Controlling Nutritional Status (CONUT) Score as a Predictive Marker in Hospitalized Frail Elderly Patients
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population and Design
2.2. Biochemical Analysis and Data Collection
2.3. Multidimensional Assessment
2.4. Length of Stay and Mortality
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bellanti, F.; Lo Buglio, A.; Quiete, S.; Vendemiale, G. Malnutrition in Hospitalized Old Patients: Screening and Diagnosis, Clinical Outcomes, and Management. Nutrients 2022, 14, 910. [Google Scholar] [CrossRef] [PubMed]
- Volkert, D.; Beck, A.M.; Cederholm, T.; Cereda, E.; Cruz-Jentoft, A.; Goisser, S.; dde Groot, L.; Großhauser, F.; Kiesswetter, E.; Norman, K.; et al. Management of Malnutrition in Older Patients-Current Approaches, Evidence and Open Questions. J. Clin. Med. 2019, 8, 974. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alzahrani, S.H.; Alamri, S.H. Prevalence of malnutrition and associated factors among hospitalized elderly patients in King Abdulaziz University Hospital, Jeddah, Saudi Arabia. BMC Geriatr. 2017, 17, 136. [Google Scholar] [CrossRef] [Green Version]
- Allard, J.P.; Keller, H.; Jeejeebhoy, K.N.; Laporte, M.; Duerksen, D.R.; Gramlich, L.; Payette, H.; Bernier, P.; Davidson, B.; Teterina, A.; et al. Decline in nutritional status is associated with prolonged length of stay in hospitalized patients admitted for 7 days or more: A prospective cohort study. Clin. Nutr. 2016, 35, 144–152. [Google Scholar] [CrossRef] [PubMed]
- Richards, S.J.G.; D’Souza, J.; Pascoe, R.; Falloon, M.; Frizelle, F.A. Prevalence of frailty in a tertiary hospital: A point prevalence observational study. PLoS ONE 2019, 14, e0219083. [Google Scholar] [CrossRef] [PubMed]
- Hong, X.; Yan, J.; Xu, L.; Shen, S.; Zeng, X.; Chen, L. Relationship between nutritional status and frailty in hospitalized older patients. Clin. Interv. Aging 2019, 14, 105–111. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Evans, S.J.; Sayers, M.; Mitnitski, A.; Rockwood, K. The risk of adverse outcomes in hospitalized older patients in relation to a frailty index based on a comprehensive geriatric assessment. Age Ageing 2014, 43, 127–132. [Google Scholar] [CrossRef] [Green Version]
- Bellanti, F.; Buglio, A.L.; Quiete, S.; Pellegrino, G.; Dobrakowski, M.; Kasperczyk, A.; Kasperczyk, S.; Vendemiale, G. Comparison of Three Nutritional Screening Tools with the New Glim Criteria for Malnutrition and Association with Sarcopenia in Hospitalized Older Patients. J. Clin. Med. 2020, 9, 1898. [Google Scholar] [CrossRef]
- Salinas, M.; Flores, E.; Blasco, A.; López-Garrigós, M.; Puche, C.; Asencio, A.; Leiva-Salinas, C. CONUT: A tool to assess nutritional status. First application in a primary care population. Diagnosis 2020, 8, 373–376. [Google Scholar] [CrossRef]
- Liu, C.; Zhu, M.; Yang, X.; Cui, H.; Li, Z.; Wei, J. Controlling Nutritional Status Score as a Predictive Marker of In-hospital Mortality in Older Adult Patients. Front. Nutr. 2021, 8, 738045. [Google Scholar] [CrossRef]
- Sun, X.; Luo, L.; Zhao, X.; Ye, P. Controlling Nutritional Status (CONUT) score as a predictor of all-cause mortality in elderly hypertensive patients: A prospective follow-up study. BMJ Open 2017, 7, e015649. [Google Scholar] [CrossRef] [Green Version]
- Ignacio de Ulíbarri, J.; González-Madroño, A.; de Villar, N.G.P.; González, P.; González, B.; Mancha, A.; Rodríguez, F.; Fernández, G. CONUT: A tool for controlling nutritional status. First validation in a hospital population. Nutr. Hosp. 2005, 20, 38–45. [Google Scholar]
- Kato, T.; Yaku, H.; Morimoto, T.; Inuzuka, Y.; Tamaki, Y.; Yamamoto, E.; Yoshikawa, Y.; Kitai, T.; Taniguchi, R.; Iguchi, M.; et al. Association with Controlling Nutritional Status (CONUT) Score and In-hospital Mortality and Infection in Acute Heart Failure. Sci. Rep. 2020, 10, 3320. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hayama, T.; Ozawa, T.; Okada, Y.; Tsukamoto, M.; Fukushima, Y.; Shimada, R.; Nozawa, K.; Matsuda, K.; Fujii, S.; Hashiguchi, Y. The pretreatment Controlling Nutritional Status (CONUT) score is an independent prognostic factor in patients undergoing resection for colorectal cancer. Sci. Rep. 2020, 10, 13239. [Google Scholar] [CrossRef]
- Kokura, Y.; Kimoto, K.; Okada, Y.; Kawakita, S. The Controlling Nutritional Status score as a functional prognostic marker in patients with acute stroke: A multicenter retrospective cohort study. Nutrition 2020, 79–80, 110889. [Google Scholar] [CrossRef] [PubMed]
- Romano, A.D.; Lo Buglio, A.; Bellanti, F.; Villani, R.; Serviddio, G.; Vendemiale, G. Diagnostic reliability of the procalcitonin serum marker in septic frail patient. Aging Clin. Exp. Res. 2019, 31, 727–732. [Google Scholar] [CrossRef] [PubMed]
- Guigoz, Y.; Vellas, B. The Mini Nutritional Assessment (MNA) for Grading the Nutritional State of Elderly Patients: Presentation of the MNA, History and Validation. In Mini Nutritional Assessment (MNA): Research and Practice in the Elderly; KARGER: Basel, Switzerland, 1999; pp. 3–12. [Google Scholar]
- Folstein, M.F.; Folstein, S.E.; McHugh, P.R. “Mini-mental state”. A practical method for grading the cognitive state of patients for the clinician. J. Psychiatr. Res. 1975, 12, 189–198. [Google Scholar] [CrossRef]
- Lo Buglio, A.; Bellanti, F.; Capurso, C.; Paglia, A.; Vendemiale, G. Adherence to Mediterranean Diet, Malnutrition, Length of Stay and Mortality in Elderly Patients Hospitalized in Internal Medicine Wards. Nutrients 2019, 11, 790. [Google Scholar] [CrossRef] [Green Version]
- Lesher, E.L.; Berryhill, J.S. Validation of the geriatric depression scale-short form among inpatients. J. Clin. Psychol. 1994, 50, 256–260. [Google Scholar] [CrossRef]
- Doody, P.; Asamane, E.A.; Aunger, J.A.; Swales, B.; Lord, J.M.; Greig, C.A.; Whittaker, A.C. The prevalence of frailty and pre-frailty among geriatric hospital inpatients and its association with economic prosperity and healthcare expenditure: A systematic review and meta-analysis of 467,779 geriatric hospital inpatients. Ageing Res. Rev. 2022, 80, 101666. [Google Scholar] [CrossRef]
- Lauretani, F.; Longobucco, Y.; Ferrari Pellegrini, F.; De Iorio, A.M.; Fazio, C.; Federici, R.; Gallini, E.; La Porta, U.; Ravazzoni, G.; Roberti, M.F.; et al. Comprehensive Model for Physical and Cognitive Frailty: Current Organization and Unmet Needs. Front. Psychol. 2020, 11, 569629. [Google Scholar] [CrossRef] [PubMed]
- Fried, L.P.; Tangen, C.M.; Walston, J.; Newman, A.B.; Hirsch, C.; Gottdiener, J.; Seeman, T.; Tracy, R.; Kop, W.J.; Burke, G.; et al. Frailty in older adults: Evidence for a phenotype. J. Gerontol. A Biol. Sci. Med. Sci. 2001, 56, M146–M156. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.T.; Fafard, J.; Ahern, S.; Vendittoli, P.A.; Hebert, P. Frailty as a predictor of hospital length of stay after elective total joint replacements in elderly patients. BMC Musculoskelet. Disord. 2018, 19, 14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wong, B.L.L.; Chan, Y.H.; O’Neill, G.K.; Murphy, D.; Merchant, R.A. Frailty, length of stay and cost in hip fracture patients. Osteoporos. Int. 2023, 34, 59–68. [Google Scholar] [CrossRef]
- Nguyen, T.N.; Cumming, R.G.; Hilmer, S.N. The Impact of Frailty on Mortality, Length of Stay and Re-hospitalisation in Older Patients with Atrial Fibrillation. Heart. Lung Circ. 2016, 25, 551–557. [Google Scholar] [CrossRef]
- Guenter, P.; Abdelhadi, R.; Anthony, P.; Blackmer, A.; Malone, A.; Mirtallo, J.M.; Phillips, W.; Resnick, H.E. Malnutrition diagnoses and associated outcomes in hospitalized patients: United States, 2018. Nutr. Clin. Pract. 2021, 36, 957–969. [Google Scholar] [CrossRef]
- Miano, N.; Di Marco, M.; Alaimo, S.; Coppolino, G.; L’Episcopo, G.; Leggio, S.; Scicali, R.; Piro, S.; Purrello, F.; Di Pino, A. Controlling Nutritional Status (CONUT) Score as a Potential Prognostic Indicator of In-Hospital Mortality, Sepsis and Length of Stay in an Internal Medicine Department. Nutrients 2023, 15, 1554. [Google Scholar] [CrossRef]
- Rinninella, E.; Borriello, R.; D’Angelo, M.; Galasso, T.; Cintoni, M.; Raoul, P.; Impagnatiello, M.; Annicchiarico, B.E.; Gasbarrini, A.; Mele, M.C. COntrolling NUTritional Status (CONUT) as Predictive Score of Hospital Length of Stay (LOS) and Mortality: A Prospective Cohort Study in an Internal Medicine and Gastroenterology Unit in Italy. Nutrients 2023, 15, 1472. [Google Scholar] [CrossRef]
- Cabré, M.; Ferreiro, C.; Arus, M.; Roca, M.; Palomera, E.; Serra-Prat, M. Evaluation of CONUT for Clinical Malnutrition Detection and Short-Term Prognostic Assessment in Hospitalized Elderly People. J. Nutr. Health Aging 2015, 19, 729–733. [Google Scholar] [CrossRef]
- Huang, X.W.; Luo, J.J.; Baldinger, B. The controlling nutritional status score and clinical outcomes in patients with heart failure: Pool analysis of observational studies. Front. Cardiovasc. Med. 2022, 9, 961141. [Google Scholar] [CrossRef]
- Dalmiglio, C.; Brilli, L.; Campanile, M.; Ciuoli, C.; Cartocci, A.; Castagna, M.G. CONUT Score: A New Tool for Predicting Prognosis in Patients with Advanced Thyroid Cancer Treated with TKI. Cancers 2022, 14, 724. [Google Scholar] [CrossRef] [PubMed]
- Takagi, K.; Buettner, S.; Ijzermans, J.N.M. Prognostic significance of the controlling nutritional status (CONUT) score in patients with colorectal cancer: A systematic review and meta-analysis. Int. J. Surg. 2020, 78, 91–96. [Google Scholar] [CrossRef] [PubMed]
- Xia, F.; Zhang, J.; Meng, S.; Qiu, H.; Guo, F. Association of Frailty With the Risk of Mortality and Resource Utilization in Elderly Patients in Intensive Care Units: A Meta-Analysis. Front. Med. 2021, 8, 637446. [Google Scholar] [CrossRef] [PubMed]
- Brummel, N.E.; Bell, S.P.; Girard, T.D.; Pandharipande, P.P.; Jackson, J.C.; Morandi, A.; Thompson, J.L.; Chandrasekhar, R.; Bernard, G.R.; Dittus, R.S.; et al. Frailty and Subsequent Disability and Mortality among Patients with Critical Illness. Am. J. Respir. Crit. Care Med. 2017, 196, 64–72. [Google Scholar] [CrossRef]
- Bonnefoy, M.; Berrut, G.; Lesourd, B.; Ferry, M.; Gilbert, T.; Guerin, O.; Hanon, O.; Jeandel, C.; Paillaud, E.; Raynaud-Simon, A.; et al. Frailty and nutrition: Searching for evidence. J. Nutr. Health Aging 2015, 19, 250–257. [Google Scholar] [CrossRef]
- Liang, H.; Li, X.; Lin, X.; Ju, Y.; Leng, J. The correlation between nutrition and frailty and the receiver operating characteristic curve of different nutritional indexes for frailty. BMC Geriatr. 2021, 21, 619. [Google Scholar] [CrossRef]
- Lim, S.L.; Ong, K.C.B.; Chan, Y.H.; Loke, W.C.; Ferguson, M.; Daniels, L. Malnutrition and its impact on cost of hospitalization, length of stay, readmission and 3-year mortality. Clin. Nutr. 2012, 31, 345–350. [Google Scholar] [CrossRef] [Green Version]
Nutritional Status | ||||
---|---|---|---|---|
Variables | Normal | Light | Moderate | Severe |
Albumin (g/dL) Score | ≥3.5 0 | 3.0–3.49 2 | 2.5–2.9 4 | <2.5 6 |
Total lymphocyte (/mm3) Score | >1600 0 | 1200–1599 1 | 800–1199 2 | <800 3 |
Total cholesterol (mg/dL) Score | >180 | 140–180 | 100–139 | <00 |
Screening total score | 0–1 | 2–4 | 5–8 | 9–12 |
Respiratory failure | 67 (27.2%) |
Sepsis | 44 (17.9%) |
Heart failure | 30 (12.2%) |
Cirrhosis | 13 (5.4%) |
Renal failure | 10 (4.1%) |
Pleural effusion | 10 (4.1%) |
Pneumoniae | 8 (3.2%) |
Other conditions | 64 (25.9%) |
Not Frail N = 121 (49.2%) | Frail N = 125 (50.8%) | p Value | |
---|---|---|---|
Age, years | 74.6 ± 6.4 | 80.7 ± 8.3 | <0.001 |
Genre F | 67 (55.4%) | 80 (64.0%) | 0.168 |
Co-morbidities > 3 | 48 (39.7%) | 62 (49.6%) | 0.117 |
Haemoglobin, g/dL | 12.4 ± 2.1 | 11.2 ± 1.8 | <0.001 |
WBCs, n/mm3 | 6700 [5285, 8550] | 8070 [5245, 11,500] | 0.026 |
Lymphocytes, n/mm3 | 1617 [1271, 2254] | 989 [705, 1413] | <0.001 |
Glucose, mg/dL | 104 [88.0, 128.5] | 110.5 [83.7, 145.2] | 0.458 |
Albumin, g/dL | 3.5 ± 0.5 | 2.8 ± 0.5 | <0.001 |
Total cholesterol, mg/dL | 169.9 ± 44.9 | 138.1 ± 43.7 | <0.001 |
Creatinine, mg/dL | 0.9 [0.7, 1.1] | 1.2 [0.8, 104] | 0.006 |
Triglycerides, mg/dL | 111.0 [78.5, 152.5] | 104.0 [78.0, 143.5] | 0.279 |
CRP, ng/ml | 5.2 [1.8, 16.6] | 29.4 [9.9, 47.4] | <0.001 |
BMI, Kg/m2 | 28.2 ± 5.5 | 26.6 ± 5.3 | 0.028 |
MNA, score | 23.5 ± 4.2 | 18.6 ± 4.9 | <0.001 |
CONUT, score | 3 [1, 4] | 6 [5, 8] | <0.001 |
MMSE, score | 22.6 ± 6.9 | 17.7 ± 9.0 | <0.001 |
ADL, score | 6 [5, 6] | 4 [1, 6] | <0.001 |
IADL, score | 5 [4, 8] | 2 [1, 5] | <0.001 |
GDS-SF, score | 3 [1, 6] | 5 [3, 7] | 0.001 |
LOS, days | 10.2 ± 4.3 | 16.2 ± 6.9 | <0.001 |
In-hospital Mortality, n (%) | 3 (2.5%) | 16 (12.8%) | 0.002 |
NOT FRAIL 121 (49.2%) | FRAIL 125 (50.8%) | |||||
---|---|---|---|---|---|---|
Low CONUT n. 99 (81.8%) | High CONUT n. 22 (18.2%) | p Value | Low CONUT n. 27 (21.6%) | High CONUT n. 98 (78.4%) | p Value | |
Hypertension | 68 (68.7%) | 12 (54.5%) | 0.205 | 18 (66.7%) | 52 (53.1%) | 0.207 |
Diabetes | 29 (29.3%) | 7 (31.8%) | 0.815 | 10 (37.0%) | 36 (36.7%) | 0.977 |
Heart failure | 27 (27.3%) | 5 (22.7%) | 0.662 | 8 (29.6%) | 30 (30.6%) | 0.922 |
Ictus | 12 (12.1%) | 4 (18.2%) | 0.448 | 9 (33.3%) | 33 (33.7%) | 0.974 |
IHCD | 26 (26.3%) | 6 (27.3%) | 0.923 | 9 (33.3%) | 30 (30.6%) | 0.787 |
Atrial fibrillation | 17 (17.2%) | 6 (27.3%) | 0.275 | 7 (25.9%) | 29 (29.6%) | 0.710 |
COPD | 43 (43.4%) | 9 (40.9%) | 0.829 | 10 (37.0%) | 40 (40.8%) | 0.723 |
CKD | 61 (61.6%) | 12 (54.5) | 0.540 | 16 (59.3%) | 50 (51.0%) | 0.448 |
Cirrhosis | 7 (7.1%) | 3 (13.6%) | 0.312 | 3 (11.1%) | 13 (13.3%) | 0.767 |
Low CONUT N = 27 (21.6%) | High CONUT N = 98 (78.4%) | p Value | |
---|---|---|---|
Age, years | 80.1 ± 8.7 | 80.8 ± 8.3 | 0.703 |
Genre F | 4 (14.8%) | 41 (41.8%) | 0.010 |
Co-morbidities > 3 | 12 (44.4%) | 50 (51.0%) | 0.545 |
Haemoglobin, g/dL | 11.6 ± 1.8 | 11.1 ± 1.8 | 0.163 |
WBCs, n/mm3 | 8600 [6020, 12,380] | 7445 [5075, 11,350] | 0.339 |
Lymphocytes, n/mm3 | 1370 [860, 1910] | 968 [661, 1318] | 0.012 |
Glucose, mg/dL | 113 [86, 143] | 110 [82, 147] | 0.993 |
Albumin, g/dL | 3.3 ± 0.4 | 2.7 ± 0.4 | <0.001 |
Total cholesterol, mg/dL | 176.8 ± 50.7 | 127.3 ± 35.0 | <0.001 |
Creatinine, mg/dL | 1.1 [0.7, 1.8] | 1.2 [0.7, 1.5] | 0.938 |
Triglycerides, mg/dL | 102.5 [76.7, 123.2] | 106.0 [78.0, 144.0] | 0.661 |
CRP, ng/ml | 16.4 [4.6, 42.7] | 32.3 [12.8, 51.7] | 0.022 |
BMI, Kg/m2 | 28.8 ± 6.6 | 25.9 ± 4.7 | 0.014 |
MNA, score | 19.8 ± 4.3 | 18.2 ± 5.1 | 0.184 |
MMSE, score | 19.2 ± 8.5 | 17.4 ± 9.2 | 0.424 |
ADL, score | 4 [1, 6] | 4 [1, 6] | 0.372 |
IADL, score | 2 [1, 4] | 2 [0, 5] | 0.796 |
Barthel, score | 60 [38, 82] | 55 [25, 90] | 0.997 |
GDS-SF, score | 4 [2, 8] | 5 [3, 7] | 0.716 |
NOT FRAIL 121 (49.2%) | FRAIL 125 (50.8%) | |||||
---|---|---|---|---|---|---|
Low CONUT n. 99 (81.8%) | High CONUT n. 22 (18.2%) | p Value | Low CONUT n. 27 (21.6%) | High CONUT n. 98 (78.4%) | p Value | |
LOS, Days | 9.2 ± 2.6 | 14.8 ± 7.0 | <0.001 | 9.8 ± 3.8 | 17.9 ± 6.5 | <0.001 |
In-Hospital Mortality, n (%) | 2 (2%) | 1 (4.5%) | 0.455 | 2 (7.4%) | 14 (14.3%) | 0.519 |
30-Day Mortality, n (%) | 2 (2%) | 1 (4.5%) | 0.455 | 2 (7.4%) | 18 (18.4%) | 0.239 |
R | p Value | |
---|---|---|
CRP, ng/mL | 0.02 | 0.868 |
MNA, score | −0.04 | 0.731 |
MMSE, score | −0.23 | 0.025 |
ADL, score | −0.25 | 0.012 |
IADL, score | −0.11 | 0.298 |
GDS-SF, score | 0.16 | 0.190 |
CONUT, score | 0.461 | <0.001 |
Single Linear Regression Analysis | Multiple Linear Regression Analysis | |||||
---|---|---|---|---|---|---|
Coefficients | p Value | IC 95% of Coefficient | Coefficients | p Value | IC 95% of Coefficient | |
MMSE, score | 0.70 | <0.001 | 0.50–0.81 | 0.11 | 0.175 | −0.01–0.27 |
ADL, score | 3.07 | <0.001 | 2.40–3.64 | 0.09 | 0.794 | −0.78–0.60 |
CONUT, score | 2.38 | <0.001 | 2.22–2.55 | 2.11 | <0.001 | 1.78–2.40 |
Univariate Cox PH Model | Multivariable Cox PH Model | |||||
---|---|---|---|---|---|---|
B Coeff. | HR (95% IC) | p Value | B Coeff. | HR (95% IC) | p Value | |
CRP, ng/mL | −0.009 | 0.971 (0.979, 1.002) | 0.111 | |||
MNA, score | 0.073 | 1.076 (1.018, 1.137) | 0.010 | −0.44 | 0.957 (0.870, 1.052) | 0.363 |
MMSE, score | 0.017 | 1.017 (0.984, 1.051) | 0.323 | |||
ADL, score | 0.110 | 1.116 (1.002, 1.243) | 0.046 | 0.001 | 1.001 (0.844, 1.188) | 0.991 |
IADL, score | 0.190 | 1.209 (1.091, 1.340) | 0.001 | 0.196 | 1.217 (1.042, 1.421) | 0.013 |
GDS-SF, score | −0.056 | 0.945 (0.890, 1.004) | 0.066 | |||
CONUT, score | −0.229 | 0.795 (0.716, 0.883) | 0.001 | −0.223 | 0.800 (0.711, 0.900) | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lo Buglio, A.; Bellanti, F.; Capurso, C.; Vendemiale, G. Controlling Nutritional Status (CONUT) Score as a Predictive Marker in Hospitalized Frail Elderly Patients. J. Pers. Med. 2023, 13, 1119. https://doi.org/10.3390/jpm13071119
Lo Buglio A, Bellanti F, Capurso C, Vendemiale G. Controlling Nutritional Status (CONUT) Score as a Predictive Marker in Hospitalized Frail Elderly Patients. Journal of Personalized Medicine. 2023; 13(7):1119. https://doi.org/10.3390/jpm13071119
Chicago/Turabian StyleLo Buglio, Aurelio, Francesco Bellanti, Cristiano Capurso, and Gianluigi Vendemiale. 2023. "Controlling Nutritional Status (CONUT) Score as a Predictive Marker in Hospitalized Frail Elderly Patients" Journal of Personalized Medicine 13, no. 7: 1119. https://doi.org/10.3390/jpm13071119
APA StyleLo Buglio, A., Bellanti, F., Capurso, C., & Vendemiale, G. (2023). Controlling Nutritional Status (CONUT) Score as a Predictive Marker in Hospitalized Frail Elderly Patients. Journal of Personalized Medicine, 13(7), 1119. https://doi.org/10.3390/jpm13071119