Prognostic Value of Serum Biomarkers in Patients with Idiopathic Pulmonary Fibrosis in Relation to Disease Progression
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patients
2.2. Pulmonary Function Tests
2.3. Blood Collection
2.4. Measurement of Serum Biomarkers
2.5. Statistical Analysis
3. Results
3.1. Demographic and Clinical Characteristics of the Study Patients
3.2. Relationship between Serum Biomarker Levels and Survival
3.3. Relationship between Gender and Lung Function with Biomarker Serum Levels
3.4. GAP Index Relation to Survival and Serum Levels
3.5. Charlson Comorbidity Index Relation to Survival, Serum Levels and GAP Index
3.6. Comparing Antifibrotic Treatment and Serum Biomarker Levels
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Heukels, P.; Moor, C.C.; von der Thüsen, J.H.; Wijsenbeek, M.S.; Kool, M. Inflammation and immunity in IPF pathogenesis and treatment. Respir. Med. 2019, 147, 79–91. [Google Scholar] [CrossRef] [PubMed]
- Noble, P.W.; Albera, C.; Bradford, W.Z.; Costabel, U.; Glassberg, M.K.; Kardatzke, D.; King, T.E., Jr.; Lancaster, L.; Sahn, S.A.; Szwarcberg, J.; et al. Pirfenidone in patients with idiopathic pulmonary fibrosis (CAPACITY): Two randomised trials. Lancet 2011, 377, 1760–1769. [Google Scholar] [CrossRef] [PubMed]
- Richeldi, L.; Du Bois, R.M.; Raghu, G.; Azuma, A.; Brown, K.K.; Costabel, U.; Cottin, V.; Flaherty, K.R.; Hansell, D.M.; Inoue, Y.; et al. Efficacy and safety of nintedanib in idiopathic pulmonary fibrosis. N. Engl. J. Med. 2014, 370, 2071–2082. [Google Scholar] [CrossRef] [PubMed]
- King, T.E., Jr.; Bradford, W.Z.; Castro-Bernardini, S.; Fagan, E.A.; Glaspole, I.; Glassberg, M.K.; Gorina, E.; Hopkins, P.M.; Kardatzke, D.; Lancaster, L.; et al. A phase 3 trial of pirfenidone in patients with idiopathic pulmonary fibrosis. N. Engl. J. Med. 2014, 370, 2083–2092. [Google Scholar] [CrossRef] [PubMed]
- Papiris, S.A.; Kannengiesser, C.; Borie, R.; Kolilekas, L.; Kallieri, M.; Apollonatou, V.; Ba, I.; Nathan, N.; Bush, A.; Griese, M.; et al. Genetics in Idiopathic Pulmonary Fibrosis: A Clinical Perspective. Diagnostics 2022, 12, 2928. [Google Scholar] [CrossRef] [PubMed]
- Baratella, E.; Ruaro, B.; Giudici, F.; Wade, B.; Santagiuliana, M.; Salton, F.; Confalonieri, P.; Simbolo, M.; Scarpa, A.; Tollot, S.; et al. Evaluation of Correlations between Genetic Variants and High-Resolution Computed Tomography Patterns in Idiopathic Pulmonary Fibrosis. Diagnostics 2021, 11, 762. [Google Scholar] [CrossRef] [PubMed]
- Spagnolo, P.; Cottin, V. Genetics of idiopathic pulmonary fibrosis: From mechanistic pathways to personalised medicine. J. Med. Genet. 2017, 54, 93–99. [Google Scholar] [CrossRef]
- Vij, R.; Noth, I. Peripheral blood biomarkers in idiopathic pulmonary fibrosis. Transl. Res. 2012, 159, 218–227. [Google Scholar] [CrossRef]
- Inchingolo, R.; Varone, F.; Sgalla, G.; Richeldi, L. Existing and emerging biomarkers for disease progression in idiopathic pulmonary fibrosis. Expert Rev. Respir. Med. 2019, 13, 39–51. [Google Scholar] [CrossRef]
- Li, Y.; He, Y.; Chen, S.; Wang, Q.; Yang, Y.; Shen, D.; Ma, J.; Wen, Z.; Ning, S.; Chen, H. S100A12 as Biomarker of Disease Severity and Prognosis in Patients With Idiopathic Pulmonary Fibrosis. Front. Immunol. 2022, 13, 810338. [Google Scholar] [CrossRef]
- Clynick, B.; Corte, T.J.; Jo, H.E.; Stewart, I.; Glaspole, I.N.; Grainge, C.; Maher, T.M.; Navaratnam, V.; Hubbard, R.; Hopkins, P.M.; et al. Biomarker signatures for progressive idiopathic pulmonary fibrosis. Eur. Respir. J. 2022, 59, 2101181. [Google Scholar] [CrossRef]
- Manali, E.D.; Kannengiesser, C.; Borie, R.; Ba, I.; Bouros, D.; Markopoulou, A.; Antoniou, K.; Kolilekas, L.; Papaioannou, A.I.; Tzilas, V.; et al. Genotype-Phenotype Relationships in Inheritable Idiopathic Pulmonary Fibrosis: A Greek National Cohort Study. Respiration 2022, 101, 531–543. [Google Scholar] [CrossRef]
- Wang, L.; Zhu, M.; Li, Y.; Yan, P.; Li, Z.; Chen, X.; Yang, J.; Pan, X.; Zhao, H.; Wang, S.; et al. Serum Proteomics Identifies Biomarkers Associated With the Pathogenesis of Idiopathic Pulmonary Fibrosis. Mol. Cell. Proteomics. 2023, 22, 100524. [Google Scholar] [CrossRef]
- Fujii, H.; Hara, Y.; Saigusa, Y.; Tagami, Y.; Murohashi, K.; Nagasawa, R.; Aoki, A.; Izawa, A.; Seki, K.; Watanabe, K.; et al. ILD-GAP Combined with the Charlson Comorbidity Index Score (ILD-GAPC) as a Prognostic Prediction Model in Patients with Interstitial Lung Disease. Can. Respir. J. 2023, 2023, 5088207. [Google Scholar] [CrossRef]
- Hamano, Y.; Kida, H.; Ihara, S.; Murakami, A.; Yanagawa, M.; Ueda, K.; Honda, O.; Tripathi, L.P.; Arai, T.; Hirose, M.; et al. Classification of idiopathic interstitial pneumonias using anti-myxovirus resistance-protein 1 autoantibody. Sci. Rep. 2017, 7, 43201. [Google Scholar] [CrossRef] [PubMed]
- Shih, A.R.; Nitiwarangkul, C.; Little, B.P.; Roop, B.W.; Nandy, S.; Szabari, M.V.; Mercaldo, N.; Mercaldo, S.; Montesi, S.B.; Muniappan, A.; et al. Practical application and validation of the 2018 ATS/ERS/JRS/ALAT and Fleischner Society guidelines for the diagnosis of idiopathic pulmonary fibrosis. Respir. Res. 2021, 22, 124. [Google Scholar] [CrossRef]
- Raghu, G.; Remy-Jardin, M.; Myers, J.L.; Richeldi, L.; Ryerson, C.J.; Lederer, D.J.; Behr, J.; Cottin, V.; Danoff, S.K.; Morell, F.; et al. Diagnosis of Idiopathic Pulmonary Fibrosis. An Official ATS/ERS/JRS/ALAT Clinical Practice Guideline. Am. J. Respir. Crit. Care Med. 2018, 198, e44–e68. [Google Scholar] [CrossRef] [PubMed]
- Raghu, G.; Collard, H.R.; Egan, J.J.; Martinez, F.J.; Behr, J.; Brown, K.K.; Colby, T.V.; Cordier, J.-F.; Flaherty, K.R.; Lasky, J.A.; et al. An official ATS/ERS/JRS/ALAT statement: Idiopathic pulmonary fibrosis: Evidence-based guidelines for diagnosis and management. Am. J. Respir. Crit. Care Med. 2011, 183, 788–824. [Google Scholar] [CrossRef] [PubMed]
- Ryerson, C.J.; Vittinghoff, E.; Ley, B.; Lee, J.S.; Mooney, J.J.; Jones, K.D.; Elicker, B.M.; Wolters, P.J.; Koth, L.L.; King, T.E., Jr.; et al. Predicting survival across chronic interstitial lung disease: The ILD-GAP model. Chest 2014, 145, 723–728. [Google Scholar] [CrossRef]
- Charlson, M.E.; Pompei, P.; Ales, K.L.; MacKenzie, C.R. A new method of classifying prognostic comorbidity in longitudinal studies: Development and validation. J. Chronic Dis. 1987, 40, 373–383. [Google Scholar] [CrossRef]
- Sgalla, G.; Iovene, B.; Calvello, M.; Ori, M.; Varone, F.; Richeldi, L. Idiopathic pulmonary fibrosis: Pathogenesis and management. Respir. Res. 2018, 19, 32. [Google Scholar] [CrossRef]
- Munchel, J.K.; Shea, B.S. Diagnosis and Management of Idiopathic Pulmonary Fibrosis. R. I. Med. J. 2021, 104, 26–29. [Google Scholar]
- Ohshimo, S.; Ishikawa, N.; Horimasu, Y.; Hattori, N.; Hirohashi, N.; Tanigawa, K.; Kohno, N.; Bonella, F.; Guzman, J.; Costabel, U. Baseline KL-6 predicts increased risk for acute exacerbation of idiopathic pulmonary fibrosis. Respir. Med. 2014, 108, 1031–1039. [Google Scholar] [CrossRef] [PubMed]
- Tagami, Y.; Hara, Y.; Murohashi, K.; Nagasawa, R.; Nishikawa, Y.; Tanaka, M.; Aoki, A.; Tanaka, K.; Nakashima, K.; Watanabe, K.; et al. Comparison of Clinical Features between the High and Low Serum KL-6 Patients with Acute Exacerbation of Interstitial Lung Diseases. Can. Respir. J. 2021, 2021, 9099802. [Google Scholar] [CrossRef] [PubMed]
- Ishikawa, N.; Hattori, N.; Yokoyama, A.; Kohno, N. Utility of KL-6/MUC1 in the clinical management of interstitial lung diseases. Respir. Investig. 2012, 50, 3–13. [Google Scholar] [CrossRef]
- Wakamatsu, K.; Nagata, N.; Kumazoe, H.; Oda, K.; Ishimoto, H.; Yoshimi, M.; Takata, S.; Hamada, M.; Koreeda, Y.; Takakura, K.; et al. Prognostic value of serial serum KL-6 measurements in patients with idiopathic pulmonary fibrosis. Respir. Investig. 2017, 55, 16–23. [Google Scholar] [CrossRef]
- Hamai, K.; Iwamoto, H.; Ishikawa, N.; Horimasu, Y.; Masuda, T.; Miyamoto, S.; Nakashima, T.; Ohshimo, S.; Fujitaka, K.; Hamada, H.; et al. Comparative Study of Circulating MMP-7, CCL18, KL-6, SP-A, and SP-D as Disease Markers of Idiopathic Pulmonary Fibrosis. Dis. Markers. 2016, 2016, 4759040. [Google Scholar] [CrossRef]
- Wang, K.; Ju, Q.; Cao, J.; Tang, W.; Zhang, J. Impact of serum SP-A and SP-D levels on comparison and prognosis of idiopathic pulmonary fibrosis: A systematic review and meta-analysis. Medicine 2017, 96, e7083. [Google Scholar] [CrossRef]
- Magro, C.M.; Allen, J.; Pope-Harman, A.; Waldman, W.J.; Moh, P.; Rothrauff, S.; Ross, P., Jr. The role of microvascular injury in the evolution of idiopathic pulmonary fibrosis. Am. J. Clin. Pathol. 2003, 119, 556–567. [Google Scholar] [CrossRef]
- Ando, M.; Miyazaki, E.; Ito, T.; Hiroshige, S.; Nureki, S.-I.; Ueno, T.; Takenaka, R.; Fukami, T.; Kumamoto, T. Significance of serum vascular endothelial growth factor level in patients with idiopathic pulmonary fibrosis. Lung 2010, 188, 247–252. [Google Scholar] [CrossRef]
- Ley, B.; Bradford, W.Z.; Weycker, D.; Vittinghoff, E.; du Bois, R.M.; Collard, H.R. Unified baseline and longitudinal mortality prediction in idiopathic pulmonary fibrosis. Eur. Respir. J. 2015, 45, 1374–1381. [Google Scholar] [CrossRef]
- Prasse, A.; Pechkovsky, D.V.; Toews, G.B.; Jungraithmayr, W.; Kollert, F.; Goldmann, T.; Vollmer, E.; Müller-Quernheim, J.; Zissel, G. A vicious circle of alveolar macrophages and fibroblasts perpetuates pulmonary fibrosis via CCL18. Am. J. Respir. Crit. Care Med. 2006, 173, 781–792. [Google Scholar] [CrossRef]
- Wiertz, I.A.; Moll, S.A.; Seeliger, B.; Barlo, N.P.; van der Vis, J.J.; Korthagen, N.M.; Rijkers, G.T.; Ruven, H.J.; Grutters, J.C.; Prasse, A.; et al. Genetic Variation in CCL18 Gene Influences CCL18 Expression and Correlates with Survival in Idiopathic Pulmonary Fibrosis: Part, A. J. Clin. Med. 2020, 9, 1940. [Google Scholar] [CrossRef] [PubMed]
- Prasse, A.; Probst, C.; Bargagli, E.; Zissel, G.; Toews, G.B.; Flaherty, K.R.; Olschewski, M.; Rottoli, P.; Müller-Quernheim, J. Serum CC-chemokine ligand 18 concentration predicts outcome in idiopathic pulmonary fibrosis. Am. J. Respir. Crit. Care Med. 2009, 179, 717–723. [Google Scholar] [CrossRef] [PubMed]
- Raghu, G.; Weycker, D.; Edelsberg, J.; Bradford, W.Z.; Oster, G. Incidence and prevalence of idiopathic pulmonary fibrosis. Am. J. Respir. Crit. Care Med. 2006, 174, 810–816. [Google Scholar] [CrossRef] [PubMed]
- Lacedonia, D.; De Pace, C.C.; Rea, G.; Capitelli, L.; Gallo, C.; Scioscia, G.; Tondo, P.; Bocchino, M. Machine Learning and BMI Improve the Prognostic Value of GAP Index in Treated IPF Patients. Bioengineering 2023, 10, 251. [Google Scholar] [CrossRef] [PubMed]
- Barochia, A.V.; Kaler, M.; Weir, N.; Gordon, E.M.; Figueroa, D.M.; Yao, X.; WoldeHanna, M.L.; Sampson, M.; Remaley, A.T.; Grant, G.; et al. Serum levels of small HDL particles are negatively correlated with death or lung transplantation in an observational study of idiopathic pulmonary fibrosis. Eur. Respir. J. 2021, 58, 2004053. [Google Scholar] [CrossRef]
- Papiris, S.A.; Tomos, I.P.; Karakatsani, A.; Spathis, A.; Korbila, I.; Analitis, A.; Kolilekas, L.; Kagouridis, K.; Loukides, S.; Karakitsos, P.; et al. High levels of IL-6 and IL-8 characterize early-on idiopathic pulmonary fibrosis acute exacerbations. Cytokine 2018, 102, 168–172. [Google Scholar] [CrossRef]
- Guiot, J.; Bondue, B.; Henket, M.; Corhay, J.L.; Louis, R. Raised serum levels of IGFBP-1 and IGFBP-2 in idiopathic pulmonary fibrosis. BMC Pulm. Med. 2016, 16, 86. [Google Scholar] [CrossRef]
- Chadelat, K.; Boule, M.; Corroyer, S.; Fauroux, B.; Delaisi, B.; Tournier, G.; Clement, A. Expression of insulin-like growth factors and their binding proteins by bronchoalveolar cells from children with and without interstitial lung disease. Eur. Respir. J. 1998, 11, 1329–1336. [Google Scholar] [CrossRef]
- Guiot, J.; Moermans, C.; Henket, M.; Corhay, J.-L.; Louis, R. Blood Biomarkers in Idiopathic Pulmonary Fibrosis. Lung 2017, 195, 273–280. [Google Scholar] [CrossRef] [PubMed]
- Prasse, A.; Pechkovsky, D.V.; Toews, G.B.; Schäfer, M.; Eggeling, S.; Ludwig, C.; Germann, M.; Kollert, F.; Zissel, G.; Müller-Quernheim, J. CCL18 as an indicator of pulmonary fibrotic activity in idiopathic interstitial pneumonias and systemic sclerosis. Arthritis Rheum. 2007, 56, 1685–1693. [Google Scholar] [CrossRef] [PubMed]
- Glass, D.S.; Grossfeld, D.; Renna, H.A.; Agarwala, P.; Spiegler, P.; DeLeon, J.; Reiss, A.B. Idiopathic pulmonary fibrosis: Current and future treatment. Clin. Respir. J. 2022, 16, 84–96. [Google Scholar] [CrossRef] [PubMed]
- Sugino, K.; Ono, H.; Watanabe, N.; Ando, M.; Tsuboi, E.; Homma, S.; Kishi, K. Efficacy of early antifibrotic treatment for idiopathic pulmonary fibrosis. BMC Pulm. Med. 2021, 21, 218. [Google Scholar] [CrossRef]
- Bi, Y.; Rekić, D.; Paterniti, M.O.; Chen, J.; Marathe, A.; Chowdhury, B.A.; Karimi-Shah, B.A.; Wang, Y. A disease progression model of longitudinal lung function decline in idiopathic pulmonary fibrosis patients. J. Pharmacokinet. Pharmacodyn. 2021, 48, 55–67. [Google Scholar] [CrossRef] [PubMed]
Parameters | All IPF Patients n = 72 | Alive n = 40 | Deceased n = 32 | p-Values |
---|---|---|---|---|
Age in years (Mean ± SD) | 72 ± 6 | 71 ± 5 | 74 ± 6 | 0.022 * |
Sex (male/female) | 60 (83%)/12 (17%) | 30 (75%)/10 (25%) | 30 (94%)/2 (6%) | 0.034 * |
Smoking Current or ex-smokers/never-smokers | 64 (89%)/8 (11%) | 34 (85%)/6 (15%) | 30 (94%)/2 (6%) | 0.240 |
Pack/years | 77.2 ± 171 | 100 ± 242 | 55.5 ± 48 | 0.356 |
Antifibrotic treatment (nintedanib/pirfenidone) | 40 (56%)/32 (44%) | 20 (50%)/20 (50%) | 20 (63%)/12 (37%) | 0.289 |
LTOT, n (%) | 22 (30%) | 0 | 22 (69%) | <0.001 * |
GAP index, n (%) I II III IV | 1 (2%) 20 (28%) 31 (43%) 20 (28%) | 1 (3%) 14 (35%) 19 (48%) 6 (15%) | 0 6 (19%) 12 (38%) 14 (44%) | 0.042 * |
Parameters/Patients | Alive | Deceased | ||||
---|---|---|---|---|---|---|
(%pred), Mean ± SD | Baseline | 12 Months | p-Values | Baseline | 12 Months | p-Values |
FVC | 78.7 ± 14 | 81.7 ± 13.7 | 0.007 * | 69.8 ± 20.6 | 71.9 ± 22 | 0.044 * |
TLC | 62.1 ± 9.9 | 61 ± 12 | 0.201 | 57.6 ± 12.2 | 54.8 ± 14 | 0.068 |
DLCO | 50.3 ± 11.7 | 52.7 ± 14.3 | 0.077 | 41.1 ± 12 | 36.7 ± 12.1 | 0.001 * |
Biomarkers (Mean ± SD) | All IPF Patients n = 72 | Alive n = 40 | Deceased n = 32 | p-Values |
---|---|---|---|---|
KL-6 (U/mL) | 648.4 ± 175.8 | 618 ± 184 | 684 ± 161 | 0.117 |
SP-D (ng/mL) | 47.5 ± 24.3 | 40 ± 25.5 | 56.3 ± 19.7 | 0.005 * |
IL-8 (pg/mL) | 177.4 ±772.8 | 29.1 ± 51 | 353.6 ± 1125 | 0.113 |
CXCL13 (pg/mL) | 8.7 ± 9.5 | 6.8 ± 8.9 | 10.7 ± 9.8 | 0.980 |
CCL18 (pg/mL) | 76.32 ± 42.4 | 69.5 ± 32 | 83.9 ± 51 | 0.164 |
VEGF-A (pg/mL) | 28 ± 39 | 19.2 ± 6 | 38.5 ± 56 | 0.063 |
IGFBP-1 (pg/mL) | 702.2 ± 675 | 587.1 ± 505 | 855.6 ± 835 | 0.100 |
IGFBP-2 (pg/mL) | 237 ± 97 | 225.5 ± 117 | 251.4 ± 66 | 0.261 |
IGFBP-7(pg/mL) | 280 ± 78 | 277.1 ± 86 | 285.1 ± 67 | 0.620 |
ICAM-1 (pg/mL) | 96 ± 41 | 87 ± 31.9 | 107.7 ± 47 | 0.043 * |
MPO (pg/mL) | 22 ± 25.5 | 22.8 ± 29.4 | 21.6 ± 19 | 0.856 |
MMP-9 (pg/mL) | 18,056 ± 10,952 | 19,754 ± 12,910 | 15,793 ± 7209 | 0.108 |
Variable | Area | Cut-Off Point | p-Values | Sensitivity | Specificity |
---|---|---|---|---|---|
KL-6 (U/mL) | 0.531 | 607 | 0.019 * | 0.571 | 0.353 |
SP-D (ng/mL) | 0.750 | 51.2 | 0.001 * | 0.714 | 0.176 |
VEGF-A (pg/mL) | 0.500 | 21.5 | 0.001 * | 0.5 | 0.239 |
IPF Patients/GAP Index | I | II | III | IV | p-Values |
---|---|---|---|---|---|
12-month follow-up | |||||
patients alive | 1 (3%) | 15 (50%) | 10 (33%) | 4 (13%) | 0.004 * |
patients deceased | 0 | 4 (12%) | 18 (53%) | 12 (35%) | |
24-month follow-up | |||||
patients alive | 1 (3%) | 14 (35%) | 19 (48%) | 6 (15%) | 0.042 * |
patients deceased | 0 | 6 (19%) | 12 (38%) | 14 (44%) | |
KL-6, SP-D, VEGF-A combination | |||||
<Cut-off | 1 (2%) | 17 (40%) | 19 (44%) | 6 (14%) | 0.004 * |
>Cut-off | 0 | 3 (10%) | 12 (41%) | 14 (48%) |
IPF Patients/CCI Groups | 0–1 | 2–3 | ≥4 | p-Values |
---|---|---|---|---|
All patients | 2 (3%) | 48 (67%) | 22 (30%) | - |
12-month follow-up | ||||
patients alive | 0 | 22 (73%) | 8 (27%) | 0.265 |
patients deceased | 2 (6%) | 20 (59%) | 12 (35%) | |
24-month follow-up | ||||
patients alive | 0 | 32 (80%) | 8 (20%) | 0.017 * |
patients deceased | 2 (6%) | 16 (50%) | 14 (44%) | |
KL-6, SP-D, VEGF-A combination | ||||
<Cut-off | 2 (5%) | 27 (63%) | 14 (32%) | 0.421 |
>Cut-off | 0 | 21 (72%) | 8 (28%) | |
GAP index | ||||
I | 0 | 1 (100%) | 0 | 0.020 * |
II | 2 (10%) | 7 (35%) | 11 (55%) | |
III | 0 | 24 (77%) | 7 (23%) | |
IV | 0 | 16 (80%) | 4 (20%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Domvri, K.; Organtzis, I.; Apostolopoulos, A.; Fouka, E.; Kontakiotis, T.; Papakosta, D. Prognostic Value of Serum Biomarkers in Patients with Idiopathic Pulmonary Fibrosis in Relation to Disease Progression. J. Pers. Med. 2023, 13, 1307. https://doi.org/10.3390/jpm13091307
Domvri K, Organtzis I, Apostolopoulos A, Fouka E, Kontakiotis T, Papakosta D. Prognostic Value of Serum Biomarkers in Patients with Idiopathic Pulmonary Fibrosis in Relation to Disease Progression. Journal of Personalized Medicine. 2023; 13(9):1307. https://doi.org/10.3390/jpm13091307
Chicago/Turabian StyleDomvri, Kalliopi, Ioannis Organtzis, Apostolos Apostolopoulos, Evangelia Fouka, Theodoros Kontakiotis, and Despoina Papakosta. 2023. "Prognostic Value of Serum Biomarkers in Patients with Idiopathic Pulmonary Fibrosis in Relation to Disease Progression" Journal of Personalized Medicine 13, no. 9: 1307. https://doi.org/10.3390/jpm13091307
APA StyleDomvri, K., Organtzis, I., Apostolopoulos, A., Fouka, E., Kontakiotis, T., & Papakosta, D. (2023). Prognostic Value of Serum Biomarkers in Patients with Idiopathic Pulmonary Fibrosis in Relation to Disease Progression. Journal of Personalized Medicine, 13(9), 1307. https://doi.org/10.3390/jpm13091307