Interactions of EGFR/PTEN/mTOR-Pathway Activation and Estrogen Receptor Expression in Cervical Cancer
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Descriptive Statistics
3.2. Comparison of Tumor Tissue and Adjacent Negative Tissue Controls
3.3. p-mTOR Expression Correlates with EGFR Expression, ER Expression, and PTEN-Loss in Tumor Samples but Not in Matched Negative Controls
3.4. A Patient Subset with Both Positive p-mTOR and ER Expression Is Associated with Improved Overall Survival
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Colombo, N.; Dubot, C.; Lorusso, D.; Caceres, M.V.; Hasegawa, K.; Shapira-Frommer, R.; Tewari, K.S.; Salman, P.; Hoyos Usta, E.; Yañez, E.; et al. Pembrolizumab for Persistent, Recurrent, or Metastatic Cervical Cancer. N. Engl. J. Med. 2021, 385, 1856–1867. [Google Scholar] [CrossRef] [PubMed]
- Pötter, R.; Tanderup, K.; Schmid, M.P.; Jürgenliemk-Schulz, I.; Haie-Meder, C.; Fokdal, L.U.; Sturdza, A.E.; Hoskin, P.; Mahantshetty, U.; Segedin, B.; et al. MRI-guided adaptive brachytherapy in locally advanced cervical cancer (EMBRACE-I): A multicentre prospective cohort study. Lancet Oncol. 2021, 22, 538–547. [Google Scholar] [CrossRef] [PubMed]
- Chao, X.; Song, X.; Wu, H.; You, Y.; Wu, M.; Li, L. Selection of Treatment Regimens for Recurrent Cervical Cancer. Front. Oncol. 2021, 11, 618485. [Google Scholar] [CrossRef] [PubMed]
- Tewari, K.S.; Monk, B.J.; Vergote, I.; Miller, A.; de Melo, A.C.; Kim, H.-S.; Kim, Y.M.; Lisyanskaya, A.; Samouëlian, V.; Lorusso, D.; et al. Survival with Cemiplimab in Recurrent Cervical Cancer. N. Engl. J. Med. 2022, 386, 544–555. [Google Scholar] [CrossRef]
- Ji, J.; Zheng, P.S. Activation of mTOR signaling pathway contributes to survival of cervical cancer cells. Gynecol. Oncol. 2010, 117, 103–108. [Google Scholar] [CrossRef]
- Motzer, R.J.; Escudier, B.; Oudard, S.; Hutson, T.E.; Porta, C.; Bracarda, S.; Grünwald, V.; Thompson, J.A.; Figlin, R.A.; Hollaender, N.; et al. Efficacy of everolimus in advanced renal cell carcinoma: A double-blind, randomised, placebo-controlled phase III trial. Lancet 2008, 372, 449–456. [Google Scholar] [CrossRef]
- Yao, J.C.; Shah, M.H.; Ito, T.; Bohas, C.L.; Wolin, E.M.; Van Cutsem, E.; Hobday, T.J.; Okusaka, T.; Capdevila, J.; de Vries, E.G.E.; et al. Everolimus for Advanced Pancreatic Neuroendocrine Tumors. N. Engl. J. Med. 2011, 364, 514–523. [Google Scholar] [CrossRef] [Green Version]
- Oh, K.-J.; Kalinina, A.; Park, N.-H.; Bagchi, S. Deregulation of eIF4E: 4E-BP1 in differentiated human papillomavirus-containing cells leads to high levels of expression of the E7 oncoprotein. J. Virol. 2006, 80, 7079–7088. [Google Scholar] [CrossRef] [Green Version]
- Pim, D.; Massimi, P.; Dilworth, S.M.; Banks, L. Activation of the protein kinase B pathway by the HPV-16 E7 oncoprotein occurs through a mechanism involving interaction with PP2A. Oncogene 2005, 24, 7830–7838. [Google Scholar] [CrossRef] [Green Version]
- Bossler, F.; Hoppe-Seyler, K.; Hoppe-Seyler, F. PI3K/AKT/mTOR Signaling Regulates the Virus/Host Cell Crosstalk in HPV-Positive Cervical Cancer Cells. Int. J. Mol. Sci. 2019, 20, 2188. [Google Scholar] [CrossRef] [Green Version]
- De Melo, A.C.; Grazziotin-Reisner, R.; Erlich, F.; Fontes Dias, M.S.; Moralez, G.; Carneiro, M.; Ingles Garces, Á.H.; Guerra Alves, F.V.; Novaes Neto, B.; Fuchshuber-Moraes, M.; et al. A phase I study of mTOR inhibitor everolimus in association with cisplatin and radiotherapy for the treatment of locally advanced cervix cancer: PHOENIX I. Cancer Chemother. Pharm. 2016, 78, 101–109. [Google Scholar] [CrossRef] [PubMed]
- Piha-Paul, S.A.; Wheler, J.J.; Fu, S.; Levenback, C.; Lu, K.; Falchook, G.S.; Naing, A.; Hong, D.S.; Tsimberidou, A.M.; Kurzrock, R. Advanced gynecologic malignancies treated with a combination of the VEGF inhibitor bevacizumab and the mTOR inhibitor temsirolimus. Oncotarget 2014, 5, 1846–1855. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tinker, A.V.; Ellard, S.; Welch, S.; Moens, F.; Allo, G.; Tsao, M.S.; Squire, J.; Tu, D.; Eisenhauer, E.A.; MacKay, H. Phase II study of temsirolimus (CCI-779) in women with recurrent, unresectable, locally advanced or metastatic carcinoma of the cervix. A trial of the NCIC Clinical Trials Group (NCIC CTG IND 199). Gynecol. Oncol. 2013, 130, 269–274. [Google Scholar] [CrossRef] [PubMed]
- Moroney, J.W.; Schlumbrecht, M.P.; Helgason, T.; Coleman, R.L.; Moulder, S.; Naing, A.; Bodurka, D.C.; Janku, F.; Hong, D.S.; Kurzrock, R. A Phase I Trial of Liposomal Doxorubicin, Bevacizumab, and Temsirolimus in Patients with Advanced Gynecologic and Breast Malignancies. Clin. Cancer Res. 2011, 17, 6840–6846. [Google Scholar] [CrossRef] [Green Version]
- Assad, D.X.; Elias, S.T.; Melo, A.C.; Ferreira, C.G.; De Luca Canto, G.; Guerra, E.N.S. Potential impact of mTOR inhibitors on cervical squamous cell carcinoma: A systematic review. Oncol. Lett. 2016, 12, 4107–4116. [Google Scholar] [CrossRef] [Green Version]
- Boulay, A.; Rudloff, J.; Ye, J.; Zumstein-Mecker, S.; O’Reilly, T.; Evans, D.B.; Chen, S.; Lane, H.A. Dual Inhibition of mTOR and Estrogen Receptor Signaling In vitro Induces Cell Death in Models of Breast Cancer. Clin. Cancer Res. 2005, 11, 5319–5328. [Google Scholar] [CrossRef] [Green Version]
- Baselga, J.; Campone, M.; Piccart, M.; Burris, H.A., 3rd; Rugo, H.S.; Sahmoud, T.; Noguchi, S.; Gnant, M.; Pritchard, K.I.; Lebrun, F.; et al. Everolimus in postmenopausal hormone-receptor-positive advanced breast cancer. N. Engl. J. Med. 2012, 366, 520–529. [Google Scholar] [CrossRef] [Green Version]
- Oza, A.M.; Elit, L.; Tsao, M.S.; Kamel-Reid, S.; Biagi, J.; Provencher, D.M.; Gotlieb, W.H.; Hoskins, P.J.; Ghatage, P.; Tonkin, K.S.; et al. Phase II study of temsirolimus in women with recurrent or metastatic endometrial cancer: A trial of the NCIC Clinical Trials Group. J. Clin. Oncol. 2011, 29, 3278–3285. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cheung, L.W.; Hennessy, B.T.; Li, J.; Yu, S.; Myers, A.P.; Djordjevic, B.; Lu, Y.; Stemke-Hale, K.; Dyer, M.D.; Zhang, F.; et al. High frequency of PIK3R1 and PIK3R2 mutations in endometrial cancer elucidates a novel mechanism for regulation of PTEN protein stability. Cancer Discov. 2011, 1, 170–185. [Google Scholar] [CrossRef] [Green Version]
- Slomovitz, B.M.; Jiang, Y.; Yates, M.S.; Soliman, P.T.; Johnston, T.; Nowakowski, M.; Levenback, C.; Zhang, Q.; Ring, K.; Munsell, M.F.; et al. Phase II study of everolimus and letrozole in patients with recurrent endometrial carcinoma. J. Clin. Oncol. 2015, 33, 930–936. [Google Scholar] [CrossRef]
- De Melo, A.C.; Paulino, E.; Garces, Á.H. A Review of mTOR Pathway Inhibitors in Gynecologic Cancer. Oxid. Med. Cell Longev. 2017, 2017, 4809751. [Google Scholar] [CrossRef] [PubMed]
- Behbakht, K.; Sill, M.W.; Darcy, K.M.; Rubin, S.C.; Mannel, R.S.; Waggoner, S.; Schilder, R.J.; Cai, K.Q.; Godwin, A.K.; Alpaugh, R.K. Phase II trial of the mTOR inhibitor, temsirolimus and evaluation of circulating tumor cells and tumor biomarkers in persistent and recurrent epithelial ovarian and primary peritoneal malignancies: A Gynecologic Oncology Group study. Gynecol. Oncol. 2011, 123, 19–26. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Emons, G.; Kurzeder, C.; Schmalfeldt, B.; Neuser, P.; de Gregorio, N.; Pfisterer, J.; Park-Simon, T.W.; Mahner, S.; Schröder, W.; Lück, H.J.; et al. Temsirolimus in women with platinum-refractory/resistant ovarian cancer or advanced/recurrent endometrial carcinoma. A phase II study of the AGO-study group (AGO-GYN8). Gynecol. Oncol. 2016, 140, 450–456. [Google Scholar] [CrossRef] [PubMed]
- van der Ploeg, P.; Uittenboogaard, A.; Thijs, A.M.J.; Westgeest, H.M.; Boere, I.A.; Lambrechts, S.; van de Stolpe, A.; Bekkers, R.L.M.; Piek, J.M.J. The effectiveness of monotherapy with PI3K/AKT/mTOR pathway inhibitors in ovarian cancer: A meta-analysis. Gynecol. Oncol. 2021, 163, 433–444. [Google Scholar] [CrossRef]
- Gasparri, M.L.; Bardhi, E.; Ruscito, I.; Papadia, A.; Farooqi, A.A.; Marchetti, C.; Bogani, G.; Ceccacci, I.; Mueller, M.D.; Benedetti Panici, P. PI3K/AKT/mTOR Pathway in Ovarian Cancer Treatment: Are We on the Right Track? Geburtshilfe Frauenheilkd 2017, 77, 1095–1103. [Google Scholar] [CrossRef] [Green Version]
- Taylor, B.S.; Schultz, N.; Hieronymus, H.; Gopalan, A.; Xiao, Y.; Carver, B.S.; Arora, V.K.; Kaushik, P.; Cerami, E.; Reva, B.; et al. Integrative Genomic Profiling of Human Prostate Cancer. Cancer Cell 2010, 18, 11–22. [Google Scholar] [CrossRef] [Green Version]
- Chow, H.; Ghosh, P.M.; deVere White, R.; Evans, C.P.; Dall’Era, M.A.; Yap, S.A.; Li, Y.; Beckett, L.A.; Lara Jr, P.N.; Pan, C.-X. A phase 2 clinical trial of everolimus plus bicalutamide for castration-resistant prostate cancer. Cancer 2016, 122, 1897–1904. [Google Scholar] [CrossRef] [Green Version]
- Hong, M.-K.; Wang, J.-H.; Su, C.-C.; Li, M.-H.; Hsu, Y.-H.; Chu, T.-Y. Expression of Estrogen and Progesterone Receptor in Tumor Stroma Predicts Favorable Prognosis of Cervical Squamous Cell Carcinoma. Int. J. Gynecol. Cancer 2017, 27, 1247–1255. [Google Scholar] [CrossRef] [Green Version]
- Huang, H.J.; Neven, P.; Drijkoningen, M.; Paridaens, R.; Wildiers, H.; Van Limbergen, E.; Berteloot, P.; Amant, F.; Vergote, I.; Christiaens, M.R. Association between tumour characteristics and HER-2/neu by immunohistochemistry in 1362 women with primary operable breast cancer. J. Clin. Pathol. 2005, 58, 611–616. [Google Scholar] [CrossRef] [Green Version]
- Lam, H.-M.; Ouyang, B.; Chen, J.; Ying, J.; Wang, J.; Wu, C.-L.; Jia, L.; Medvedovic, M.; Vessella, R.L.; Ho, S.-M. Targeting GPR30 with G-1: A new therapeutic target for castration-resistant prostate cancer. Endocr. Relat. Cancer 2014, 21, 903–914. [Google Scholar] [CrossRef] [Green Version]
- Vargas Roig, L.M.; Lotfi, H.; Olcese, J.E.; Lo Castro, G.; Ciocca, D.R. Effects of short-term tamoxifen administration in patients with invasive cervical carcinoma. Anticancer Res. 1993, 13, 2457–2463. [Google Scholar] [PubMed]
- Den Boon, J.A.; Pyeon, D.; Wang, S.S.; Horswill, M.; Schiffman, M.; Sherman, M.; Zuna, R.E.; Wang, Z.; Hewitt, S.M.; Pearson, R.; et al. Molecular transitions from papillomavirus infection to cervical precancer and cancer: Role of stromal estrogen receptor signaling. Proc. Natl. Acad. Sci. USA 2015, 112, E3255–E3264. [Google Scholar] [CrossRef] [PubMed]
- Chauhan, N.; Maher, D.M.; Yallapu, M.M.; Hafeez, B.B.; Singh, M.M.; Chauhan, S.C.; Jaggi, M. A triphenylethylene nonsteroidal SERM attenuates cervical cancer growth. Sci. Rep. 2019, 9, 10917. [Google Scholar] [CrossRef] [Green Version]
- Segovia-Mendoza, M.; Jurado, R.; Mir, R.; Medina, L.A.; Prado-Garcia, H.; Garcia-Lopez, P. Antihormonal agents as a strategy to improve the effect of chemo-radiation in cervical cancer: In vitro and in vivo study. BMC Cancer 2015, 15, 21. [Google Scholar] [CrossRef] [Green Version]
- Spurgeon, M.E.; Chung, S.-H.; Lambert, P.F. Recurrence of Cervical Cancer in Mice after Selective Estrogen Receptor Modulator Therapy. Am. J. Pathol. 2014, 184, 530–540. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bigler, L.R.; Tate Thigpen, J.; Blessing, J.A.; Fiorica, J.; Monk, B.J. Evaluation of tamoxifen in persistent or recurrent nonsquamous cell carcinoma of the cervix: A Gynecologic Oncology Group study. Int. J. Gynecol. Cancer 2004, 14, 871–874. [Google Scholar] [CrossRef] [PubMed]
- Friedrich, M.; Mink, D.; Villena-Heinsen, C.; Woll-Hermann, A.; Schmidt, W. Tamoxifen and proliferation of vaginal and cervical epithelium in postmenopausal women with breast cancer. Eur. J. Obs. Gynecol. Reprod. Biol. 1998, 80, 221–225. [Google Scholar] [CrossRef]
- Zhang, L.; Wu, J.; Ling, M.T.; Zhao, L.; Zhao, K.N. The role of the PI3K/Akt/mTOR signalling pathway in human cancers induced by infection with human papillomaviruses. Mol. Cancer 2015, 14, 87. [Google Scholar] [CrossRef] [Green Version]
- Faried, L.S.; Faried, A.; Kanuma, T.; Sano, T.; Nakazato, T.; Tamura, T.; Kuwano, H.; Minegishi, T. Predictive and prognostic role of activated mammalian target of rapamycin in cervical cancer treated with cisplatin-based neoadjuvant chemotherapy. Oncol. Rep. 2006, 16, 57–63. [Google Scholar] [CrossRef] [Green Version]
- Sobočan, M.; Bračič, S.; Knez, J.; Takač, I.; Haybaeck, J. The Communication Between the PI3K/AKT/mTOR Pathway and Y-box Binding Protein-1 in Gynecological Cancer. Cancers 2020, 12, 205. [Google Scholar] [CrossRef] [Green Version]
- Meng, X.; Yang, Z.; Xiang, R.; Liu, H.; Wang, J. Expression and clinical significance of Cripto-1 and mTOR in cervical cancer. J. Chin. Physician 2020, 12, 1611–1614. [Google Scholar]
- Liontos, M.; Kyriazoglou, A.; Dimitriadis, I.; Dimopoulos, M.A.; Bamias, A. Systemic therapy in cervical cancer: 30 years in review. Crit. Rev. Oncol. Hematol. 2019, 137, 9–17. [Google Scholar] [CrossRef] [PubMed]
- Coleman, R.L.; Lorusso, D.; Gennigens, C.; González-Martín, A.; Randall, L.; Cibula, D.; Lund, B.; Woelber, L.; Pignata, S.; Forget, F.; et al. Efficacy and safety of tisotumab vedotin in previously treated recurrent or metastatic cervical cancer (innovaTV 204/GOG-3023/ENGOT-cx6): A multicentre, open-label, single-arm, phase 2 study. Lancet Oncol. 2021, 22, 609–619. [Google Scholar] [CrossRef] [PubMed]
- Eek, D.; Krohe, M.; Mazar, I.; Horsfield, A.; Pompilus, F.; Friebe, R.; Shields, A.L. Patient-reported preferences for oral versus intravenous administration for the treatment of cancer: A review of the literature. Patient Prefer. Adherence 2016, 10, 1609–1621. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Parameter | All Patients | p-mTOR-Positive | p-mTOR-Negative | p-Value |
---|---|---|---|---|
number of patients | 125 (100%) | 60 (48.0%) | 63 (50.4%) | 0.664 * |
controls available | 41 (32.8%) | 18 (30.0%) | 22 (34.9%) | 0.571 † |
age at diagnosis (years) | 46.0 (41.0–55.0) | 46.0 (40.5–51.8) | 46.0 (41.0–55.0) | 0.974 * |
histologic subtype | 0.641 § | |||
squamous | 116 (92.8%) | 55(91.7%) | 59 (93.7%) | |
adenocarcinoma | 3 (2.4%) | 3 (5.0%) | 0 (1.2%) | |
adenosquamous | 6 (4.8%) | 2 (3.3%) | 4 (6.3%) | |
histologic grading | 0.310 † | |||
G1 | 6 (4.8%) | 3 (5.0%) | 3 (4.8%) | |
G2/G3 | 99 (79.2%) | 42 (70.0%) | 56 (88.8%) | |
missing | 20 (16.0%) | 15 (25.0%) | 4 (6.3%) | |
FIGO-stage | 0.176 § | |||
I | 69 (55.2%) | 35 (58.3%) | 32 (50.8%) | |
II | 30 (24.0%) | 16 (26.7%) | 14 (22.2%) | |
III | 23 (18.4%) | 8 (13.3%) | 15 (23.8%) | |
IV | 3 (2.4%) | 1 (1.7%) | 2 (3.2%) | |
nodal status | 0.113 † | |||
positive | 24 (19.2%) | 8 (13.3) | 16 (25.4%) | |
negative | 101 (80.8%) | 52 (86.7) | 47 (74.6%) | |
overall survival (months) | 71.0 (50.0–79.5) | 71.5 (62.3–80.8) | 71.0 (43.0–77.0) | 0.186 * |
Parameter | All Tumor Samples | Tumor Tissue with Available Controls | Matched Negative Controls | p-Value |
---|---|---|---|---|
number of samples | 125 (100%) | 41 (32.8%) | 41 (32.8%) | |
EGFR expression | 200 (105–280) | 190 (110–250) | 120 (70–165) | 0.010 * |
positive | 104 (83.2%) | 33 (80.5%) | 36 (87.8%) | |
negative | 9 (7.2%) | 8 (19.5%) | 4 (9.8%) | |
missing | 12 (9.6%) | 0 (0%) | 1 (2.4%) | |
PTEN expression | 90 (10–195) | 100 (30–160) | 80 (13–120) | 0.145 * |
positive | 93 (74.4%) | 32 (78.0%) | 38 (92.7%) | |
negative | 28 (22.4%) | 7 (17.1%) | 2 (4.9%) | |
missing | 4 (3.2%) | 2 (4.9%) | 1 (2.4%) | |
p-mTOR expression | 0 (0–10) | 0 (0–10) | 40 (10–80) | <0.001 * |
positive | 42 (33.6%) | 11 (26.8%) | 36 (87.8%) | |
negative | 81 (64.8%) | 29 (70.7%) | 5 (12.2%) | |
missing | 2 (1.6%) | 1 (2.4%) | 0 (0%) | |
ER expression | 0 (0–0) | 0 (0–0) | 60 (15–180) | <0.001 * |
positive | 24 (19.2%) | 7 (17.1%) | 37 (90.2%) | |
negative | 101 (80.8%) | 34 (82.9%) | 4 (9.8%) | |
missing | 0 (0.0%) | 0 (0%) | 0 (0.0%) | |
PR expression | 0 (0–0) | 0 (0–0) | 0 (0–5) | 0.001 * |
positive | 0 (0%) | 0 (0%) | 7 (17.1%) | |
negative | 123 (98.4%) | 40 (97.6%) | 33 (80.5%) | |
missing | 2 (1.6%) | 1 (2.4%) | 1 (2.4%) |
Overall Survival (OS) | ||||
---|---|---|---|---|
Parameters | Univariate Analysis | Multivariable Analysis | ||
p-Value | HR (95% CI) | p-Value | HR (95% CI) | |
patient age | <0.001 | 1.13 (1.09–1.17) | <0.001 | 1.12 (1.08–1.16) |
nodal status (N0/N1) | <0.001 | 4.26 (2.18–8.36) | 0.003 | 2.97 (1.46–6.02) |
FIGO stage (I/II vs. III/IV) | <0.001 | 4.43 (2.27–8.64) | - | - |
grading (G1 vs. G2/3) | 0.889 | 1.04 (0.58–1.87) | - | - |
EGFR | 0.416 | 0.97 (0.90–1.04) | - | - |
PTEN | 0.758 | 1.01 (0.95–1.08) | - | - |
p-mTOR | 0.047 | 1.45 (1.02–1.31) | 0.549 | 1.04 (0.91–1.20) |
ER | 0.400 | 1.07 (0.91–1.25) | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bartl, T.; Grimm, C.; Mader, R.M.; Zielinski, C.; Prager, G.; Unseld, M.; Herac-Kornauth, M. Interactions of EGFR/PTEN/mTOR-Pathway Activation and Estrogen Receptor Expression in Cervical Cancer. J. Pers. Med. 2023, 13, 1186. https://doi.org/10.3390/jpm13081186
Bartl T, Grimm C, Mader RM, Zielinski C, Prager G, Unseld M, Herac-Kornauth M. Interactions of EGFR/PTEN/mTOR-Pathway Activation and Estrogen Receptor Expression in Cervical Cancer. Journal of Personalized Medicine. 2023; 13(8):1186. https://doi.org/10.3390/jpm13081186
Chicago/Turabian StyleBartl, Thomas, Christoph Grimm, Robert M. Mader, Christoph Zielinski, Gerald Prager, Matthias Unseld, and Merima Herac-Kornauth. 2023. "Interactions of EGFR/PTEN/mTOR-Pathway Activation and Estrogen Receptor Expression in Cervical Cancer" Journal of Personalized Medicine 13, no. 8: 1186. https://doi.org/10.3390/jpm13081186
APA StyleBartl, T., Grimm, C., Mader, R. M., Zielinski, C., Prager, G., Unseld, M., & Herac-Kornauth, M. (2023). Interactions of EGFR/PTEN/mTOR-Pathway Activation and Estrogen Receptor Expression in Cervical Cancer. Journal of Personalized Medicine, 13(8), 1186. https://doi.org/10.3390/jpm13081186