Role of Nuclear Sentinel Lymph Node Mapping Compared to New Alternative Imaging Methods
Abstract
:1. Introduction
2. Innovative Methods in Clinical Imaging
2.1. MRI
2.2. CEUS
2.3. Fluorescence Method
2.4. Optoacoustic Imaging
2.5. Radiomics
3. Lymphoscintigraphy and New Updates in a Gold Standard Technique
4. Advantages and Disadvantages of Nuclear and Non-Nuclear Methods
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Najjar, S.; Allison, K.H. Updates on breast biomarkers. Virchows Arch. 2022, 480, 163–176. [Google Scholar] [CrossRef]
- Dogan, N.U.; Dogan, S.; Favero, G.; Köhler, C.; Dursun, P. The Basics of Sentinel Lymph Node Biopsy: Anatomical and Pathophysiological Considerations and Clinical Aspects. J. Oncol. 2019, 2019, 3415630. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leong, S.P.; Naxerova, K.; Keller, L.; Pantel, K.; Witte, M. Molecular mechanisms of cancer metastasis via the lymphatic versus the blood vessels. Clin. Exp. Metastasis 2022, 39, 159–179. [Google Scholar] [CrossRef] [PubMed]
- Tamaki, Y. One-step nucleic acid amplification assay (OSNA) for sentinel lymph node biopsy. Breast Cancer 2015, 22, 230–234. [Google Scholar] [CrossRef] [PubMed]
- Tyagi, N.K.; Dhesy-Thind, S. Clinical practice guidelines in breast cancer. Curr. Oncol. 2018, 25 (Suppl. S1), S151–S160. [Google Scholar] [CrossRef]
- Cuccurullo, V.; Di Stasio, G.D.; Schillirò, M.L.; Mansi, L. Small-Animal Molecular Imaging for Preclinical Cancer Research: PET and SPECT. Curr. Radiopharm. 2016, 9, 102–113. [Google Scholar] [CrossRef]
- Cuccurullo, V.; Di Stasio, G.D.; Cascini, G.L. PET/CT in thyroid cancer—The importance of BRAF mutations. Nucl. Med. Rev. Cent. East. Eur. 2020, 23, 97–102. [Google Scholar] [CrossRef]
- Skanjeti, A.; Dhomps, A.; Paschetta, C.; Tordo, J.; Delgado Bolton, R.C.; Giammarile, F. Lymphoscintigraphy for Sentinel Node Mapping in Head and Neck Cancer. Semin. Nucl. Med. 2021, 51, 39–49. [Google Scholar] [CrossRef]
- Valdés Olmos, R.A.; Rietbergen, D.D.D.; Rubello, D.; Pereira Arias-Bouda, L.M.; Collarino, A.; Colletti, P.M.; Vidal-Sicart, S.; van Leeuwen, F.W.B. Sentinel Node Imaging and Radioguided Surgery in the Era of SPECT/CT and PET/CT: Toward New Interventional Nuclear Medicine Strategies. Clin. Nucl. Med. 2020, 45, 771–777. [Google Scholar] [CrossRef]
- Giammarile, F.; Vidal-Sicart, S.; Paez, D.; Pellet, O.; Enrique, E.L.; Mikhail-Lette, M.; Morozova, O.; Maria Camila, N.M.; Diana Ivonne, R.S.; Delgado Bolton, R.C.; et al. Sentinel Lymph Node Methods in Breast Cancer. Semin. Nucl. Med. 2022, 52, 551–560. [Google Scholar] [CrossRef]
- Chu, B.; Chen, Z.; Shi, H.; Wu, X.; Wang, H.; Dong, F.; He, Y. Fluorescence, ultrasonic and photoacoustic imaging for analysis and diagnosis of diseases. Chem. Commun. 2023, 59, 2399–2412. [Google Scholar] [CrossRef]
- Cheng, Z.; Ma, J.; Yin, L.; Yu, L.; Yuan, Z.; Zhang, B.; Tian, J.; Du, Y. Non-invasive molecular imaging for precision diagnosis of metastatic lymph nodes: Opportunities from preclinical to clinical applications. Eur. J. Nucl. Med. Mol. Imaging 2023, 50, 1111–1133. [Google Scholar] [CrossRef] [PubMed]
- Yu, Y.; Tan, Y.; Xie, C.; Hu, Q.; Ouyang, J.; Chen, Y.; Gu, Y.; Li, A.; Lu, N.; He, Z.; et al. Development and Validation of a Preoperative Magnetic Resonance Imaging Radiomics-Based Signature to Predict Axillary Lymph Node Metastasis and Disease-Free Survival in Patients with Early-Stage Breast Cancer. JAMA Netw. Open 2020, 3, e2028086. [Google Scholar] [CrossRef] [PubMed]
- Guerrini, S.; Gentili, F.; Mazzei, F.G.; Gennaro, P.; Volterrani, L.; Mazzei, M.A. Magnetic resonance lymphangiography: With or without contrast? Diagn. Interv. Radiol. 2020, 26, 587–595. [Google Scholar] [CrossRef] [PubMed]
- Calabrese, A.; Santucci, D.; Landi, R.; Beomonte Zobel, B.; Faiella, E.; de Felice, C. Radiomics MRI for lymph node status prediction in breast cancer patients: The state of art. J. Cancer Res. Clin. Oncol. 2021, 147, 1587–1597. [Google Scholar] [CrossRef]
- Pantiora, E.; Tasoulis, M.K.; Valachis, A.; Eriksson, S.; Kühn, T.; Karakatsanis, A.; Rubio, I.T. Evolution and refinement of magnetically guided sentinel lymph node detection in breast cancer: Meta-analysis. Br. J. Surg. 2023, 110, 410–419. [Google Scholar] [CrossRef]
- Liu, P.; Tan, J.; Song, Y.; Huang, K.; Zhang, Q.; Xie, H. The Application of Magnetic Nanoparticles for Sentinel Lymph Node Detection in Clinically Node-Negative Breast Cancer Patients: A Systemic Review and Meta-Analysis. Cancers 2022, 14, 5034. [Google Scholar] [CrossRef]
- Karakatsanis, A.; Christiansen, P.M.; Fischer, L.; Hedin, C.; Pistioli, L.; Sund, M.; Rasmussen, N.R.; Jørnsgård, H.; Tegnelius, D.; Eriksson, S.; et al. The Nordic SentiMag trial: A comparison of super paramagnetic iron oxide (SPIO) nanoparticles versus Tc(99) and patent blue in the detection of sentinel node (SN) in patients with breast cancer and a meta-analysis of earlier studies. Breast Cancer Res. Treat. 2016, 157, 281–294. [Google Scholar] [CrossRef] [Green Version]
- Vidya, R.; Khosla, M.; Laws, S.; Harvey, J.; Kaushik, M.; Mullapudi, N.A.; Macmillan, D. Axillary sentinel lymph node identification using superparamagnetic iron oxide versus radioisotope in early stage breast cancer: The UK SentiMag trial (SMART study). Surgeon 2023, 21, 128–134. [Google Scholar] [CrossRef]
- Sugiyama, S.; Iwai, T.; Baba, J.; Oguri, S.; Izumi, T.; Kuwahata, A.; Sekino, M.; Kusakabe, M.; Mitsudo, K. Sentinel lymph node biopsy with a handheld cordless magnetic probe following preoperative MR lymphography using superparamagnetic iron oxide for clinically N0 early oral cancer: A feasibility study. J. Stomatol. Oral Maxillofac. Surg. 2022, 123, 521–526. [Google Scholar] [CrossRef]
- Taruno, K.; Kurita, T.; Kuwahata, A.; Yanagihara, K.; Enokido, K.; Katayose, Y.; Nakamura, S.; Takei, H.; Sekino, M.; Kusakabe, M. Multicenter clinical trial on sentinel lymph node biopsy using superparamagnetic iron oxide nanoparticles and a novel handheld magnetic probe. J. Surg. Oncol. 2019, 120, 1391–1396. [Google Scholar] [CrossRef]
- Gatta, G.; Di Grezia, G.; Cuccurullo, V.; Sardu, C.; Iovino, F.; Comune, R.; Ruggiero, A.; Chirico, M.; La Forgia, D.; Fanizzi, A.; et al. MRI in Pregnancy and Precision Medicine: A Review from Literature. J. Pers. Med. 2021, 12, 9. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Zheng, S.; Lin, Y. Accuracy and Utility of Preoperative Ultrasound-Guided Axillary Lymph Node Biopsy for Invasive Breast Cancer: A Systematic Review and Meta-Analysis. Comput. Intell. Neurosci. 2022, 2022, 3307627. [Google Scholar] [CrossRef] [PubMed]
- Buonomo, O.C.; Materazzo, M.; Pellicciaro, M.; Iafrate, G.; Ielpo, B.; Rizza, S.; Pistolese, C.A.; Perretta, T.; Meucci, R.; Longo, B.; et al. Contrast-enhanced Ultrasound Using Intradermal Microbubble Sulfur Hexafluoride for Identification of Sentinel Lymph Nodes During Breast Cancer Surgery: A Clinical Trial. Anticancer Res. 2023, 43, 557–567. [Google Scholar] [CrossRef]
- Machado, P.; Liu, J.B.; Needleman, L.; Lazar, M.; Willis, A.I.; Brill, K.; Nazarian, S.; Berger, A.; Forsberg, F. Sentinel Lymph Node Identification in Patients with Breast Cancer Using Lymphosonography. Ultrasound Med. Biol. 2023, 49, 616–625. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; He, K.; Chi, C.; Hu, Z.; Tian, J. Intraoperative fluorescence molecular imaging accelerates the coming of precision surgery in China. Eur. J. Nucl. Med. Mol. Imaging 2022, 49, 2531–2543. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Huang, L.; Wang, N.; Chen, P. Indocyanine green detects sentinel lymph nodes in early breast cancer. J. Int. Med. Res. 2017, 45, 514–524. [Google Scholar] [CrossRef]
- Dumitru, D.; Ghanakumar, S.; Provenzano, E.; Benson, J.R. A Prospective Study Evaluating the Accuracy of Indocyanine Green (ICG) Fluorescence Compared with Radioisotope for Sentinel Lymph Node (SLN) Detection in Early Breast Cancer. Ann. Surg. Oncol. 2022, 29, 3014–3020. [Google Scholar] [CrossRef]
- Samorani, D.; Fogacci, T.; Panzini, I.; Frisoni, G.; Accardi, F.G.; Ricci, M.; Fabbri, E.; Nicoletti, S.; Flenghi, L.; Tamburini, E.; et al. The use of indocyanine green to detect sentinel nodes in breast cancer: A prospective study. Eur. J. Surg. Oncol. 2015, 41, 64–70. [Google Scholar] [CrossRef]
- Chi, C.; Du, Y.; Ye, J.; Kou, D.; Qiu, J.; Wang, J.; Tian, J.; Chen, X. Intraoperative imaging-guided cancer surgery: From current fluorescence molecular imaging methods to future multi-modality imaging technology. Theranostics 2014, 4, 1072–1084. [Google Scholar] [CrossRef] [Green Version]
- Lin, L.; Wang, L.V. The emerging role of photoacoustic imaging in clinical oncology. Nat. Rev. Clin. Oncol. 2022, 19, 365–384. [Google Scholar] [CrossRef]
- Zackrisson, S.; van de Ven, S.M.W.Y.; Gambhir, S.S. Lightin and sound out:emerging translational strategies for photoacoustic imaging. Cancer Res. 2014, 74, 979–1004. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vu, T.; Razansky, D.; Yao, J. Listening to tissues with new light: Recent technological advances in photoacoustic imaging. J. Opt. 2019, 21, 103001. [Google Scholar] [CrossRef] [PubMed]
- Pan, D.; Pramanik, M.; Senpan, A.; Ghosh, S.; Wickline, S.A.; Wang, L.V.; Lanza, G.M. Near infrared photoacoustic detection of sentinel lymph nodes with gold nanobeacons. Biomaterials 2010, 31, 4088–4093. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martel, C.; Yao, J.; Huang, C.H.; Zou, J.; Randolph, G.J.; Wang, L.V. Photoacousticlymphatic imaging with high spatial-temporal resolution. J. Biomed. Opt. 2014, 19, 116009–1–116009–7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Taruttis, A.; Ntziachristos, V. Advances in real-time multispectral optoacoustic imaging and its applications. Nat. Photonics 2015, 9, 219–227. [Google Scholar] [CrossRef]
- Wang, H.; Liu, S.; Wang, T.; Zhang, C.; Feng, T.; Tian, C. Three-dimensional Interventional Photoacoustic Imaging for Biopsy Needle Guidance with a Linear Array Transducer. J. Biophotonics 2019, 12, e201900212. [Google Scholar] [CrossRef]
- Lefebvre, T.L.; Brown, E.; Hacker, L.; Else, T.; Oraiopoulou, M.E.; Tomaszewski, M.R.; Jena, R.; Bohndiek, S.E. The Potential of Photoacoustic Imaging in Radiation Oncology. Front. Oncol. 2022, 12, 803777. [Google Scholar] [CrossRef]
- Hester, S.C.; Kuriakose, M.; Nguyen, C.D.; Mallidi, S. Role of Ultrasound and Photoacoustic Imaging in Photodynamic Therapy for Cancer. Photochem. Photobiol. 2020, 96, 260–279. [Google Scholar] [CrossRef] [Green Version]
- Bejnordi, B.E.; Veta, M.; van Diest, P.J.; van Ginneken, B.; Karssemeijer, N.; Litjens, G.; van der Laak, J.A.W.M.; CAMELYON16 Consortium. Diagnostic assessment of deep learning algorithms for detection of lymph node metastases in women with breast cancer. J. Am. Med. Assoc. 2017, 318, 2199–2210. [Google Scholar] [CrossRef] [Green Version]
- Ha, R.; Chang, P.; Karcich, J.; Mutasa, S.; Van Sant, E.P.; Connolly, E.; Chin, C.; Taback, B.; Liu, M.Z.; Jambawalikar, S. Predicting post neoadjuvant axillary response using a novel convolutional neural network algorithm. Ann. Surg. Oncol. 2018, 25, 3037–3043. [Google Scholar] [CrossRef] [PubMed]
- Yu, Y.; He, Z.; Ouyang, J.; Tan, Y.; Chen, Y.; Gu, Y.; Mao, L.; Ren, W.; Wang, J.; Lin, L.; et al. Magnetic resonance imaging radiomics predicts preoperative axillary lymph node metastasis to support surgical decisions and is associated with tumor microenvironment in invasive breast cancer: A machine learning, multicenter study. EBioMedicine 2021, 69, 103460. [Google Scholar] [CrossRef] [PubMed]
- Haraguchi, T.; Kobayashi, Y.; Hirahara, D.; Kobayashi, T.; Takaya, E.; Nagai, M.T.; Tomita, H.; Okamoto, J.; Kanemaki, Y.; Tsugawa, K. Radiomics model of diffusion-weighted whole-body imaging with background signal suppression (DWIBS) for predicting axillary lymph node status in breast cancer. J. Xray Sci. Technol. 2023, 31, 627–640. [Google Scholar] [CrossRef] [PubMed]
- Guo, X.; Liu, Z.; Sun, C.; Zhang, L.; Wang, Y.; Li, Z.; Shi, J.; Wu, T.; Cui, H.; Zhang, J.; et al. Deep learning radiomics of ultrasonography: Identifying the risk of axillary non-sentinel lymph node involvement in primary breast cancer. EBioMedicine 2020, 60, 103018. [Google Scholar] [CrossRef]
- Veronesi, U.; Paganelli, G.; Viale, G.; Luini, A.; Zurrida, S.; Galimberti, V.; Intra, M.; Veronesi, P.; Robertson, C.; Maisonneuve, P.; et al. A randomized comparison of sentinel-node biopsy with routine axillary dissection in breast cancer. N. Engl. J. Med. 2003, 349, 546–553. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mathelin, C.; Lodi, M. Narrative review of sentinel lymph node biopsy in breast cancer: A technique in constant evolution with still numerous unresolved questions. Chin. Clin. Oncol. 2021, 10, 20. [Google Scholar] [CrossRef] [PubMed]
- Parmeggiani, D.; Gambardella, C.; Patrone, R.; Polistena, A.; De Falco, M.; Ruggiero, R.; Cirocchi, R.; Sanguinetti, A.; Cuccurullo, V.; Accardo, M.; et al. Radioguided thyroidectomy for follicular tumors: Multicentric experience. Int. J. Surg. 2017, 41 (Suppl. S1), S75–S81. [Google Scholar] [CrossRef]
- Sinha, A.; West, A.; Hayes, J.; Teoh, J.; Decaestecker, K.; Vasdev, N. Methods of Sentinel Lymph Node Detection and Management in Urinary Bladder Cancer—A Narrative Review. Curr. Oncol. 2022, 29, 1335–1348. [Google Scholar] [CrossRef]
- Kitson, S.L.; Cuccurullo, V.; Ciarmiello, A.; Mansi, L. Targeted Therapy Towards Cancer-A Perspective. Anticancer Agents Med. Chem. 2017, 17, 311–317. [Google Scholar] [CrossRef]
- Srivastava, A.; Goyal, A.; Seenu, V.; Kumar, R. Evaluation of New Tracers in the Identification of Sentinel Lymph Node in Patients with Early Breast Cancer. Indian J. Nucl. Med. 2023, 38, 91–95. [Google Scholar] [CrossRef]
- Vermeulen, K.; Vandamme, M.; Bormans, G.; Cleeren, F. Design and Challenges of Radiopharmaceuticals. Semin. Nucl. Med. 2019, 49, 339–356. [Google Scholar] [CrossRef]
- Ballinger, J.R. Challenges in Preparation of Albumin Nanoparticle- Based Radiopharmaceuticals. Molecules 2022, 27, 8596. [Google Scholar] [CrossRef] [PubMed]
- De Cicco, C.; Cremonesi, M.; Luini, A.; Bartolomei, M.; Grana, C.; Prisco, G.; Galimberti, V.; Calza, P.; Viale, G.; Veronesi, U.; et al. Lymphoscintigraphy and Radioguided Biopsy of the Sentinel Axillary Node in Breast Cancer. J. Nucl. Med. 1998, 39, 2080–2084. [Google Scholar] [PubMed]
- Leong, S.P. Detection of melanoma, breast cancer and head and neck squamous cell cancer sentinel lymph nodes by Tc-99m Tilmanocept (Lymphoseek®). Clin. Exp. Metastasis 2022, 39, 39–50. [Google Scholar] [CrossRef]
- Surasi, D.S.; O’Malley, J.; Bhambhvani, P. 99mTc-Tilmanocept: A Novel Molecular Agent for Lymphatic Mapping and Sentinel Lymph Node Localization. J. Nucl. Med. Technol. 2015, 43, 87–91. [Google Scholar] [CrossRef] [Green Version]
- Rietbergen, D.D.; Pereira Arias-Bouda, L.M.; van der Hage, J.; Valdés Olmos, R.A. Does 99mTc-tilmanocept, as next generation radiotracer, meet with the requirements for improved sentinel node imaging? Rev. Esp. Med. Nucl. Imagen Mol. (Engl. Ed.) 2021, 40, 275–280. [Google Scholar] [CrossRef] [PubMed]
- Wallace, A.M.; Han, L.K.; Povoski, S.P.; Deck, K.; Schneebaum, S.; Hall, N.C.; Hoh, C.K.; Limmer, K.K.; Krontiras, H.; Frazier, T.G.; et al. Comparative evaluation of [(99m)tc]tilmanocept for sentinel lymph node mapping in breast cancer patients: Results of two phase 3 trials. Ann. Surg. Oncol. 2013, 20, 2590–2599. [Google Scholar] [CrossRef] [Green Version]
- Azad, A.K.; Rajaram, M.V.S.; Metz, W.L.; Cope, F.O.; Blue, M.S.; Vera, D.R.; Schlesinger, L.S. γ-Tilmanocept a New Radiopharmaceutical Tracer for Cancer Sentinel Lymph Nodes Binds to the Mannose Receptor (CD206). J. Immunol. 2015, 195, 2019–2029. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tokin, C.A.; Cope, F.O.; Metz, W.L.; Blue, M.S.; Potter, B.M.; Abbruzzese, B.C.; Hartman, R.D.; Joy, M.T.; King, D.W.; Christman, L.A.; et al. The efficacy of Tilmanocept in sentinel lymph mode mapping and identification in breast cancer patients: A comparative review and meta-analysis of the ⁹⁹mTc-labeled nanocolloid human serum albumin standard of care. Clin. Exp. Metastasis 2012, 29, 681–686. [Google Scholar] [CrossRef]
- Li, N.; Wang, X.; Lin, B.; Zhu, H.; Liu, C.; Xu, X.; Zhang, Y.; Zhai, S.; OuYang, T.; Li, J.; et al. Clinical evaluation of 99mTc-rituximab for sentinel lymph node mapping in breast cancer patients. J. Nucl. Med. 2016, 57, 1214–1220. [Google Scholar] [CrossRef] [Green Version]
- Li, N.; Zhou, X.; Zhu, H.; Wang, F.; Guo, R.; Zhang, Y.; Song, Y.; Zhai, S.; Xie, Q.; Liu, J.; et al. 99mTc-Rituximab sentinel lymph node mapping and biopsy, the effective technique avoids axillary dissection and predicts prognosis in 533 cutaneous melanoma. Ann. Nucl. Med. 2023, 37, 189–197. [Google Scholar] [CrossRef] [PubMed]
- İlem-Özdemir, D.; Yararbas, U.; Zengel, B.; Ertan, G.; Asikoglu, M. Preparation of 99mTc-isosulfan blue for lymph node localization in rats 99mTc-isosulfan blue for lymph node localization, Appl. Radiat. Isot. 2016, 118, 338–342. [Google Scholar] [CrossRef] [PubMed]
- van der Vorst, J.R.; Schaafsma, B.E.; Verbeek, F.P.; Hutteman, M.; Mieog, J.S.; Lowik, C.W.; Liefers, G.J.; Frangioni, J.V.; van de Velde, C.J.; Vahrmeijer, A.L. Randomized comparison of near-infrared fluorescence imaging using indocyanine green and 99(m) technetium with or without patent blue for the sentinel lymph node procedure in breast cancer patients. Ann. Surg. Oncol. 2012, 19, 4104–4111. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dell’Oglio, P.; de Vries, H.M.; Mazzone, E.; KleinJan, G.H.; Donswijk, M.L.; van der Poel, H.G.; Horenblas, S.; van Leeuwen, F.W.B.; Brouwer, O.R. Hybrid Indocyanine Green-99mTc-nanocolloid for Single-photon Emission Computed Tomography and Combined Radio- and Fluorescence-guided Sentinel Node Biopsy in Penile Cancer: Results of 740 Inguinal Basins Assessed at a Single Institution. Eur. Urol. 2020, 78, 865–872. [Google Scholar] [CrossRef]
- Tasdoven, I.; Balbaloglu, H.; Erdemir, R.U.; Bahadir, B.; Guldeniz Karadeniz, C. Triple mapping for axillary staging after neoadjuvant therapy: Axillary reverse mapping with indocyanine green and dual agent sentinel lymph node biopsy. Medicine 2022, 101, e32545. [Google Scholar] [CrossRef]
- Thompson, M.; Korourian, S.; Henry-Tillman, R.; Adkins, L.; Mumford, S.; Westbrook, K.C.; Klimberg, V.S. Axillary reverse mapping (ARM): A new concept to identify and enhance lymphatic preservation. Ann. Surg. Oncol. 2007, 14, 1890–1895. [Google Scholar] [CrossRef]
- Co, M.; Lam, L.; Suen, D.; Kwong, A. Axillary Reverse Mapping in the Prevention of Lymphoedema: A Systematic Review and Pooled Analysis. Clin. Breast Cancer 2023, 23, e14–e19. [Google Scholar] [CrossRef]
- Wijaya, W.A.; Peng, J.; He, Y.; Chen, J.; Cen, Y. Clinical application of axillary reverse mapping in patients with breast cancer: A systematic review and meta-analysis. Breast 2020, 53, 189–200. [Google Scholar] [CrossRef]
- van den Berg, N.S.; Simon, H.; Kleinjan, G.H.; Engelen, T.; Bunschoten, A.; Welling, M.M.; Tijink, B.M.; Horenblas, S.; Chambron, J.; van Leeuwen, F.W.B. First-in- human evaluation of a hybrid modality that allows combined radio- and (near- infrared) fluorescence tracing during surgery. Eur. J. Nucl. Med. Mol. Imaging 2015, 42, 1639–1647. [Google Scholar] [CrossRef]
- Argentou, M.I.; Iliopoulos, E.; Verras, G.I.; Mulita, F.; Tchabashvili, L.; Spyridonidis, T.; Apostolopoulos, D. Study on intraoperative localization of sentinel lymph nodes using freehand SPECT in breast cancer patients. Wideochir Inne Tech. Maloinwazyjne 2022, 17, 641–651. [Google Scholar] [CrossRef]
- Cuccurullo, V.; Di Stasio, G.D.; Manti, F.; Arcuri, P.; Damiano, R.; Cascini, G.L. The Role of Molecular Imaging in a Muscle-Invasive Bladder Cancer Patient: A Narrative Review in the Era of Multimodality Treatment. Diagnostics 2021, 11, 863. [Google Scholar] [CrossRef]
- Mok, C.W.; Tan, S.M.; Zheng, Q.; Shi, L. Network meta-analysis of novel and conventional sentinel lymph node biopsy techniques in breast cancer. BJS Open 2019, 3, 445–452. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Polomska, A.K.; Proulx, S.T. Imaging technology of the lymphatic system. Adv. Drug Deliv. Rev. 2021, 170, 294–311. [Google Scholar] [CrossRef] [PubMed]
- Ruddell, A.; Kirschbaum, S.B.; Ganti, S.N.; Liu, C.L.; Sun, R.R. Partridge SC. Tumor-induced alterations in lymph node lymph drainage identified by contrast-enhanced MRI. J. Magn. Reason. Imaging 2015, 42, 145–152. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hojo, T.; Nagao, T.; Kikuyama, M.; Akashi, S.; Kinoshita, T. Evaluation of sentinel node biopsy by combined fluorescent and dye method and lymph flow for breast cancer. Breast 2010, 19, 210–213. [Google Scholar] [CrossRef] [PubMed]
- Pitsinis, V.; Provenzano, E.; Kaklamanis, L.; Wishart, G.C.; Benson, J.R. Indocyanine green fluo - rescence mapping for sentinel lymph node biopsy in early breast cancer. Surg. Oncol. 2015, 24, 375–379. [Google Scholar] [CrossRef] [PubMed]
- Gatta, G.; Cappabianca, S.; La Forgia, D.; Massafra, R.; Fanizzi, A.; Cuccurullo, V.; Brunese, L.; Tagliafico, A.; Grassi, R. Second-Generation 3D Automated Breast Ultrasonography (Prone ABUS) for Dense Breast Cancer Screening Integrated to Mammography: Effectiveness, Performance and Detection Rates. J. Pers. Med. 2021, 11, 875. [Google Scholar] [CrossRef] [PubMed]
- Cykowska, A.; Marano, L.; D’Ignazio, A.; Marrelli, D.; Swierblewski, M.; Jaskiewicz, J.; Roviello, F.; Polom, K. New technologies in breast cancer sentinel lymph node biopsy; from the current gold standard to artificial intelligence. Surg. Oncol. 2020, 34, 324–335. [Google Scholar] [CrossRef]
- Khor, W.S.; Baker, B.; Amin, K.; Chan, A.; Patel, K.; Wong, J. Augmented and virtual reality in surgery-the digital surgical environment: Applications, limitations and legal pitfalls. Ann. Transl. Med. 2016, 4, 454. [Google Scholar] [CrossRef] [Green Version]
Lymphoscintigraphy Tecnique | Advantages | Disadvantages | Ref. |
99mTc-nanocolloid | High detection rate (96%) and low false negative ratio (5%) High depth penetration | Radiation exposure Painful injection and relative high cost | [52,72] |
99mTc-tilmanocept | Reducing pain during injection Reducing radiation dose | High cost | [59] |
99mTc-rituximab | Fast clearance from injection site | High cost | [60] |
99mTc/ICG | Long retention in the sentinel lymph node Maximum sensibility | Difficult to using both NIR and gamma probe High cost | [73] |
Triple mapping (ARM) | Ability to perform ARM to reduce cancer-associated lymphedema | High cost and long learning curve | [59,72] |
Novel Technique | Advantages | Disadvantages | Ref. |
MRI | Increased anatomical detail with 3D volumetric imaging No radiation exposure | Low sensitivity and possible artifacts | [60] |
SPION probe | High detection rate (97%) and low false negative ratio (4%) Long retention in the lymph nodes Long half life | Reduced transcutaneous signal Allergy risk to contrast agent | [74] [17] |
CEUS | Low cost and safety No allergy risk | High false negative ratio and long learning curve | [65] |
Fluorescence method | High resolution in real-time No radiation exposure Safety profile Short learning curve | Low detection rate of deeper lymph nodes Short half-life | [14,75,76] |
Optoacoustic imaging | Deep tissue imaging in real time and high definition | Low specificity Not yet available | [17] |
Radiomics | Ability to generate predictive models that can accurately establish axillary free sentinel lymph node positivity | Heterogeneous models not yet standardized and validated in clinical practice | [42,43,44] |
Technique | Studies [Type] | No. Patients |
Accuracy/
Detection Rates | Corresponding Rates in Metastasis |
---|---|---|---|---|
MRI with SPIO | Liu et al. [meta-analysis] | 2298 patients from 19 studies | 90% in SPIO vs. 85.7% in standard technique | 96.7% in SPIO vs. 93.9% in standard technique |
Karatkatsanis, A. et al. [meta-analysis] | 206 patients from 7 studies | 97% in SPIO vs. 97% in standard technique | 96% in SPIO vs. 98% in standard technique | |
Alvarado, M.D. et al. [prospective trial] | 146 patients | 99% in SPIO vs. 98% in standard technique | 95% in both technique | |
Douek, M. et al. [prospective multicenter trial] | 160 from 7 center | 94% in SPIO vs. 95% in standard technique | 92% in SPIO vs. 96% in standard technique | |
Houpeau, J.L. et al. [prospective multicenter trial] | 108 patients | 97% for SPIO vs. 95% for standard technique | 97% in SPIO vs. 95% in standard technique | |
Vydia, R. et al. [prospective trial] | 109 patients in 5 centers | 98% in SPIO vs. 92% in standard technique | 100% in both techniques | |
Taruno, K. et al. [multicenter trial] | 208 patients | 94.% in SPIO vs. 98% in standard technique | ||
CEUS | Machado, P. et al. | 79 patients | 99% in CEUS vs. 96% for radioactive tracer vs. 68% for blue dye | 100% in CEUS vs. 68% for radioactive tracer vs. 53% for blue dye |
Liu, J. et al. | 75 patients | 71% | 98% in CEUS | |
Fluorescence method | Dumitru, D. et al. [prospective observational study] | 79 patients | 98% for indocyanine green vs. 97% for radioisotopes | 100% in both techniques |
Samorani, D. et al. [prospective observational study] | 301 patients | 99% for indocyanine green vs. 76% for radioisotope | ||
Agrawal, S.K. et al. | 207 patients | 97% for indocyanine green plus methylene blu vs. 95% for standard technique | ||
Somashekhar, S.P. et al. | 100 patients | 96% for indocyanine green vs 94% for standard technique | ||
Wishart, G.C. et al. | 99 patients | 100% for indocyanine green vs. 73% in standard technique | ||
Optoacoustic imaging | Stoffels, I. et al. [cross sectional study] | 83 patients | 94% with optoacoustic vs 100% with lymphoscimtigraphy |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cuccurullo, V.; Rapa, M.; Catalfamo, B.; Cascini, G.L. Role of Nuclear Sentinel Lymph Node Mapping Compared to New Alternative Imaging Methods. J. Pers. Med. 2023, 13, 1219. https://doi.org/10.3390/jpm13081219
Cuccurullo V, Rapa M, Catalfamo B, Cascini GL. Role of Nuclear Sentinel Lymph Node Mapping Compared to New Alternative Imaging Methods. Journal of Personalized Medicine. 2023; 13(8):1219. https://doi.org/10.3390/jpm13081219
Chicago/Turabian StyleCuccurullo, Vincenzo, Marco Rapa, Barbara Catalfamo, and Giuseppe Lucio Cascini. 2023. "Role of Nuclear Sentinel Lymph Node Mapping Compared to New Alternative Imaging Methods" Journal of Personalized Medicine 13, no. 8: 1219. https://doi.org/10.3390/jpm13081219
APA StyleCuccurullo, V., Rapa, M., Catalfamo, B., & Cascini, G. L. (2023). Role of Nuclear Sentinel Lymph Node Mapping Compared to New Alternative Imaging Methods. Journal of Personalized Medicine, 13(8), 1219. https://doi.org/10.3390/jpm13081219