Manual Chest Compression versus Automated Chest Compression Device during Day-Time and Night-Time Resuscitation Following Out-of-Hospital Cardiac Arrest: A Retrospective Historical Control Study
Abstract
:1. Introduction
2. Material and Methods
2.1. Study Design and Setting
2.2. Study Population
2.3. Data Collection
2.4. Definitions
2.5. Outcome Variables
2.6. Statistical Analysis
3. Results
Limitations
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kitamura, T.; Iwami, T.; Atsumi, T.; Endo, T.; Kanna, T.; Kuroda, Y.; Sakurai, A.; Tasaki, O.; Tahara, Y.; Tsuruta, R.; et al. The profile of Japanese Association for Acute Medicine out-of-hospital cardiac arrest registry in 2014–2015. Acute Med. Surg. 2018, 5, 249–258. [Google Scholar] [PubMed] [Green Version]
- Kitamura, T.; Iwami, T.; Kawamura, T.; Nagao, K.; Tanaka, H.; Hiraide, A. Nationwide public-access defibrillation in Japan. N. Engl. J. Med. 2010, 362, 994–1004. [Google Scholar] [PubMed] [Green Version]
- Azeli, Y.; Olazabal, J.V.L.; García, M.I.M.; Bardají, A. Understanding the Adverse Hemodynamic Effects of Serious Thoracic Injuries During Cardiopulmonary Resuscitation: A Review and Approach Based on the Campbell Diagram. Front. Physiol. 2019, 10, 1475. [Google Scholar] [PubMed] [Green Version]
- Neth, M.R.; Idris, A.; McMullan, J.; Benoit, J.L.; Daya, M.R. A review of ventilation in adult out-of-hospital cardiac arrest. J. Am. Coll. Emerg. Physicians Open 2020, 1, 190–201. [Google Scholar]
- Kuhn, G. Circadian rhythm, shift work, and emergency medicine. Ann. Emerg. Med. 2001, 37, 88–98. [Google Scholar]
- Takayama, W.; Endo, A.; Koguchi, H.; Murata, K.; Otomo, Y. Differences in durations, adverse events, and outcomes of in-hospital cardiopulmonary resuscitation between day-time and night-time: An observational cohort study. Resuscitation 2019, 137, 14–20. [Google Scholar]
- Baubin, M.; Schirmer, M.; Nogler, M.; Semenitz, B.; Falk, M.; Kroesen, G.; Hörtnagl, H.; Gilly, H. Rescuer’s work capacity and duration of cardiopulmonary resuscitation. Resuscitation 1996, 33, 135–139. [Google Scholar]
- Bonnes, J.L.; Brouwer, M.A.; Navarese, E.P.; Verhaert, D.V.; Verheugt, F.W.; Smeets, J.L.; de Boer, M.-J. Manual cardiopulmonary resuscitation versus CPR including a mechanical chest compression device in out-of-hospital cardiac arrest: A comprehensive meta-analysis from randomized and observational studies. Ann. Emerg. Med. 2016, 67, 349–360. [Google Scholar]
- Truhlář, A.; Deakin, C.D.; Soar, J.; Khalifa, G.E.; Alfonzo, A.; Bierens, J.J.; Brattebø, G.; Brugger, H.; Dunning, J.; Hunyadi-Antičević, S.; et al. European Resuscitation Council Guidelines for Resuscitation 2015 Section 4. Cardiac arrest in special circumstances. Resuscitation 2015, 95, 148–201. [Google Scholar]
- Matsumura, Y.; Nakada, T.-A.; Shinozaki, K.; Tagami, T.; Nomura, T.; Tahara, Y.; Sakurai, A.; Yonemoto, N.; Nagao, K.; Yaguchi, A.; et al. Nighttime is associated with decreased survival and resuscitation efforts for out-of-hospital cardiac arrests: A prospective observational study. Crit. Care 2016, 20, 141. [Google Scholar]
- Kleinman, M.E.; Brennan, E.E.; Goldberger, Z.D.; Swor, R.A.; Terry, M.; Bobrow, B.J.; Gazmuri, R.J.; Travers, A.H.; Rea, T. Part 5: Adult Basic Life Support and Cardiopulmonary Resuscitation Quality 2015 American Heart Association Guidelines Update for Cardiopulmonary Resuscitation and Emergency Cardiovascular Care. Circulation 2015, 132, S414–S435. [Google Scholar]
- Karlsson, L.I.; Wissenberg, M.; Fosbøl, E.L.; Hansen, C.M.; Lippert, F.K.; Bagai, A.; McNally, B.; Granger, C.B.; Christensen, E.F.; Folke, F.; et al. Diurnal variations in incidence and outcome of out-of-hospital cardiac arrest including prior comorbidity and pharmacotherapy: A nationwide study in Denmark. Resuscitation 2014, 85, 1161–1168. [Google Scholar]
- Smith-Coggins, R.; Rosekind, M.R.; Hurd, S.; Buccino, K.R. Relationship of day versus night sleep to physician performance and mood. Ann. Emerg. Med. 1994, 24, 928–934. [Google Scholar]
- Seung, M.K.; You, J.S.; Lee, H.S.; Park, Y.S.; Chung, S.P.; Park, I. Comparison of complications secondary to cardiopulmonary resuscitation between out-of-hospital cardiac arrest and in-hospital cardiac arrest. Resuscitation 2016, 98, 64–72. [Google Scholar]
- Jennett, B.; Bond, M. Assessment of outcome after severe brain damage. Lancet 1975, 1, 480–484. [Google Scholar]
- Shibahashi, K.; Kawabata, H.; Sugiyama, K.; Hamabe, Y. Association of the COVID-19 pandemic with bystander cardiopulmonary resuscitation for out-of-hospital cardiac arrest: A population-based analysis in Tokyo, Japan. Emerg. Med. J. 2022, 39, 583–588. [Google Scholar]
- Marijon, E.; Karam, N.; Jost, D.; Perrot, D.; Frattini, B.; Derkenne, C.; Sharifzadehgan, A.; Waldmann, V.; Beganton, F.; Narayanan, K.; et al. Out-of-hospital cardiac arrest during the COVID-19 pandemic in Paris, France: A population-based, observational study. Lancet Public Health 2020, 5, e437–e443. [Google Scholar]
- Lai, P.H.; Lancet, E.A.; Weiden, M.D.; Webber, M.P.; Zeig-Owens, R.; Hall, C.B.; Prezant, D.J. Characteristics associated with out-of-hospital cardiac arrests and resuscitations during the novel coronavirus disease 2019 pandemic in New York city. JAMA Cardiol. 2020, 5, 1154–1163. [Google Scholar]
- Nishiyama, C.; Kiyohara, K.; Kitamura, T.; Hayashida, S.; Maeda, T.; Kiguchi, T.; Shimamoto, T.; Iwami, T. Impact of the COVID-19 Pandemic on Prehospital Intervention and Survival of Patients With Out-of-Hospital Cardiac Arrest in Osaka City, Japan. Circ. J. 2022, 86, 1579–1585. [Google Scholar]
- Jacobs, I.; Nadkarni, V.; Bahr, J.; Berg, R.A.; Billi, J.E.; Bossaert, L.; Cassan, P.; Coovadia, A.; D’Este, K.; Finn, J.; et al. Cardiac arrest and cardiopulmonary resus-citation outcome reports: Update and simplification of the Utstein templates for resuscitation registries: A statement for healthcare professionals from a taskforce of the International Liaison Committee on Resuscitation (American Heart Association, European Resuscitation Council, Australian Resuscitation Council, New Zealand Resuscitation Council, Heart and Stroke Foundation of Canada, InterAmerican Heart Foundation, Resuscitation Councils of Southern Africa). Circulation 2004, 110, 3385–3397. [Google Scholar]
- Wik, L.; Olsen, J.-A.; Persse, D.; Sterz, F.; Lozano, M.; Brouwer, M.A.; Westfall, M.; Souders, C.M.; Malzer, R.; van Grunsven, P.M.; et al. Manual vs. integrated automatic load-distributing band CPR with equal survival after out of hospital cardiac arrest. The randomized CIRC trial. Resuscitation 2014, 85, 741–748. [Google Scholar] [PubMed]
- Smekal, D.; Johansson, J.; Huzevka, T.; Rubertsson, S. A pilot study of mechanical chest compressions with the LUCAS device in cardiopulmonary resuscitation. Resuscitation 2011, 82, 702–706. [Google Scholar] [PubMed]
- Liu, M.; Shuai, Z.; Ai, J.; Tang, K.; Liu, H.; Zheng, J.; Gou, J.; Lv, Z. Mechanical chest compression with LUCAS device does not improve clinical outcome in out-of-hospital cardiac arrest patients: A systematic review and meta-analysis. Medicine 2019, 98, e17550. [Google Scholar] [PubMed]
- Ni Zhu, N.; Chen, Q.; Jiang, Z.; Liao, F.; Kou, B.; Tang, H.; Zhou, M. A meta-analysis of the resuscitative effects of mechanical and manual chest compression in out-of-hospital cardiac arrest patients. Crit. Care 2019, 23, 100. [Google Scholar]
- Kajino, K.; Kitamura, T.; Iwami, T.; Daya, M.; Ong, M.E.H.; Hiraide, A.; Shimazu, T.; Kishi, M.; Yamayoshi, S. Current termination of resuscitation (TOR) guidelines predict neurologically favorable outcome in Japan. Resuscitation 2013, 84, 54–59. [Google Scholar] [PubMed]
- Goto, Y.; Maeda, T.; Goto, Y.N. Termination-of-resuscitation rule for emergency department physicians treating out-of-hospital cardiac arrest patients: An observational cohort study. Crit. Care 2013, 17, R235. [Google Scholar]
- Ochoa, F.; Ramalle-Gómara, E.; Lisa, V.; Saralegui, I. The effect of rescuer fatigue on the quality of chest compressions. Resuscitation 1998, 37, 149–152. [Google Scholar]
- Ock, S.M.; Kim, Y.M.; Chung, J.H.; Kim, S.H. Influence of physical fitness on the performance of 5-minute continuous chest compression. Eur. J. Emerg. Med 2011, 18, 251–256. [Google Scholar]
- McDonald, C.H.; Heggie, J.; Jones, C.M.; Thorne, C.J.; Hulme, J. Rescuer fatigue under the 2010 ERC guidelines, and its effect on cardiopulmonary resuscitation (CPR) performance. Emerg. Med. J. 2013, 30, 623–627. [Google Scholar]
- Perkins, G.D.; Brace, S.; Gates, S. Mechanical chest-compression devices: Current and future roles. Curr. Opin. Crit. Care 2010, 16, 203–210. [Google Scholar]
- Soar, J.; Callaway, C.W.; Aibiki, M.; Böttiger, B.W.; Brooks, S.C.; Deakin, C.D.; Donnino, M.W.; Drajer, S.; Kloeck, W.; Morley, P.T.; et al. Part 4: Advanced life support: 2015 International Consensus on Cardiopulmonary Resuscitation and Emergency Cardiovascular Care Science with Treatment Recommendations. Resuscitation 2015, 95, e71–e120. [Google Scholar]
- Smekal, D.; Lindgren, E.; Sandler, H.; Johansson, J.; Rubertsson, S. CPR-related injuries after manual or mechanical chest compressions with the LUCAS™ device: A multicentre study of victims after unsuccessful resuscitation. Resuscitation 2014, 85, 1708–1712. [Google Scholar] [CrossRef]
- Lardi, C.; Egger, C.; Larribau, R.; Niquille, M.; Mangin, P.; Fracasso, T. Traumatic injuries after mechanical cardiopulmonary resuscitation (LUCAS 2): A forensic autopsy study. Int. J. Legal Med. 2015, 129, 1035–1042. [Google Scholar] [CrossRef]
- Edelson, D.P.; Sasson, C.; Chan, P.S.; Atkins, D.L.; Aziz, K.; Becker, L.B.; Berg, R.A.; Bradley, S.M.; Brooks, S.C.; Cheng, A.; et al. Interim guidance for basic and advanced life support in adults, children, and neonates with suspected or confirmed COVID-19: From the Emergency Cardiovascular Care Committee and Get With The Guidelines-Resuscitation Adult and Pediatric Task Forces of the American Heart Association. Circulation 2020, 141, e933–e943. [Google Scholar]
- Nolan, J.; Monsieurs, K.; Bossaert, L.; Böttiger, B.; Greif, R.; Lott, C.; Madar, J.; Olasveengen, T.; Roehr, C.; Semeraro, F.; et al. European Resuscitation Council COVID-19 guidelines executive summary. Resuscitation 2020, 153, 45–55. [Google Scholar]
- Azadi, N.; Niemann, J.T.; Thomas, J.L. Coronary imaging and intervention during cardiovascular collapse: Use of the LUCAS mechanical CPR device in the cardiac catheterization laboratory. J. Invasive Cardiol. 2012, 24, 79–83. [Google Scholar]
- Poole, K.; Couper, K.; Smyth, M.A.; Yeung, J.; Perkins, G.D. Mechanical CPR: Who? When? How? Crit. Care 2018, 22, 140. [Google Scholar] [CrossRef] [Green Version]
Day-Time Group, N = 809 | Night-Time Group, N = 292 | p Value | |
---|---|---|---|
Age, median [IQR] | 68 [56–81] | 66 [52–80] | 0.483 |
Female, n (%) | 239 (29.5) | 90 (30.8) | 0.393 |
Witnessed, n (%) | 308 (38.1) | 65 (22.3) | <0.001 |
Bystander CPR, n (%) | 191 (23.6) | 43 (14.7) | 0.014 |
Shockable Initial rhythm, n (%) | 129 (15.9) | 36 (12.3) | 0.003 |
Cardiogenic, n (%) | 163 (20.1) | 58 (19.9) | 0.321 |
OHCPR duration, min, median [IQR] | 29 [23–35] | 37 [28–42] | <0.001 |
Day-Time Group, N = 809 | Night-Time Group, N = 292 | |||||
---|---|---|---|---|---|---|
mCC Group N = 594 | ACCD Group N = 215 | p Value | mCC Group N = 188 | ACCD Group, N = 104 | p Value | |
Age, median [IQR] | 68 [55–81] | 65 [57–83] | 0.395 | 65 [48–79] | 65 [59–79] | 0.683 |
Female, n (%) | 180 (30.3) | 59 (27.4) | 0.543 | 59 (31.4) | 31 (29.8) | 0.793 |
Witnessed, n (%) | 236 (39.7) | 72 (33.5) | 0.106 | 44 (23.4) | 21 (20.2) | 0.261 |
Bystander CPR, n (%) | 149 (25.1) | 42 (19.5) | 0.111 | 28 (14.9) | 15 (14.4) | 0.391 |
Shockable Initial rhythm, n (%) | 90 (15.1) | 39 (18.1) | 0.277 | 24 (12.8) | 12 (11.5) | 0.754 |
Cardiogenic, n (%) | 115 (19.4) | 48 (22.3) | 0.171 | 37 (19.7) | 21 (20.2) | 0.791 |
OHCPR duration, min, median [IQR] | 28 [23–35] | 29 [24–36] | 0.261 | 34 [26–40] | 35 [31–42] | 0.231 |
Outcomes | Day-Time Group N = 809 | Night-Time Group N = 292 | ||||
---|---|---|---|---|---|---|
mCC N = 594 | ACCD N = 215 | p Value | mCC N = 188 | ACCD N = 104 | p Value | |
ROSC, n (%) | 191 (32.2) | 78 (37.1) | 0.031 | 49 (26.6) | 35 (33.7) | <0.001 |
Chest injuries, n (%) | 202 (34.0) | 81 (37.7) | 0.328 | 112 (59.6) | 41 (39.4) | <0.001 |
Rib fractures, n (%) | 145 (24.4) | 64 (30.0) | - | 88 (46.8) | 25 (24.0) | - |
Sternal fractures, n (%) | 82 (13.8) | 35 (16.3) | - | 56 (30.0) | 11 (10.6) | - |
Pleural effusion/hemothorax, n (%) | 56 (9.4) | 25 (11.6) | - | 45 (23.9) | 10 (9.6) | - |
Pneumothorax, n (%) | 70 (11.8) | 31 (14.4) | - | 52 (27.7) | 14 (13.5) | - |
IHCPR duration, min [IQR] | 35 [28–39] | 34 [27–38] | 0.762 | 27 [24–32] | 34 [28–38] | <0.001 |
Survival to ED discharge, n (%) | 108 (18.2) | 42 (19.5) | 0.271 | 30 (16.0) | 24 (23.1) | <0.001 |
Survival to hospital discharge, n (%) | 51 (8.6) | 22 (10.2) | 0.106 | 13(6.9) | 13 (12.5) | <0.001 |
Survival with good neurological outcome to hospital discharge, n (%) | 39 (6.6) | 16 (7.4) | 0.214 | 8 (4.3) | 9 (8.7) | 0.021 |
Day-Time Group | Night-Time Group | |||||
---|---|---|---|---|---|---|
AOR [95% CI] | AD [95% CI] | p Value | AOR [95% CI] | AD [95% CI] | p Value | |
ROSC | 0.66 [0.24–1.42] | - | 0.354 | 1.14 [1.05–1.37] | - | <0.001 |
Chest injuries | 0.78 [0.51–1.21] | - | 0.431 | 0.41 [0.30–0.81] | - | <0.001 |
IHCPR duration | - | −1.2 [−2.1–0.9] | 0.526 | - | 6.1 [4.5–7.5] | <0.001 |
Survival to ED discharge | 0.81 [0.43–1.42] | - | 0.651 | 1.13 [1.04–1.27] | - | <0.001 |
Survival to hospital discharge | 0.89 [0.51–1.52] | - | 0.472 | 1.10 [1.03–1.21] | - | <0.001 |
Survival with good neurological outcome to hospital discharge | 0.94 [0.53–1.48] | - | 0.235 | 1.09 [1.04–1.12] | - | 0.002 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Takayama, W.; Endo, A.; Morishita, K.; Otomo, Y. Manual Chest Compression versus Automated Chest Compression Device during Day-Time and Night-Time Resuscitation Following Out-of-Hospital Cardiac Arrest: A Retrospective Historical Control Study. J. Pers. Med. 2023, 13, 1202. https://doi.org/10.3390/jpm13081202
Takayama W, Endo A, Morishita K, Otomo Y. Manual Chest Compression versus Automated Chest Compression Device during Day-Time and Night-Time Resuscitation Following Out-of-Hospital Cardiac Arrest: A Retrospective Historical Control Study. Journal of Personalized Medicine. 2023; 13(8):1202. https://doi.org/10.3390/jpm13081202
Chicago/Turabian StyleTakayama, Wataru, Akira Endo, Koji Morishita, and Yasuhiro Otomo. 2023. "Manual Chest Compression versus Automated Chest Compression Device during Day-Time and Night-Time Resuscitation Following Out-of-Hospital Cardiac Arrest: A Retrospective Historical Control Study" Journal of Personalized Medicine 13, no. 8: 1202. https://doi.org/10.3390/jpm13081202
APA StyleTakayama, W., Endo, A., Morishita, K., & Otomo, Y. (2023). Manual Chest Compression versus Automated Chest Compression Device during Day-Time and Night-Time Resuscitation Following Out-of-Hospital Cardiac Arrest: A Retrospective Historical Control Study. Journal of Personalized Medicine, 13(8), 1202. https://doi.org/10.3390/jpm13081202