The Rising Problem of Hip Fractures in Geriatric Patients—Analysis of Surgical Influences on the Outcome
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Carpintero, P.; Caeiro, J.R.; Carpintero, R.; Morales, A.; Silva, S.; Mesa, M. Complications of hip fractures: A review. World J. Orthop. 2014, 5, 402–411. [Google Scholar] [CrossRef] [PubMed]
- Federal Health Monitoring System. Diagnostic Data of the Hospitals by Place of Treatment for ICD S70-S79. 2021. Available online: https://www.gbe-bund.de/gbe/!pkg_olap_tables.prc_set_page?p_uid=gast&p_aid=9545559&p_sprache=D&p_help=2&p_indnr=702&p_ansnr=91237172&p_version=12&D.001=1000001&D.002=34340&D.003=1000004&D.972=1000619&D.100=10101 (accessed on 13 July 2023).
- Federal Health Monitoring System. Death Data for ICD S70-S79. 2020. Available online: https://www.gbe-bund.de/gbe/!pkg_olap_tables.prc_set_page?p_uid=gast&p_aid=72189493&p_sprache=D&p_help=2&p_indnr=6&p_ansnr=66475306&p_version=7&D.000=3743&D.001=1000001&D.002=1000002&D.003=1000004&D.004=1000006&D.011=44302 (accessed on 13 July 2023).
- Haentjens, P.; Magaziner, J.; Colón-Emeric, C.S.; Vanderschueren, D.; Milisen, K.; Velkeniers, B.; Boonen, S. Meta-analysis: Excess mortality after hip fracture among older women and men. Ann. Intern. Med. 2010, 152, 380–390. [Google Scholar] [CrossRef] [PubMed]
- Peeters, C.M.; Visser, E.; Van de Ree, C.L.; Gosens, T.; Den Oudsten, B.L.; De Vries, J. Quality of life after hip fracture in the elderly: A systematic literature review. Injury 2016, 47, 1369–1382. [Google Scholar] [CrossRef] [PubMed]
- Amarilla-Donoso, F.J.; López-Espuela, F.; Roncero-Martín, R.; Leal-Hernandez, O.; Puerto-Parejo, L.M.; Aliaga-Vera, I.; Toribio-Felipe, R.; Lavado-García, J.M. Quality of life in elderly people after a hip fracture: A prospective study. Health Qual. Life Outcomes 2020, 18, 71. [Google Scholar] [CrossRef] [PubMed]
- Garre-Fivelsdal, T.E.; Gjertsen, J.E.; Dybvik, E.; Bakken, M.S. A standardized clinical pathway for hip fracture patients is associated with reduced mortality: Data from the Norwegian Hip Fracture Register. Eur. Geriatr. Med. 2023, 14, 557–564. [Google Scholar] [CrossRef]
- Loggers, S.A.I.; Van Lieshout, E.M.M.; Joosse, P.; Verhofstad, M.H.J.; Willems, H.C. Prognosis of nonoperative treatment in elderly patients with a hip fracture: A systematic review and meta-analysis. Injury 2020, 51, 12407–12413. [Google Scholar] [CrossRef]
- O’Connor, M.I.; Switzer, J.A. AAOS Clinical Practice Guideline Summary: Management of Hip Fractures in Older Adults. J. Am. Acad. Orthop. Surg. 2022, 30, e1291–e1296. [Google Scholar] [CrossRef]
- Pincus, D.; Ravi, B.; Wasserstein, D.; Huang, A.; Paterson, J.M.; Nathens, A.B.; Kreder, H.J.; Jenkinson, R.J.; Wodchis, W.P. Association between Wait Time and 30-Day Mortality in Adults Undergoing Hip Fracture Surgery. JAMA 2017, 318, 1994–2003. [Google Scholar] [CrossRef]
- Klestil, T.; Röder, C.; Stotter, C.; Winkler, B.; Nehrer, S.; Lutz, M.; Klerings, I.; Wagner, G.; Gartlehner, G.; Nussbaumer-Streit, B. Impact of timing of surgery in elderly hip fracture patients: A systematic review and meta-analysis. Sci. Rep. 2018, 8, 13933. [Google Scholar] [CrossRef]
- Song, Y.; Wu, Z.; Huo, H.; Zhao, P. The Impact of Frailty on Adverse Outcomes in Geriatric Hip Fracture Patients: A Systematic Review and Meta-Analysis. Front. Public Health 2022, 10, 890652. [Google Scholar] [CrossRef]
- Greenstein, A.S.; Gorczyca, J.T. Orthopedic Surgery and the Geriatric Patient. Clin. Geriatr. Med. 2019, 35, 65–92. [Google Scholar] [CrossRef]
- Veronese, N.; Maggi, S. Epidemiology and social costs of hip fracture. Injury 2018, 49, 1458–1460. [Google Scholar] [CrossRef] [PubMed]
- Zuelzer, D.A.; Weaver, D.; Zuelzer, A.P.; Hessel, E.A. Current Strategies in Medical Management of the Geriatric Hip Fracture Patient. J. Am. Acad. Orthop. Surg. 2023, 31, 620–626. [Google Scholar] [CrossRef] [PubMed]
- Tarazona-Santabalbina, F.J.; Ojeda-Thies, C.; Figueroa Rodríguez, J.; Cassinello-Ogea, C.; Caeiro, J.R. Orthogeriatric Management: Improvements in Outcomes during Hospital Admission due to Hip Fracture. Int. J. Environ. Res. Public Health 2021, 18, 3049. [Google Scholar] [CrossRef]
- Foo, M.X.E.; Wong, G.J.Y.; Lew, C.C.H. A systematic review of the malnutrition prevalence in hospitalized hip fracture patients and its associated outcomes. JPEN J. Parenter. Enter. Nutr. 2021, 45, 1141–1152. [Google Scholar] [CrossRef] [PubMed]
- Millrose, M.; Schmidt, W.; Krickl, J.; Ittermann, T.; Ruether, J.; Bail, H.J.; Gesslein, M. Influence of Malnutrition on Outcome after Hip Fractures in Older Patients. J. Pers. Med. 2023, 13, 109. [Google Scholar] [CrossRef]
- Von Elm, E.; Altman, D.G.; Egger, M.; Pocock, S.J.; Gøtzsche, P.C.; Vandenbroucke, J.P.; STROBE Initiative. The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) statement: Guidelines for reporting observational studies. PLoS Med. 2007, 4, e296. [Google Scholar] [CrossRef]
- Folstein, M.F.; Folstein, S.E.; McHugh, P.R. “Mini-mental state”: A practical method for grading the cognitive state of patients for the clinician. J. Psychiatr. Res. 1975, 12, 189–198. [Google Scholar] [CrossRef]
- Kondrup, J.; Rasmussen, H.H.; Hamberg, O.; Stanga, Z.; Ad Hoc ESPEN Working Group. Nutritional risk screening (NRS 2002): A new method based on an analysis of controlled clinical trials. Clin. Nutr. 2003, 22, 321–336. [Google Scholar] [CrossRef]
- Yombi, J.C.; Putineanu, D.C.; Cornu, O.; Lavand’homme, P.; Cornette, P.; Castanares-Zapatero, D. Low haemoglobin at admission is associated with mortality after hip fractures in elderly patients. Bone Jt. J. 2019, 101, 1122–1128. [Google Scholar] [CrossRef]
- Daugaard, C.; Pedersen, A.B.; Kristensen, N.R.; Johnsen, S.P. Preoperative antithrombotic therapy and risk of blood transfusion and mortality following hip fracture surgery: A Danish nationwide cohort study. Osteoporos. Int. 2019, 30, 583–591. [Google Scholar] [CrossRef] [PubMed]
- Potter, L.J.; Doleman, B.; Moppett, I.K. A systematic review of pre-operative anaemia and blood transfusion in patients with fractured hips. Anaesthesia 2015, 70, 483–500. [Google Scholar] [CrossRef] [PubMed]
- Hansen, L.T.; Riis, J.; Kragholm, K.H.; Larsen, L.K.; Cavallius, C.; Mørch, M.M.; Clemmensen, S.Z.; Krogager, M.L.; Melgaard, D. Impact of postoperative intravenous iron therapy on postoperative infections in older patients with severe anaemia after hip fracture surgery. BMC Geriatr. 2023, 23, 95. [Google Scholar] [CrossRef] [PubMed]
- Brunskill, S.J.; Millette, S.L.; Shokoohi, A.; Pulford, E.C.; Doree, C.; Murphy, M.F.; Stanworth, S. Red blood cell transfusion for people undergoing hip fracture surgery. Cochrane Database Syst. Rev. 2015, 4, CD009699. [Google Scholar] [CrossRef]
- Garg, V.; Kandhari, V.K.; Nasim, O.; Joshi, Y. Effect of Peri-Operative Blood Transfusion on Short and Long-Term Mortality Rates in Elderly Patients with Neck of Femur Fractures: A Retrospective Study. Cureus 2023, 15, e38825. [Google Scholar] [CrossRef] [PubMed]
- Haugan, K.; Klaksvik, J.; Foss, O.A. 30-day mortality in patients after hip fracture surgery: A comparison of the Charlson Comorbidity Index score and ASA score used in two prediction models. Injury 2021, 52, 2379–2383. [Google Scholar] [CrossRef]
- Quach, L.H.; Jayamaha, S.; Whitehouse, S.L.; Crawford, R.; Pulle, C.R.; Bell, J.J. Comparison of the Charlson Comorbidity Index with the ASA score for predicting 12-month mortality in acute hip fracture. Injury 2020, 51, 1004–1010. [Google Scholar] [CrossRef]
- Cher, E.W.L.; Allen, J.C.; Howe, T.S.; Koh, J.S.B. Comorbidity as the dominant predictor of mortality after hip fracture surgeries. Osteoporos. Int. 2019, 30, 2477–2483. [Google Scholar] [CrossRef]
- Kim, S.J.; Park, H.S.; Lee, D.W. Outcome of nonoperative treatment for hip fractures in elderly patients: A systematic review of recent literature. J. Orthop. Surg. 2020, 28, 2309499020936848. [Google Scholar] [CrossRef]
- Beaupre, L.A.; Khong, H.; Smith, C.; Kang, S.; Evens, L.; Jaiswal, P.K.; Powell, J.N. The impact of time to surgery after hip fracture on mortality at 30- and 90-days: Does a single benchmark apply to all? Injury 2019, 50, 950–955. [Google Scholar] [CrossRef]
- Leer-Salvesen, S.; Engesæter, L.B.; Dybvik, E.; Furnes, O.; Kristensen, T.B.; Gjertsen, J.E. Does time from fracture to surgery affect mortality and intraoperative medical complications for hip fracture patients? An observational study of 73,557 patients reported to the Norwegian Hip Fracture Register. Bone Jt. J. 2019, 101, 1129–1137. [Google Scholar] [CrossRef]
- Su, S.; Zhang, Y.; Wang, R.; Zhou, R.; Chen, Z.; Zhou, F. Early surgery within 48 h was associated with reduced perioperative blood loss and red blood cell transfusion requirements in older patients with hip fracture: A retrospective study. Eur. Geriatr. Med. 2023; ahead of print. [Google Scholar] [CrossRef]
- Fenwick, A.; Pfann, M.; Antonovska, I.; Mayr, J.; Lisitano, L.; Nuber, S.; Förch, S.; Mayr, E. Early surgery? In-house mortality after proximal femoral fractures does not increase for surgery up to 48 h after admission. Aging Clin. Exp. Res. 2023, 35, 1231–1239. [Google Scholar] [CrossRef] [PubMed]
- Brink, O. Hip fracture clearance: How much optimisation is necessary? Injury 2020, 51, S111–S117. [Google Scholar] [CrossRef] [PubMed]
- Collinge, C.A.; McWilliam-Ross, K.; Beltran, M.J.; Weaver, T. Measures of clinical outcome before, during, and after implementation of a comprehensive geriatric hip fracture program: Is there a learning curve? J. Orthop. Trauma 2013, 27, 672–676. [Google Scholar] [CrossRef]
- Blanco, J.F.; da Casa, C.; Pablos-Hernández, C.; González-Ramírez, A.; Julián-Enríquez, J.M.; Díaz-Álvarez, A. 30-day mortality after hip fracture surgery: Influence of postoperative factors. PLoS ONE 2021, 16, e0246963. [Google Scholar] [CrossRef]
- Cha, Y.H.; Lee, Y.K.; Koo, K.H.; Wi, C.; Lee, K.H. Difference in Mortality Rate by Type of Anticoagulant in Elderly Patients with Cardiovascular Disease after Hip Fractures. Clin. Orthop. Surg. 2019, 11, 15–20. [Google Scholar] [CrossRef]
- Frenkel Rutenberg, T.; Velkes, S.; Vitenberg, M.; Leader, A.; Halavy, Y.; Raanani, P.; Yassin, M.; Spectre, G. Morbidity and mortality after fragility hip fracture surgery in patients receiving vitamin K antagonists and direct oral anticoagulants. Thromb. Res. 2018, 166, 106–112. [Google Scholar] [CrossRef]
- Lai, W.Y.; Chiu, Y.C.; Lu, K.C.; Huang, I.T.; Tsai, P.S.; Huang, C.J. Beneficial effects of preoperative oral nutrition supplements on postoperative outcomes in geriatric hip fracture patients: A PRISMA-compliant systematic review and meta-analysis of randomized controlled studies. Medicine 2021, 100, e27755. [Google Scholar] [CrossRef] [PubMed]
- Liu, N.; Lv, L.; Jiao, J.; Zhang, Y.; Zuo, X.L. Association between nutritional indices and mortality after hip fracture: A systematic review and meta-analysis. Eur. Rev. Med. Pharmacol. Sci. 2023, 27, 2297–2304. [Google Scholar] [PubMed]
- Gonul, R.; Tasar, P.T.; Tuncer, K.; Karasahin, O.; Binici, D.N.; Sevinc, C.; Turgut, M.; Sahin, S. Mortality-Related Risk Factors in Geriatric Patients with Hip Fracture. Ann. Geriatr. Med. Res. 2023, 27, 126–133. [Google Scholar] [CrossRef]
- Handoll, H.H.; Cameron, I.D.; Mak, J.C.; Panagoda, C.E.; Finnegan, T.P. Multidisciplinary rehabilitation for older people with hip fractures. Cochrane Database Syst. Rev. 2021, 11, CD007125. [Google Scholar] [CrossRef] [PubMed]
- Benoit, M.; Grass, F.; Demartines, N.; Coti-Bertrand, P.; Schäfer, M.; Hübner, M. Use of the nutritional risk score by surgeons and nutritionists. Clin. Nutr. 2016, 35, 230–233. [Google Scholar] [CrossRef] [PubMed]
Mobility | Independent | Cane/Crutch | Rollator | Only Indoor | Bedridden |
---|---|---|---|---|---|
Preadmission [n = 281] | 97 | 31 | 66 | 76 | 11 |
Follow-up 120d [n = 230] | 36 | 30 | 79 | 58 | 27 |
Independence | Own home | Nursing home | Hospital | ||
Preadmission [n = 281] | 221 | 60 | |||
Follow-up 120d [n = 230] | 177 | 51 | 2 |
Female (n = 204) | Male (n = 77) | Total (n = 281) | |
---|---|---|---|
Anticoagulant | |||
None | 104 (51.0%) | 28 (36.4%) | 132 (47.0%) |
OAC | 13 (6.4%) | 8 (10.4%) | 21 (7.5%) |
PAI | 46 (22.5%) | 17 (22.1%) | 63 (22.4%) |
NOAC | 37 (18.1%) | 15 (19.5%) | 52 (18.5%) |
combination | 4 (2.0%) | 9 (11.7%) | 13 (4.6%) |
Any anticoagulant use | 96 (47.1%) | 40 (51.9%) | 136 (48.4%) |
Time between admission and surgery | 16.1 (29.0) | 15.0 (21.9) | 15.8 (27.2) |
<6 h | 78 (38.2%) | 25 (32.5%) | 103 (36.7%) |
6 to 12 h | 31 (15.2%) | 18 (23.4%) | 49 (17.4%) |
12 to 24 h | 63 (30.9%) | 23 (29.9%) | 86 (30.6%) |
>24 h | 32 (15.7%) | 11 (14.3%) | 43 (15.3%) |
Invasiveness | |||
Closed | 96 (47.1%) | 42 (54.5%) | 138 (49.1%) |
Open | 108 (52.9%) | 35 (45.5%) | 143 (50.9%) |
Implant | |||
DHS or nail (CRIF) | 103 (50.5%) | 46 (59.7%) | 149 (53.0%) |
Nail (ORIF) or THR | 88 (43.1%) | 30 (39.0%) | 118 (42.0%) |
Osteosynthesis | 13 (6.4%) | 1 (1.3%) | 14 (5.0%) |
Hemoglobin preoperative [g/dL] | 12.5 (1.7) | 12.4 (2.0) | 12.5 (1.8) |
Hemoglobin minimal [g/dL] | 8.2 (1.4) | 8.4 (1.6) | 8.3 (1.5) |
Transfusion | 80 (39.2%) | 27 (35.1%) | 107 (38.1%) |
Amount of transfused pRBC | 1.9 (1.0) | 1.9 (1.2) | 1.9 (1.0) |
Antibiotic | 82 (40.2%) | 29 (37.7%) | 111 (39.5%) |
Dementia | 126 (62.1%) | 38 (50.0%) | 164 (58.8%) |
Delirium | 24 (11.8%) | 12 (15.8%) | 36 (12.9%) |
NRS | |||
<3 | 53 (40.2%) | 26 (49.1%) | 79 (42.7%) |
≥3 | 79 (59.8%) | 27 (50.9%) | 106 (57.3%) |
Mortality Inpatient OR (95%-CI) | Mortality at 120 d OR (95%-CI) | Worsened Mobility OR (95%-CI) | Worsened Domicile OR (95%-CI) | |
---|---|---|---|---|
Any anticoagulant use OAC vs. none PAI vs. none NOAC vs. none | 3.16 (1.23; 8.15) * 9.28 (2.29; 37.6) * 1.76 (0.44; 7.04) 4.95 (1.46; 16.7) * | 1.84 (0.97; 3.49) 3.00 (1.01; 8.90) * 1.59 (0.69; 3.65) 1.99 (0.86; 4.63) | 1.17 (0.72; 1.90) 1.40 (0.52; 3.75) 1.30 (0.69; 2.42) 0.99 (0.52; 1.92) | 1.24 (0.72; 2.14) 1.82 (0.67; 4.98) 1.00 (0.49; 2.07) 1.41 (0.68; 2.94) |
ASA risk classification 3 vs. (1,2) 4 vs. (1,2) | 3.16 (0.40; 25.2) 15.7 (1.73; 142) * | 10.0 (1.33; 75.6) * 29.2 (3.39; 251) * | 0.95 (0.50; 1.78) 1.26 (0.45; 3.54) | 2.45 (0.97; 6.17) 5.14 (1.57; 16.9) * |
Time between admission and surgery 6 to 12 h vs. <6 h 12 to 24 h vs. <6 h | 1.74 (0.57; 5.27) 0.95 (0.30; 2.95) | 1.27 (0.53; 3.00) 1.04 (0.48; 2.26) | 1.10 (0.53; 2.29) 0.61 (0.34; 1.10) | 1.02 (0.47; 2.22) 1.02 (0.53; 1.98) |
>24 h vs. <6 h | 0.75 (0.18; 3.21) | 0.72 (0.26; 2.05) | 0.82 (0.39; 1.72) | 0.59 (0.24; 1.48) |
Invasiveness Open vs. closed | 2.07 (0.84; 5.11) | 1.77 (0.93; 3.39) | 0.57 (0.35; 0.93) * | 1.22 (0.70; 2.12) |
Implant (THR, nail ORIF) vs. (DHS, nail CRIF) | 1.26 (0.52; 3.04) | 1.40 (0.73; 2.70) | 0.52 (0.32: 0.87) * | 1.02 (0.58; 1.80) |
Body mass index [kg/m2] | 0.93 (0.81; 1.06) | 0.90 (0.82; 0.99) * | 1.00 (0.94; 1.06) | 0.94 (0.87; 1.02) |
Hemoglobin preoperative [g/dL] | 0.88 (0.70; 1.11) | 0.79 (0.66; 0.94) * | 0.84 (0.72; 0.97) * | 0.84 (0.72; 0.98) * |
Hemoglobin minimal [g/dL] | 0.72 (0.52; 1.01) | 0.86 (0.69; 1.08) | 0.88 (0.75; 1.04) | 0.89 (0.73; 1.08) |
Transfusion | 1.32 (0.55; 3.15) | 1.91 (1.01; 3.62) * | 1.47 (0.88; 2.43) | 1.61 (0.92; 2.81) |
Amount of transfused pRBCs | 1.28 (0.68; 2.42) | 1.77 (1.11; 2.83) * | 1.37 (0.88; 2.15) | 1.57 (1.01; 2.43) * |
Antibiotics use | 0.83 (0.34; 2.03) | 1.34 (0.71; 2.52) | 1.21 (0.74; 1.98) | 1.43 (0.82; 2.50) |
Dementia | 0.65 (0.24; 1.76) | 0.92 (0.43; 1.98) | 0.95 (0.54; 1.68) | 1.15 (0.59; 2.25) |
Delirium | 0.16 (0.02; 1.38) | 0.92 (0.32; 2.64) | 1.11 (0.48; 2.56) | 1.08 (0.42; 2.74) |
Nutritional risk score ≥3 vs. <3 | 6.69 (1.39; 32.1) * | 3.30 (1.30; 8.36)* | 1.44 (0.78; 2.66) | 2.68 (1.25; 5.76) * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Krickl, J.; Ittermann, T.; Thannheimer, A.; Schmidt, W.; Willauschus, M.; Ruether, J.; Loose, K.; Gesslein, M.; Millrose, M. The Rising Problem of Hip Fractures in Geriatric Patients—Analysis of Surgical Influences on the Outcome. J. Pers. Med. 2023, 13, 1271. https://doi.org/10.3390/jpm13081271
Krickl J, Ittermann T, Thannheimer A, Schmidt W, Willauschus M, Ruether J, Loose K, Gesslein M, Millrose M. The Rising Problem of Hip Fractures in Geriatric Patients—Analysis of Surgical Influences on the Outcome. Journal of Personalized Medicine. 2023; 13(8):1271. https://doi.org/10.3390/jpm13081271
Chicago/Turabian StyleKrickl, Julian, Till Ittermann, Andreas Thannheimer, Wolfgang Schmidt, Maximilian Willauschus, Johannes Ruether, Kim Loose, Markus Gesslein, and Michael Millrose. 2023. "The Rising Problem of Hip Fractures in Geriatric Patients—Analysis of Surgical Influences on the Outcome" Journal of Personalized Medicine 13, no. 8: 1271. https://doi.org/10.3390/jpm13081271
APA StyleKrickl, J., Ittermann, T., Thannheimer, A., Schmidt, W., Willauschus, M., Ruether, J., Loose, K., Gesslein, M., & Millrose, M. (2023). The Rising Problem of Hip Fractures in Geriatric Patients—Analysis of Surgical Influences on the Outcome. Journal of Personalized Medicine, 13(8), 1271. https://doi.org/10.3390/jpm13081271