 mg chlorzoxazone 250 mg | Plasma and urinary concentrations of all probe drugs and metabolites were obtained from patients on polypharmacy. | β-glucuronidase/sulfatase hydrolysis PPT Three separate UPLC-MS/MS methods | [64] |
2018 Sao Paulo cocktail (n = 3) | Plasma | CYP1A2 CYP2C9 CYP2C19 CYP2D6 CYP3A4 P-gp | caffeine 10 mg losartan 2 mg omeprazole 2 mg metoprolol 10 mg midazolam 0.2 mg fexofenadine 10 mg | AUC0–∞ for all analytes except E-3174 where AUC0–12 h were used, Cmax and Cl/F (L/h). | SPE, LLE, PPT Three separate UPLC-MS/MS methods | [52] |
3. Discussion
3.1. Selectivity of Probe Drugs for Metabolizing Enzymes or Drug Transporters
3.2. Tolerability of Drug Doses Used in Phenotyping Cocktails and Safety Profiles of Some Proposed Probes
3.3. Sample Collection Protocols and Corresponding Phenotyping Measurements Chosen for Phenotype Assessment
3.4. Pharmacokinetic, Pharmacodynamic and Bioanalytical Interaction between Probe Drugs in Simultaneous Assessment of Phenotype
4. Conclusions and Future Direction
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Johansson, I.; Ingelman-Sundberg, M. Genetic polymorphism and toxicology—With emphasis on cytochrome p450. Toxicol. Sci. 2010, 120, 1–13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Patel, T.K.; Patel, P.B. Mortality among patients due to adverse drug reactions that lead to hospitalization: A meta-analysis. Eur. J. Clin. Pharmacol. 2018, 74, 819–832. [Google Scholar] [CrossRef] [PubMed]
- Murray, C.J.L.; Vos, T.; Lozano, R.; Naghavi, M.; Flaxman, A.D.; Michaud, C.; Ezzati, M.; Shibuya, K.; Salomon, J.A.; Abdalla, S.; et al. Disability-adjusted life years (DALYs) for 291 diseases and injuries in 21 regions, 1990–2010: A systematic analysis for the Global Burden of Disease Study 2010. Lancet 2012, 380, 2197–2223. [Google Scholar] [CrossRef] [PubMed]
- Mouton, J.P.; Njuguna, C.; Kramer, N.; Stewart, A.; Mehta, U.; Blockman, M.; Fortuin-De Smidt, M.; De Waal, R.; Parrish, A.G.; Wilson, D.P.; et al. Adverse drug reactions causing admission to medical wards: A cross-sectional survey at 4 hospitals in South Africa. Medicine 2016, 95, e3437. [Google Scholar] [CrossRef]
- Samer, C.F.; Lorenzini, K.I.; Rollason, V.; Daali, Y.; Desmeules, J.A. Applications of CYP450 testing in the clinical setting. Mol. Diagn. Ther. 2013, 17, 165–184. [Google Scholar] [CrossRef] [Green Version]
- Giacomini, K.M.; Huang, S.; Tweedie, D.J.; Benet, L.Z.; Brouwer, K.L.R.; Chu, X.; Dahlin, A.; Evers, R.; Fischer, V.; Hillgren, K.M.; et al. Membrane transporters in drug development. Nat. Rev. Drug Discov. 2010, 9, 215–236. [Google Scholar]
- Rajman, I.; Knapp, L.; Morgan, T.; Masimirembwa, C. African genetic diversity: Implications for cytochrome P450-mediated drug metabolism and drug development. EBioMedicine 2017, 17, 67–74. [Google Scholar] [CrossRef] [Green Version]
- Schuster, S.C.; Miller, W.; Ratan, A.; Tomsho, L.P.; Giardine, B.; Kasson, L.R.; Harris, R.S.; Petersen, D.C.; Zhao, F.; Qi, J.; et al. Complete Khoisan and Bantu genomes from southern Africa. Nature 2010, 463, 943–947. [Google Scholar] [CrossRef] [Green Version]
- Dandara, C.; Swart, M.; Mpeta, B.; Wonkam, A.; Masimirembwa, C. Cytochrome P450 pharmacogenetics in African populations: Implications for public health. Expert Opin. Drug Metab. Toxicol. 2014, 10, 769–785. [Google Scholar] [CrossRef]
- Campbell, M.C.; Tishkoff, S.A. African genetic diversity: Implications for human demographic history, modern human origins, and complex disease mapping. Annu. Rev. Genom. Hum. Genet. 2008, 9, 403–433. [Google Scholar] [CrossRef] [Green Version]
- Erickson, D.A.; Mather, G.; Trager, W.F.; Levy, R.H.; Keirns, J.J. Characterization of the in vitro biotransformation of the HIV-1 reverse transcriptase inhibitor nevirapine by human hepatic cytochromes P-450. Drug Metab. Dispos. 1999, 27, 1488–1495. [Google Scholar]
- Ampadu, H.H.; Hoekman, J.; de Bruin, M.L.; Pal, S.N.; Olsson, S.; Sartori, D.; Leufkens, H.G.; Dodoo, A.N. Adverse drug reaction reporting in Africa and a comparison of individual case safety report characteristics between Africa and the rest of the world: Analyses of spontaneous reports in VigiBase®. Drug Saf. 2016, 39, 335–345. [Google Scholar] [CrossRef] [Green Version]
- Dodgen, T.M. Pharmacogenetics of CYP2D6 and CYP2C19 as a Pre-Prescription Tool for Drug Efficacy and Toxicity in a Demographically-Representative Sample of the South-African Population, in Department of Pharmacology. Ph.D. Dissertation, University of Pretoria, Pretoria, South Africa, 2013; p. 237. [Google Scholar]
- Takanashi, K.; Tainaka, H.; Kobayashi, K.; Yasumori, T.; Hosakawa, M.; Chiba, K. CYP2C9 Ile359 and Leu359 variants: Enzyme kinetic study with seven substrates. Pharm. Genom. 2000, 10, 95–104. [Google Scholar] [CrossRef]
- Warnich, L.; Drogemoller, B.; Pepper, M.; Dandara, C.; Wright, G. Pharmacogenomics research in South Africa: Lessons learned and future opportunities in the rainbow nation. Curr. Pharm. Pers. Med. 2011, 9, 191–207. [Google Scholar] [CrossRef] [Green Version]
- Sakaeda, T.; Nakamura, T.; Okumura, K. Pharmacogenetics of drug transporters and its impact on the pharmacotherapy. Curr. Top. Med. Chem. 2004, 4, 1383–1396. [Google Scholar] [CrossRef]
- Sherry, S.T.; Ward, M.H.; Kholodov, M.; Baker, J.; Phan, L.; Smigielski, E.M.; Sirotkin, K. dbSNP: The NCBI database of genetic variation. Nucleic Acids Res. 2001, 29, 308–311. [Google Scholar] [CrossRef] [Green Version]
- Hoffmeyer, S.O.; Burk, O.; Von Richter, O.; Arnold, H.P.; Brockmöller, J.; Johne, A.; Cascorbi, I.; Gerloff, T.; Roots, I.; Eichelbaum, M.; et al. Functional polymorphisms of the human multidrug-resistance gene: Multiple sequence variations and correlation of one allele with P-glycoprotein expression and activity in vivo. Proc. Natl. Acad. Sci. USA 2000, 97, 3473–3478. [Google Scholar] [CrossRef]
- Schaeffeler, E.; Eichelbaum, M.; Brinkmann, U.; Penger, A.; Asante-Poku, S.; Zanger, U.M.; Schwab, M. Frequency of C3435T polymorphism of MDR1 gene in African people. Lancet 2001, 358, 383–384. [Google Scholar] [CrossRef]
- Peng, L.; Zhong, X. Epigenetic regulation of drug metabolism and transport. Acta Pharm. Sin. B 2015, 5, 106–112. [Google Scholar] [CrossRef] [Green Version]
- Nicolson, T.J.; Mellor, H.R.; Roberts, R.R.A. Gender differences in drug toxicity. Trends Pharmacol. Sci. 2010, 31, 108–114. [Google Scholar] [CrossRef]
- Anderson, G.D. Gender differences in pharmacological response. Int. Rev. Neurobiol. 2008, 83, 1–10. [Google Scholar] [PubMed]
- Li, H.; He, J.; Jia, W. The influence of gut microbiota on drug metabolism and toxicity. Expert Opin. Drug Metab. Toxicol. 2016, 12, 31–40. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, H. Nonalcoholic Steatohepatitis Alters Phase I Drug Metabolism. Ph.D. Dissertation, The University of Arizona, Tucson, AZ, USA, 2018. [Google Scholar]
- Obreli-Neto, P.R.; Nobili, A.; de Oliveira Baldoni, A.; Guidoni, C.M.; de Lyra Júnior, D.P.; Pilger, D.; Duzanski, J.; Tettamanti, M.; Cruciol-Souza, J.M.; Gaeti, W.P.; et al. Adverse drug reactions caused by drug-drug interactions in elderly outpatients: A prospective cohort study. Eur. J. Clin. Pharmacol. 2012, 68, 1667–1676. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.T.; Yu, L.S.; Zeng, S.; Huang, Y.W.; Xu, H.M.; Zhou, Q. Pharmacokinetic drug–drug interactions between 1, 4-dihydropyridine calcium channel blockers and statins: Factors determining interaction strength and relevant clinical risk management. Ther. Clin. Risk Manag. 2014, 10, 17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Katende-Kyenda, N.L.; Lubbe, M.S.; Serfontein, J.H.P.; Truter, I. Prevalence of drug-drug interactions of antiretroviral agents in the private health care sector in South Africa. S. Afr. Med. J. 2008, 98, 109–113. [Google Scholar]
- Amadi, C.N.; Mgbahurike, A.A. Selected Food/Herb-Drug Interactions: Mechanisms and Clinical Relevance. Am. J. Ther. 2018, 25, e423–e433. [Google Scholar] [CrossRef]
- Lammers, L.A.; Achterbergh, R.; de Vries, E.M.; Van Nierop, F.S.; Klümpen, H.J.; Soeters, M.R.; Boelen, A.; Romijn, J.A.; Mathôt, R.A. Short-Term Fasting alters Cytochrome P450 mediated Drug Metabolism in Humans. Drug Metab. Dispos. 2015, 43, 819–828. [Google Scholar] [CrossRef]
- Sørensen, J.M. Herb-drug, food-drug, nutrient-drug, and drug-drug interactions: Mechanisms involved and their medical implications. J. Altern. Complement. Med. 2002, 8, 293–308. [Google Scholar] [CrossRef]
- Marchetti, S.; Mazzanti, R.; Beijnen, J.H.; Schellens, J.H. Concise review: Clinical relevance of drug–drug and herb–drug interactions mediated by the ABC transporter ABCB1 (MDR1, P-glycoprotein). Oncologist 2007, 12, 927–941. [Google Scholar] [CrossRef] [Green Version]
- Olesen, C.; Harbig, P.; Barat, I.; Damsgaard, E.M. Absence of ‘over-the-counter’ medicinal products in on-line prescription records: A risk factor of overlooking interactions in the elderly. Pharmacoepidemiol. Drug Saf. 2013, 22, 145–150. [Google Scholar] [CrossRef]
- Amchin, J.; Ereshefsky, L.; Zarycranski, W.; Taylor, K.; Albano, D.; Klockowski, P.M. Effect of venlafaxine versus fluoxetine on metabolism of dextromethorphan, a CYP2D6 probe. J. Clin. Pharmacol. 2001, 41, 443–451. [Google Scholar] [CrossRef]
- Pope, L.E.; Khalil, M.H.; Berg, J.E.; Stiles, M.; Yakatan, G.J.; Sellers, E.M. Pharmacokinetics of dextromethorphan after single or multiple dosing in combination with quinidine in extensive and poor metabolizers. J. Clin. Pharmacol. 2004, 44, 1132–1142. [Google Scholar] [CrossRef]
- Shah, R.R.; Smith, R.L. Inflammation-Induced Phenoconversion of Polymorphic Drug Metabolizing Enzymes: Hypothesis with Implications for Personalized Medicine. Drug Metab. Dispos. 2015, 43, 400–410. [Google Scholar] [CrossRef] [Green Version]
- Shah, R.R.; Smith, R.L. Addressing phenoconversion: The Achilles’ heel of personalized medicine. Br. J. Clin. Pharmacol. 2015, 79, 222–240. [Google Scholar] [CrossRef]
- Hiemke, C.; Baumann, P.; Bergemann, N.; Conca, A.; Dietmaier, O.; Egberts, K.; Fric, M.; Gerlach, M.; Greiner, C.; Gründer, G.; et al. AGNP consensus guidelines for therapeutic drug monitoring in psychiatry: Update 2011. Pharmacopsychiatry 2011, 44, 195–235. [Google Scholar] [CrossRef]
- US Food and Drug Administration. Clinical Drug Interaction Studies—Study Design, Data Analysis and Clinical Implications. 2017. Available online: https://www.fda.gov/downloads/drugs/guidances/ucm292362.pdf (accessed on 27 June 2019).
- Scott, R.J.; Palmer, J.; Lewis, I.A.; Pleasance, S. Determination of a ‘GW cocktail’of cytochrome P450 probe substrates and their metabolites in plasma and urine using automated solid phase extraction and fast gradient liquid chromatography tandem mass spectrometry. Rapid Commun. Mass Spectrom. 1999, 13, 2305–2319. [Google Scholar] [CrossRef]
- Zhu, B.; Ou-Yang, D.S.; Chen, X.P.; Huang, S.L.; Tan, Z.R.; He, N.; Zhou, H.H. Assessment of cytochrome P450 activity by a five-drug cocktail approach. Clin. Pharmacol. Ther. 2001, 70, 455–461. [Google Scholar] [CrossRef]
- Christensen, M.; Andersson, K.; Dalén, P.; Mirghani, R.A.; Muirhead, G.J.; Nordmark, A.; Tybring, G.; Wahlberg, A.; Yaşar, Ü.; Bertilsson, L. The Karolinska cocktail for phenotyping of five human cytochrome P450 enzymes. Clin. Pharmacol. Ther. 2003, 73, 517–528. [Google Scholar] [CrossRef]
- Blakey, G.E.; Lockton, J.A.; Perrett, J.; Norwood, P.; Russell, M.; Aherne, Z.; Plume, J. Pharmacokinetic and pharmacodynamic assessment of a five-probe metabolic cocktail for CYPs 1A2, 3A4, 2C9, 2D6 and 2E1. Br. J. Clin. Pharmacol. 2004, 57, 162–169. [Google Scholar] [CrossRef] [Green Version]
- Yin, O.Q.; Lam, S.S.; Lo, C.M.; Chow, M.S. Rapid determination of five probe drugs and their metabolites in human plasma and urine by liquid chromatography/tandem mass spectrometry: Application to cytochrome P450 phenotyping studies. Rapid Commun. Mass Spectrom. 2004, 18, 2921–2933. [Google Scholar] [CrossRef]
- Tomalik-Scharte, D.; Jetter, A.; Kinzig-Schippers, M.; Skott, A.; Sörgel, F.; Klaassen, T.; Kasel, D.; Harlfinger, S.; Doroshyenko, O.; Frank, D.; et al. Effect of propiverine on cytochrome P450 enzymes: A cocktail interaction study in healthy volunteers. Drug Metab. Dispos. 2005, 33, 1859–1866. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ryu, J.Y.; Song, I.S.; Sunwoo, Y.E.; Shon, J.H.; Liu, K.H.; Cha, I.J.; Shin, J.G. Development of the ‘‘Inje Cocktail’’ for high-throughput evaluation of five human cytochrome P450 isoforms in vivo. Clin. Pharmacol. Ther. 2007, 82, 531–540. [Google Scholar] [CrossRef] [PubMed]
- Krösser, S.; Neugebauer, R.; Dolgos, H.; Fluck, M.; Rost, K.L.; Kovar, A. Investigation of sarizotan’s impact on the pharmacokinetics of probe drugs for major cytochrome P450 isoenzymes: A combined cocktail trial. Eur. J. Clin. Pharmacol. 2006, 62, 277–284. [Google Scholar] [CrossRef] [PubMed]
- Chainuvati, S.; Nafziger, A.N.; Leeder, J.S.; Gaedigk, A.; Kearns, G.L.; Sellers, E.; Zhang, Y.; Kashuba, A.D.; Rowland, E.; Bertino, J.S., Jr. Combined phenotypic assessment of cytochrome p450 1A2, 2C9, 2C19, 2D6, and 3A, N-acetyltransferase-2, and xanthine oxidase activities with the “Cooperstown 5+ 1 cocktail”. Clin. Pharmacol. Ther. 2003, 74, 437–447. [Google Scholar] [CrossRef] [PubMed]
- Sharma, A.; Pilote, S.; Bélanger, P.M.; Arsenault, M.; Hamelin, B.A. A convenient five-drug cocktail for the assessment of major drug metabolizing enzymes: A pilot study. Br. J. Clin. Pharmacol. 2004, 58, 288–297. [Google Scholar] [CrossRef] [Green Version]
- Zgheib, N.K.; Frye, R.F.; Tracy, T.S.; Romkes, M.; Branch, R.A. Validation of incorporating flurbiprofen into the Pittsburgh cocktail. Clin. Pharmacol. Ther. 2006, 80, 257–263. [Google Scholar] [CrossRef]
- Videau, O.; Delaforge, M.; Levi, M.; Thévenot, E.; Gal, O.; Becquemont, L.; Beaune, P.; Bénech, H. Biochemical and analytical development of the CIME cocktail for drug fate assessment in humans. Rapid Commun. Mass Spectrom. 2010, 24, 2407–2419. [Google Scholar] [CrossRef]
- Bosilkovska, M.; Samer, C.F.; Déglon, J.; Rebsamen, M.; Staub, C.; Dayer, P.; Walder, B.; Desmeules, J.A.; Daali, Y. Geneva cocktail for Cytochrome P450 and P-Glycoprotein activity assessment using dried blood spots. Clin. Pharmacol. Ther. 2014, 96, 349–359. [Google Scholar] [CrossRef]
- Cusinato, D.A.C.; de Oliveira Filgueira, G.C.; Rocha, A.; Cintra, M.A.C.; Lanchote, V.L.; Coelho, E.B. LC-MS/MS analysis of the plasma concentrations of a cocktail of 5 cytochrome P450 and P-glycoprotein probe substrates and their metabolites using subtherapeutic doses. J. Pharm. Biomed. Anal. 2018, 164, 430–441. [Google Scholar] [CrossRef]
- Donzelli, M.; Derungs, A.; Serratore, M.G.; Noppen, C.; Nezic, L.; Krähenbühl, S.; Haschke, M. The Basel cocktail for simultaneous phenotyping of human cytochrome P450 isoforms in plasma, saliva and dried blood spots. Clin. Pharmacokinet. 2014, 53, 271–282. [Google Scholar] [CrossRef]
- Jerdi, M.C.; Daali, Y.; Oestreicher, M.K.; Cherkaoui, S.; Dayer, P. A simplified analytical method for a phenotyping cocktail of major CYP450 biotransformation routes. J. Pharm. Biomed. Anal. 2004, 35, 1203–1212. [Google Scholar] [CrossRef]
- Petsalo, A.; Turpeinen, M.; Pelkonen, O.; Tolonen, A. Analysis of nine drugs and their cytochrome P450-specific probe metabolites from urine by liquid chromatography–tandem mass spectrometry utilizing sub 2 μm particle size column. J. Chromatogr. A 2008, 1215, 107–115. [Google Scholar] [CrossRef]
- Petsalo, A.; Turpeinen, M.; Pelkonen, O.; Tolonen, A. A high-throughput assay using liquid chromatography–tandem mass spectrometry for simultaneous in vivo phenotyping of 5 major cytochrome P450 enzymes in patients. Ther. Drug Monit. 2009, 31, 239–246. [Google Scholar]
- Turpault, S.; Brian, W.; Van Horn, R.; Santoni, A.; Poitiers, F.; Donazzolo, Y.; Boulenc, X. Pharmacokinetic assessment of a five-probe cocktail for CYPs 1A2, 2C9, 2C19, 2D6 and 3A. Br. J. Clin. Pharmacol. 2009, 68, 928–935. [Google Scholar] [CrossRef] [Green Version]
- Lenuzza, N.; Duval, X.; Nicolas, G.; Thévenot, E.; Job, S.; Videau, O.; Narjoz, C.; Loriot, M.A.; Beaune, P.; Becquemont, L.; et al. Safety and pharmacokinetics of the CIME combination of drugs and their metabolites after a single oral dosing in healthy volunteers. Eur. J. Drug Metab. Pharmacokinet. 2016, 41, 125–138. [Google Scholar] [CrossRef]
- Oh, K.S.; Park, S.J.; Shinde, D.D.; Shin, J.G.; Kim, D.H. High-sensitivity liquid chromatography–tandem mass spectrometry for the simultaneous determination of five drugs and their cytochrome P450-specific probe metabolites in human plasma. J. Chromatogr. B 2012, 895, 56–64. [Google Scholar] [CrossRef]
- Wohlfarth, A.; Naue, J.; Lutz-Bonengel, S.; Dresen, S.; Auwärter, V. Cocktail approach for in vivo phenotyping of 5 major CYP450 isoenzymes: Development of an effective sampling, extraction and analytical procedure and pilot study with comparative genotyping. J. Clin. Pharmacol. 2012, 52, 1200–1214. [Google Scholar] [CrossRef]
- Bosilkovska, M.; Déglon, J.; Samer, C.; Walder, B.; Desmeules, J.; Staub, C.; Daali, Y. Simultaneous LC-MS/MS quantification of P-glycoprotein and cytochrome P450 probe substrates and their metabolites in DBS and plasma. Bioanalysis 2014, 6, 151–164. [Google Scholar] [CrossRef] [Green Version]
- Lammers, L.A.; Achterbergh, R.; Pistorius, M.; Bijleveld, Y.; de Vries, E.M.; Boelen, A.; Klümpen, H.J.; Romijn, J.A.; Mathôt, R.A. Quantitative method for simultaneous analysis of a 5-probe cocktail for cytochrome P450 enzymes. Ther. Drug Monit. 2016, 38, 761–768. [Google Scholar] [CrossRef] [Green Version]
- Puris, E.; Pasanen, M.; Gynther, M.; Häkkinen, M.R.; Pihlajamäki, J.; Keränen, T.; Honkakoski, P.; Raunio, H.; Petsalo, A. A liquid chromatography-tandem mass spectrometry analysis of nine cytochrome P450 probe drugs and their corresponding metabolites in human serum and urine. Anal. Bioanal. Chem. 2017, 409, 251–268. [Google Scholar] [CrossRef]
- Grangeon, A.; Gravel, S.; Gaudette, F.; Turgeon, J.; Michaud, V. Highly sensitive LC–MS/MS methods for the determination of seven human CYP450 activities using small oral doses of probe-drugs in human. J. Chromatogr. B 2017, 1040, 144–158. [Google Scholar] [CrossRef] [PubMed]
- Guthrie, R.; Susi, A. A simple phenylalanine method for detecting phenylketonuria in large populations of newborn infants. Pediatrics 1963, 32, 338–343. [Google Scholar] [CrossRef] [PubMed]
- Kashuba, A.D.; Nafziger, A.N.; Kearns, G.L.; Leeder, J.S.; Shirey, C.S.; Gotschall, R.; Gaedigk, A.; Bertino, J., Jr. Quantification of intraindividual variability and the influence of menstrual cycle phase on CYP2D6 activity as measured by dextromethorphan phenotyping. Pharmacogenetics 1998, 8, 403–410. [Google Scholar] [CrossRef]
- Fuhr, U.; Rost, K.L.; Engelhardt, R.; Sachs, M.; Liermann, D.; Belloc, C.; Beaune, P.; Janezic, S.; Grant, D.; Meyer, U.A.; et al. Evaluation of caffeine as a test drug for CYP1A2, NAT2 and CYP2E1 phenotyping in man by in vivo versus in vitro correlations. Pharmacogenetics 1996, 6, 159–176. [Google Scholar] [CrossRef] [PubMed]
- Fuhr, U.; Jetter, A.; Kirchheiner, J. Appropriate phenotyping procedures for drug metabolizing enzymes and transporters in humans and their simultaneous use in the ‘‘cocktail’’ approach. Clin. Pharmacol. Ther. 2007, 81, 270–283. [Google Scholar] [CrossRef]
- Ha, H.R.; Follath, F.; Chen, J.; Krähenbühl, S. Biotransformation of caffeine by cDNA-expressed human cytochromes P-450. Eur. J. Clin. Pharmacol. 1996, 49, 309–315. [Google Scholar] [CrossRef]
- Wennerholm, A.; Dandara, C.; Sayi, J.; Svensson, J.O.; Abdi, Y.A.; Ingelman-Sundberg, M.; Bertilsson, L.; Hasler, J.; Gustafsson, L.L. The African-specific CYP2D6* 17 allele encodes an enzyme with changed substrate specificity. Clin. Pharmacol. Ther. 2002, 71, 77–88. [Google Scholar] [CrossRef] [PubMed]
- Droll, K.; Bruce-Mensah, K.; Otton, S.V.; Gaedigk, A.; Sellers, E.M.; Tyndale, R.F. Comparison of three CYP2D6 probe substrates and genotype in Ghanaians, Chinese and Caucasians. Pharmacogenetics 1998, 8, 325–333. [Google Scholar] [CrossRef]
- Streetman, D.S.; Bertino, J.S.; Nafziger, A.N. Phenotyping of drug-metabolizing enzymes in adults: A review of in-vivo cytochrome P450 phenotyping probes. Pharmacogenetics 2000, 10, 187–216. [Google Scholar] [CrossRef]
- Gaedigk, A.; Bradford, L.D.; Marcucci, K.A.; Leeder, J.S. Unique CYP2D6 activity distribution and genotype-phenotype discordance in black Americans. Clin. Pharmacol. Ther. 2002, 72, 76–89. [Google Scholar] [CrossRef]
- Ma, J.D.; Tsunoda, S.M.; Bertino, J.S.; Trivedi, M.; Beale, K.K.; Nafziger, A.N. Evaluation of In Vivo P-Glycoprotein Phenotyping Probes: A Need for Validation. Clin. Pharmacokinet. 2010, 49, 223–237. [Google Scholar] [CrossRef]
- Tannergren, C.; Knutson, T.; Knutson, L.; Lennernäs, H. The effect of ketoconazole on the in vivo intestinal permeability of fexofenadine using a regional perfusion technique. Br. J. Clin. Pharmacol. 2003, 55, 182–190. [Google Scholar] [CrossRef] [Green Version]
- Shimizu, M.; Uno, T.; Sugawara, K.; Tateishi, T. Effects of itraconazole and diltiazem on the pharmacokinetics of fexofenadine, a substrate of P-glycoprotein. Br. J. Clin. Pharmacol. 2006, 61, 538–544. [Google Scholar] [CrossRef] [Green Version]
- Bedada, S.K.; Yakkanti, S.A.; Neerati, P. Resveratrol enhances the bioavailability of fexofenadine in healthy human male volunteers: Involvement of P-glycoprotein inhibition. J. Bioequiv. Availab. 2014, 6, 158–163. [Google Scholar] [CrossRef] [Green Version]
- Fuhr, U.; Hsin, C.H.; Li, X.; Jabrane, W.; Sörgel, F. Assessment of Pharmacokinetic Drug–Drug Interactions in Humans: In Vivo Probe Substrates for Drug Metabolism and Drug Transport Revisited. Annu. Rev. Pharmacol. Toxicol. 2018, 59, 507–536. [Google Scholar] [CrossRef]
- Macheras, P.; Rosen, A. Is monitoring of drug in saliva reliable for bioavailability testing of a protein-bound drug? A theoretical approach. Pharm. Acta Helv. 1984, 59, 34. [Google Scholar]
- Hohmann, N.; Haefeli, W.E.; Mikus, G. Use of microdose phenotyping to individualise dosing of patients. Clin. Pharmacokinet. 2015, 54, 893–900. [Google Scholar] [CrossRef]
- Miners, J.O.; Birkett, D.J. [15] Use of tolbutamide as a substrate probe for human hepatic cytochrome P450 2C9. In Methods in Enzymology; Elsevier: Amsterdam, The Netherlands, 1996; pp. 139–145. [Google Scholar]
- Tamminga, W.J.; Wemer, J.; Oosterhuis, B.; Wieling, J.; Touw, D.J.; De Zeeuw, R.A.; De Leij, L.F.; Jonkman, J.H. Mephenytoin as a probe for CYP2C19 phenotyping:effect of sample storage, intra-individual reproducibility and occurrence of adverse events. Br. J. Clin. Pharmacol. 2001, 51, 471–474. [Google Scholar] [CrossRef] [Green Version]
- Zgheib, N.K.; Frye, R.F.; Tracy, T.S.; Romkes, M.; Branch, R.A. Evaluation of flurbiprofen urinary ratios as in vivo indices for CYP2C9 activity. Br. J. Clin. Pharmacol. 2007, 63, 477–487. [Google Scholar] [CrossRef] [Green Version]
- Lee, L.S.; Bertino, J.S.; Nafziger, A.N. Limited Sampling Models for Oral Midazolam: Midazolam Plasma Concentrations, Not the Ratio of 1-Hydroxymidazolam to Midazolam Plasma Concentrations, Accurately Predicts AUC as a Biomarker of CYP3A Activity. J. Clin. Pharmacol. 2006, 46, 229–234. [Google Scholar] [CrossRef]
- Nancy, M.K.H. Caffeine Metabolic Ratios for the In Vivo Evaluation of CYP1A2, N-acetyltransferase 2, Xanthine Oxidase and CYP2A6 Enzymatic Activities. Curr. Drug Metab. 2009, 10, 329–338. [Google Scholar] [CrossRef]
- Ma, J.D., Jr; Nafziger, A.N.; Kashuba, A.D.; Kim, M.J.; Gaedigk, A.; Rowland, E.; Kim, J.S.; Bertino, J.S., Jr. Limited Sampling Strategy of S-Warfarin Concentrations, but Not Warfarin S/R Ratios, Accurately Predicts S-Warfarin AUC during Baseline and Inhibition in CYP2C9 Extensive Metabolizers. J. Clin. Pharmacol. 2004, 44, 570–576. [Google Scholar]
- Yang, J.; Patel, M.; Nikanjam, M.; Capparelli, E.V.; Tsunoda, S.M.; Greenberg, H.E.; Penzak, S.R.; Aubrey Stoch, S.; Bertino, J.S., Jr; Nafziger, A.N.; et al. Midazolam Single Time Point Concentrations to Estimate Exposure and Cytochrome P450 (CYP) 3A Constitutive Activity Utilizing Limited Sampling Strategy with a Population Pharmacokinetic Approach. J. Clin. Pharmacol. 2018, 58, 1205–1213. [Google Scholar] [CrossRef] [PubMed]
- Srinivas, N.R. Prediction of area under the curve for a p-glycoprotein, a CYP3A4 and a CYP2C9 substrate using a single time point strategy: Assessment using fexofenadine, itraconazole and losartan and metabolites. Drug Dev. Ind. Pharm. 2016, 42, 945–957. [Google Scholar] [CrossRef]
- Chaobal, H.N.; Kharasch, E.D. Single-point sampling for assessment of constitutive, induced, and inhibited cytochrome P450 3A activity with alfentanil or midazolam. Clin. Pharmacol. Ther. 2005, 78, 529–539. [Google Scholar] [CrossRef]
- Berthou, F.; Goasduff, T.; Lucas, D.; Dréano, Y.; Le Bot, M.H.; Ménez, J.F. Interaction between two probes used for phenotyping cytochromes P4501A2 (caffeine) and P4502E1 (chlorzoxazone) in humans. Pharmacogenetics 1995, 5, 72–79. [Google Scholar] [CrossRef] [PubMed]
Limitation | Number of Cocktails with the Limitation | References |
---|---|---|
Multiple routes of administration | 5 | [42,44,47,57,62] |
Use of both urine and plasma matrixes in the phenotype assessment | 14 | [39,40,41,42,43,44,45,46,47,49,63,64] |
Discontinuation of probes mephenytoin and debrisoquin in most countries | 8 | [39,40,41,42,43,44,46,49] |
Use of therapeutic doses eliciting side effects in earlier cocktails | 10 | [39,40,41,42,43,46,47,48,49,54] |
Interaction between probe substrates requiring separate administration time points | 7 | [39,40,41,42,55,63,64] |
Extensive sampling procedures | 15 | [39,40,41,42,43,44,45,46,47,48,49,52,53,55,59] |
Complicated sample workup or multiple extraction assays | 8 | [41,42,44,48,52,54,56,57] |
Impractical analytical procedures | ||
Multiple bioanalytical methods used in a single cocktail | 5 | [52,57,62,63,64] |
Outdated analytical instruments with low detection limits | 4 | [40,41,47,54] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Leuschner, M.; Cromarty, A.D. Critical Assessment of Phenotyping Cocktails for Clinical Use in an African Context. J. Pers. Med. 2023, 13, 1098. https://doi.org/10.3390/jpm13071098
Leuschner M, Cromarty AD. Critical Assessment of Phenotyping Cocktails for Clinical Use in an African Context. Journal of Personalized Medicine. 2023; 13(7):1098. https://doi.org/10.3390/jpm13071098
Chicago/Turabian StyleLeuschner, Machel, and Allan Duncan Cromarty. 2023. "Critical Assessment of Phenotyping Cocktails for Clinical Use in an African Context" Journal of Personalized Medicine 13, no. 7: 1098. https://doi.org/10.3390/jpm13071098
APA StyleLeuschner, M., & Cromarty, A. D. (2023). Critical Assessment of Phenotyping Cocktails for Clinical Use in an African Context. Journal of Personalized Medicine, 13(7), 1098. https://doi.org/10.3390/jpm13071098