Skinfold Thickness as a Cardiometabolic Risk Predictor in Sedentary and Active Adult Populations
Abstract
:1. Introduction
2. Materials and Methods
- Mild activity: subjects who exercised less than 60 min per day and fewer than 5 days per week.
- Moderate activity: subjects who exercised less than 90 min per day and fewer than 6 days per week.
- Intense activity: subjects who exercised more than 90 min and at least 6 days per week.
Statistical Analysis
3. Results
3.1. General Characteristics of the Population
3.2. Metabolic Risks Concerning Skinfold Thickness
3.3. Principal Component Analysis of the Skinfolds Thickness Mostly Related to Metabolic Risks
4. Discussion
5. Limitations
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- World Health Organization. Physical Activity. Available online: https://www.who.int/es/news-room/fact-sheets/detail/physical-activity (accessed on 14 June 2023).
- Shaman-Levy, T.; Vielma-Orozco, E.; Heredia-Hernández, O.; Romero-Martínez, M.; Mojica-Cuevas, J.; Cuevas-Nasu, L.; Santaella-Castell, J.A.; Rivera-Domarco, J. Encuesta Nacional de Salud y Nutrición 2018–2019. Resultados nacionales. INSP 2020, 53, 1689–1699. [Google Scholar]
- Ahmadi, M.N.; Lee, I.-M.; Hamer, M.; del Pozo Cruz, B.; Chen, L.J.; Eroglu, E.; Lai, Y.-J.; Ku, P.W.; Stamatakis, E. Changes in Physical Activity and Adiposity with All-Cause, Cardiovascular Disease, and Cancer Mortality. Int. J. Obes. 2022, 46, 1849–1858. [Google Scholar] [CrossRef] [PubMed]
- Abedpoor, N.; Taghian, F.; Hajibabaie, F. Physical Activity Ameliorates the Function of Organs via Adipose Tissue in Metabolic Diseases. Acta Histochem. 2022, 124, 151844. [Google Scholar] [CrossRef]
- Aljaloud, K.S.; Hughes, A.R.; Galloway, S.D.R. Impact of Physical Activity on Adiposity and Risk Markers for Cardiovascular and Metabolic Disease. Am. J. Mens. Health 2022, 16, 15579883221092289. [Google Scholar] [CrossRef]
- Denche-Zamorano, A.; Perez-Gomez, J.; Barrios-Fernandez, S.; Oliveira, R.; Adsuar, J.C.; Brito, J.P. Relationships between Physical Activity Frequency and Self-Perceived Health, Self-Reported Depression, and Depressive Symptoms in Spanish Older Adults with Diabetes: A Cross-Sectional Study. Int. J. Environ. Res. Public Health 2023, 20, 2857. [Google Scholar] [CrossRef] [PubMed]
- Rhee, E.-J. The Influence of Obesity and Metabolic Health on Vascular Health. Endocrinol. Metab. 2022, 37, 1–8. [Google Scholar] [CrossRef]
- Kobayashi, M.; Ogawa, S.; Tayama, J.; Sagara, I.; Takeoka, A.; Bernick, P.; Kawano, T.; Abiru, N.; Hayashida, M.; Shirabe, S. Intra-Abdominal Fat Accumulation Is an Important Predictor of Metabolic Syndrome in Young Adults. Medicine 2020, 99, e22202. [Google Scholar] [CrossRef]
- Eghan, B.A.; Agyemang-Yeboah, F.; Togbe, E.; Annani-Akollor, M.E.; Donkor, S.; Afranie, B.O. Waist Circumference and Hip Circumference as Potential Predictors of Visceral Fat Estimate among Type 2 Diabetic Patients at the Komfo Anokye Teaching Hospital (KATH), Kumasi-Ghana. Alex. J. Med. 2019, 55, 49–56. [Google Scholar] [CrossRef]
- Esparza-Ros, F.; Moreira, A.C.; Vaquero-Cristóbal, R.; Barrigas, C.; Albaladejo-Saura, M.; Vieira, F. Differences between Four Skinfold Calipers in the Assessment of Adipose Tissue in Young Adult Healthy Population. Nutrients 2022, 14, 2085. [Google Scholar] [CrossRef]
- Marrodán, M.D.; González-Montero de Espinosa, M.; Herráez, Á.; Alfaro, E.L.; Bejarano, I.F.; Carmenate, M.; Lomaglio, D.B.; López-Ejeda, N.; Martínez, A.; Mesa, M.S.; et al. Development of Subcutaneous Fat in Spanish and Latin American Children and Adolescents: Reference Values for Biceps, Triceps, Subscapular and Suprailiac Skinfolds. Homo 2017, 68, 145–155. [Google Scholar] [CrossRef]
- Demura, S.; Sato, S. Suprailiac or Abdominal Skinfold Thickness Measured with a Skinfold Caliper as a Predictor of Body Density in Japanese Adults. Tohoku J. Exp. Med. 2007, 213, 51–61. [Google Scholar] [CrossRef] [PubMed]
- Ruiz-Alejos, A.; Carrillo-Larco, R.M.; Miranda, J.J.; Gilman, R.H.; Smeeth, L.; Bernabé-Ortiz, A. Skinfold Thickness and the Incidence of Type 2 Diabetes Mellitus and Hypertension: An Analysis of the Peru Migrant Study. Public Health Nutr. 2020, 23, 63–71. [Google Scholar] [CrossRef] [PubMed]
- Piché, M.-E.; Poirier, P.; Lemieux, I.; Després, J.-P. Overview of Epidemiology and Contribution of Obesity and Body Fat Distribution to Cardiovascular Disease: An Update. Prog. Cardiovasc. Dis. 2018, 61, 103–113. [Google Scholar] [CrossRef] [PubMed]
- World Medical Association; General Assembly. World Medical Association Declaration of Helsinki: Ethical Principles for Medical Research Involving Human Subjects. Jama 2013, 310, 2191. [Google Scholar] [CrossRef] [PubMed]
- Stewart, A.; Marfell-Jones, M. International Society for Advancement of Kinanthropometry. In International Standards for Anthropometric Assessment; International Society for the Advancement of Kinanthropometry: Lower Hutt, New Zealand, 2011; ISBN 978-0-620-3. [Google Scholar]
- Coles, N.; Retnakaran, R.; Hanley, A.; Birken, C.; Hamilton, J. Evaluation of Anthropometric Measures for Assessment of Cardiometabolic Risk in Early Childhood. Public Health Nutr. 2020, 23, 2100–2108. [Google Scholar] [CrossRef] [PubMed]
- Rangel-Baltazar, E.; Cuevas-Nasu, L.; Shamah-Levy, T.; Rodríguez-Ramírez, S.; Méndez-Gómez-Humarán, I.; Rivera, J.A. Association between High Waist-to-Height Ratio and Cardiovascular Risk among Adults Sampled by the 2016 Half-Way National Health and Nutrition Survey in Mexico (ENSANUT MC 2016). Nutrients 2019, 11, 1402. [Google Scholar] [CrossRef]
- Matthews, D.R.; Hosker, J.P.; Rudenski, A.S.; Naylor, B.A.; Treacher, D.F.; Turner, R.C. Homeostasis Model Assessment: Insulin Resistance and β-Cell Function from Fasting Plasma Glucose and Insulin Concentrations in Man. Diabetologia 1985, 28, 412–419. [Google Scholar] [CrossRef]
- González-Chávez, A. Prevalencia del síndrome metabólico entre adultos mexicanos no diabéticos, usando las definiciones de la OMS, NCEP-ATPIIIa e IDF. Rev. Med. Hosp. Gen. Mex. 2008, 1, 9. [Google Scholar]
- PROYECTO de Norma Oficial Mexicana PROY-NOM-030-SSA2-2017, Para la Prevención, Detección, Diagnóstico, Tratamiento y Control de la Hipertensión Arterial Sistémica. 2017. Available online: https://www.dof.gob.mx/nota_detalle.php?codigo=5480159&fecha=19/04/2017#gsc.tab=0 (accessed on 14 June 2023).
- Zamora-Gasga, V.M.; Montalvo-González, E.; Loarca-Piña, G.; Vázquez-Landaverde, P.A.; Tovar, J.; Sáyago-Ayerdi, S.G. Microbial Metabolites Profile during In Vitro Human Colonic Fermentation of Breakfast Menus Consumed by Mexican School Children. Food Res. Int. 2017, 97, 7–14. [Google Scholar] [CrossRef]
- Durstine, J.L.; Gordon, B.; Wang, Z.; Luo, X. Chronic Disease and the Link to Physical Activity. JSHS 2013, 2, 3–11. [Google Scholar] [CrossRef]
- Whaley-Connell, A.; Sowers, J.R. Indices of Obesity and Cardiometabolic Risk. Hypertension 2011, 58, 991–993. [Google Scholar] [CrossRef]
- da Silva, T.B.P.; Luiz, M.M.; Delinocente, M.L.B.; Steptoe, A.; de Oliveira, C.; da Silva Alexandre, T. Is Abdominal Obesity a Risk Factor for the Incidence of Vitamin D Insufficiency and Deficiency in Older Adults? Evidence from the ELSA Study. Nutrients 2022, 14, 4164. [Google Scholar] [CrossRef]
- Baker, J.L. Childhood Body-Mass Index and the Risk of Coronary Heart Disease in Adulthood. N. Engl. J. Med. 2007, 357, 2329–2337. [Google Scholar] [CrossRef]
- Lintsi, M.; Kaarma, H.; Ingrid, K. Comparison of Hand-to-Hand Bioimpedance and Anthropometry Equations versus Dual-Energy X-Ray Absorptiometry for the Assessment of Body Fat Percentage in 17–18-Year-Old Conscripts. Clin. Physiol. Funct. Imaging 2004, 24, 85–90. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, M.N.; Silva, S.C.D.; Monteiro, W.D.; Farinatti, P.D.T.V. Estimativa da gordura corporal através de equipamentos de bioimpedância, dobras cutâneas e pesagem hidrostática. Rev. Bras. Med. Esporte 2001, 7, 125–131. [Google Scholar] [CrossRef]
- Ripka, W.L.; Rotta, C.V.; Ulbricht, L.; Neves, E.B. Composición Corporal Evaluada Por Pliegues Cutáneos y Bioimpedancia En Varones Militares Brasileños. Rev. Int. Med. Cienc. Act. 2014, 14, 279–289. [Google Scholar]
- Freedman, D.S.; Serdula, M.K.; Srinivasan, S.R.; Berenson, G.S. Relation of Circumferences and Skinfold Thicknesses to Lipid and Insulin Concentrations in Children and Adolescents: The Bogalusa Heart Study. Am. J. Clin. Nutr. 1999, 69, 308–317. [Google Scholar] [CrossRef]
- Alicandro, G.; Battezzati, A.; Bianchi, M.L.; Loi, S.; Speziali, C.; Bisogno, A.; Colombo, C. Estimating Body Composition from Skinfold Thicknesses and Bioelectrical Impedance Analysis in Cystic Fibrosis Patients. J. Cyst. Fibros. 2015, 14, 784–791. [Google Scholar] [CrossRef]
- Landen, S.; Hiam, D.; Voisin, S.; Jacques, M.; Lamon, S.; Eynon, N. Physiological and Molecular Sex Differences in Human Skeletal Muscle in Response to Exercise Training. J. Physiol. 2023, 601, 419–434. [Google Scholar] [CrossRef]
- Hankinson, A.L.; Daviglus, M.L.; Bouchard, C.; Carnethon, M.; Lewis, C.E.; Schreiner, P.J.; Liu, K.; Sidney, S. Maintaining a High Physical Activity Level Over 20 Years and Weight Gain. JAMA 2010, 304, 2603–2610. [Google Scholar] [CrossRef]
- Cano, A.; Ventura, L.; Martinez, G.; Cugusi, L.; Caria, M.; Deriu, F.; Manca, A. Analysis of Sex-Based Differences in Energy Substrate Utilization during Moderate-Intensity Aerobic Exercise. Eur. J. Appl. Physiol. 2022, 122, 29–70. [Google Scholar] [CrossRef] [PubMed]
- Lee, W.-C.; Wu, P.-Y.; Huang, J.-C.; Tsai, Y.-C.; Chiu, Y.-W.; Chen, S.-C.; Chang, J.-M.; Chen, H.-C. Sex Difference in the Associations among Obesity-Related Indices with Incident Hypertension in a Large Taiwanese Population Follow-Up Study. J. Pers. Med. 2022, 12, 972. [Google Scholar] [CrossRef] [PubMed]
- Cooper, A.J.; Gupta, S.R.; Moustafa, A.F.; Chao, A.M. Sex/Gender Differences in Obesity Prevalence, Comorbidities, and Treatment. Curr. Obes. Rep. 2021, 10, 458–466. [Google Scholar] [CrossRef] [PubMed]
- Chang, E.; Varghese, M.; Singer, K. Gender and Sex Differences in Adipose Tissue. Curr. Diab. Rep. 2018, 18, 69. [Google Scholar] [CrossRef] [PubMed]
- Nösslinger, H.; Mair, E.; Toplak, H.; Hörmann-Wallner, M. Measuring Subcutaneous Fat Thickness Using Skinfold Calipers vs. High-Resolution B-Scan Ultrasonography in Healthy Volunteers: A Pilot Study. Clin. Nutr. 2022, 41, 19–32. [Google Scholar] [CrossRef]
- Nikolaidis, P.T.; Rosemann, T.; Knechtle, B. Skinfold Thickness Distribution in Recreational Marathon Runners. Int. J. Environ. Res. Public Health 2020, 17, 2978. [Google Scholar] [CrossRef]
- Shaw, K.A.; Gennat, H.C.; O’Rourke, P.; Del Mar, C. Exercise for overweight or obesity. CDRS 2009, 4, CD003817. [Google Scholar] [CrossRef]
- Catenacci, V.A.; Wyatt, H.R. The role of physical activity in producing and maintaining weight loss. Nat. Clin. Pract. Endocrinol. Metab. 2007, 3, 518–529. [Google Scholar] [CrossRef]
- Beaulieu, K.; Oustric, P.; Finlayson, G. The impact of physical activity on food reward: Review and conceptual synthesis of evidence from observational, acute, and chronic exercise training studies. Curr. Obes. Rep. 2020, 9, 63–80. [Google Scholar] [CrossRef]
- Song, J.-J.; Ma, Z.; Wang, J.; Chen, L.-X.; Zhong, J.-C. Gender Differences in Hypertension. J. Cardiovasc. Trans. Res. 2020, 13, 47–54. [Google Scholar] [CrossRef]
- Cho, K.-H. The Current Status of Research on High-Density Lipoproteins (HDL): A Paradigm Shift from HDL Quantity to HDL Quality and HDL Functionality. Int. J. Mol. Sci. 2022, 23, 3967. [Google Scholar] [CrossRef] [PubMed]
- Cho, K.-H.; Park, H.-J.; Kim, S.-J.; Kim, J.-R. Decrease in HDL-C Is Associated with Age and Household Income in Adults from the Korean National Health and Nutrition Examination Survey 2017: Correlation Analysis of Low HDL-C and Poverty. Int. J. Environ. Res. Public Health 2019, 16, 3329. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.S.; Lee, J. Effects of Exercise Interventions on Weight, Body Mass Index, Lean Body Mass and Accumulated Visceral Fat in Overweight and Obese Individuals: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Int. J. Environ. Res. Public Health 2021, 18, 2635. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.-B.; Kim, K.; Kim, C.; Kang, S.-J.; Kim, H.J.; Yoon, S.; Shin, Y.-A. Effects of Exercise on the Body Composition and Lipid Profile of Individuals with Obesity: A Systematic Review and Meta-Analysis. J. Obes. Metab. Syndr. 2019, 28, 278–294. [Google Scholar] [CrossRef]
- Freedman, D.S.; Katzmarzyk, P.T.; Dietz, W.H.; Srinivasan, S.R.; Berenson, G.S. Relation of Body Mass Index and Skinfold Thicknesses to Cardiovascular Disease Risk Factors in Children: The Bogalusa Heart Study. Am. J. Clin. Nutr. 2009, 90, 210–216. [Google Scholar] [CrossRef] [PubMed]
- Abate, N.; Garg, A.; Peshock, R.M.; Stray-Gundersen, J.; Grundy, S.M. Relationships of Generalized and Regional Adiposity to Insulin Sensitivity in Men. J. Clin. Investig. 1995, 96, 88–98. [Google Scholar] [CrossRef]
- Steinberger, J.; Jacobs, D.R.; Raatz, S.; Moran, A.; Hong, C.-P.; Sinaiko, A.R. Comparison of Body Fatness Measurements by BMI and Skinfolds vs Dual Energy X-Ray Absorptiometry and Their Relation to Cardiovascular Risk Factors in Adolescents. Int. J. Obes. 2005, 29, 1346–1352. [Google Scholar] [CrossRef]
- Williams, D.P.; Going, S.B.; Lohman, T.G.; Harsha, D.W.; Srinivasan, S.R.; Webber, L.S.; Berenson, G.S. Body Fatness and Risk for Elevated Blood Pressure, Total Cholesterol, and Serum Lipoprotein Ratios in Children and Adolescents. Am. J. Public. Health 1992, 82, 358–363. [Google Scholar] [CrossRef]
- Umławska, W. Adipose Tissue Content and Distribution in Children and Adolescents with Bronchial Asthma. Respir. Med. 2015, 109, 200–207. [Google Scholar] [CrossRef]
- Cossio-Bolaños, D.M.A.; Marco, A.D.; Cecato, M.D.M. Los pliegues cutáneos como predictores del IMC en pre-púberes de ambos sexos. Actual. Nutr. 2011, 12, 295–301. [Google Scholar]
- Williams, R.A.; Cooper, S.B.; Dring, K.J.; Hatch, L.; Morris, J.G.; Sun, F.-H.; Nevill, M.E. Physical Fitness, Physical Activity and Adiposity: Associations with Risk Factors for Cardiometabolic Disease and Cognitive Function across Adolescence. BMC Pediatr. 2022, 22, 75. [Google Scholar] [CrossRef] [PubMed]
- Ying-xiu, Z.; Zhao-xia, W.; Ling, Y.; Chun-bo, G.; Yu-lin, G. Association between Body Mass Index, Skinfold Thickness and Blood Pressure in 12-Year-Old Children. Eur. J. Pediatr. 2013, 172, 1167–1171. [Google Scholar] [CrossRef]
- Bernabé-Ortiz, A.; Carrillo-Larco, R.M.; Gilman, R.H.; Checkley, W.; Smeeth, L.; Miranda, J.J.; CRONICAS Cohort Study Group. Contribution of modifiable risk factors for hypertension and type-2 diabetes in Peruvian resource-limited settings. J. Epidemiol. Community Health 2016, 70, 49–55. [Google Scholar] [CrossRef] [PubMed]
- Aini, C.N.; Ardiaria, M. The Relationship between A Skinfold Thicknesses with Level of High Sensitivity C-Reactive Protein in Elderly Woman. Sports Med. Curiosit. J. 2022, 1, 1–6. [Google Scholar] [CrossRef]
- Zhu, J.; Yang, Z.; Li, X.; Chen, X.; Pi, J.; Zhuang, T.; Liu, J.; Li, G.; Peng, S.; Zhang, L.; et al. Association of Periaortic Fat and Abdominal Visceral Fat with Coronary Artery Atherosclerosis in Chinese Middle Aged and Elderly Patients Undergoing Computed Tomography Coronary Angiography. Glob. Heart 2021, 16, 74. [Google Scholar] [CrossRef] [PubMed]
- Surendar, J.; Indulekha, K.; Deepa, M.; Mohan, V.; Pradeepa, R. Association of Adiposity, Measured by Skinfold Thickness, with Parental History of Diabetes in a South Indian Population: Data from CURES-114. Postgrad. Med. J. 2016, 92, 379. [Google Scholar] [CrossRef]
- Mesa, J.L.; Ortega, F.B.; Ruiz, J.R.; Castillo, M.J.; Tresaco, B.; Carreño, F.; Moreno, L.A.; Gutiérrez, Á.; Bueno, M. Anthropometric Determinants of a Clustering of Lipid-Related Metabolic Risk Factors in Overweight and Non-Overweight Adolescents—Influence of Cardiorespiratory Fitness. Ann. Nutr. Metab. 2006, 50, 519–527. [Google Scholar] [CrossRef]
- Ferreira, L.C.C.D.N.; Silva, H.J.G.D.; Lins, T.A.; Prado, W.L.D. Relationship between Lipid and Hematological Profiles with Adiposity in Obese Adolescents. Rev. Bras. Hematol. Hemoter. 2013, 35, 163–166. [Google Scholar] [CrossRef]
- Cazzola, R.; Rondanelli, M.; Russo-Volpe, S.; Ferrari, E.; Cestaro, B. Decreased Membrane Fluidity and Altered Susceptibility to Peroxidation and Lipid Composition in Overweight and Obese Female Erythrocytes. J. Lipid Res. 2004, 45, 1846–1851. [Google Scholar] [CrossRef]
- Caspersen, C.J.; Powell, K.E.; Christenson, G.M. Physical Activity, Exercise, and Physical Fitness: Definitions and Distinctions for Health-Related Research. Public Health Rep. 1985, 100, 126. [Google Scholar]
- Slentz, C.A.; Duscha, B.D.; Johnson, J.L.; Ketchum, K.; Aiken, L.B.; Samsa, G.P.; Houmard, J.A.; Bales, C.W.; Kraus, W.E. Effects of the Amount of Exercise on Body Weight, Body Composition, and Measures of Central Obesity: STRRIDE—A Randomized Controlled Study. Arch. Intern. Med. 2004, 164, 31–39. [Google Scholar] [CrossRef] [PubMed]
- Thompson, D.; Karpe, F.; Lafontan, M.; Frayn, K. Physical Activity and Exercise in the Regulation of Human Adipose Tissue Physiology. Physiol. Rev. 2012, 92, 157–191. [Google Scholar] [CrossRef] [PubMed]
- Mu, W.-J.; Zhu, J.-Y.; Chen, M.; Guo, L. Exercise-Mediated Browning of White Adipose Tissue: Its Significance, Mechanism and Effectiveness. Int. J. Mol. Sci. 2021, 22, 11512. [Google Scholar] [CrossRef] [PubMed]
Variable | Method | Parameter | Ref. |
---|---|---|---|
Abdominal obesity | Measure the narrowest part of the torso | >90 cm—men >85 cm—women | [18] |
Waist-to-height ratio | Divide waist circumference by height. | >0.5 | [18] |
Insulin resistance | HOMA-IR: Fasting Insulin (µU/mL) × Fasting Glucose (mmol/L)/22.5 | >2.5 | [19] |
Hyperglycemia | Enzymatic colorimetric method (Biosystems®, Barcelona, Spain) | >100 mg/dL | [20] |
Hypoalphalipoproteinemia | Enzymatic colorimetric method (Biosystems®, Barcelona, Spain) Hight-density cholesterol | <40 mg/dL men <50 mg/dL women | [20] |
Hypertriglyceridemia | Enzymatic colorimetric method (Biosystems®, Barcelona, Spain) Triglycerides | >150 mg/dL | [20] |
Risk for elevated blood pressure | Automatic measurement in the upper left arm with the digital baumanometer device (Omron®, Kyoto Japan) in supine position after 5 min of rest. | >130 systolic m/Hg >85 diastolic mm/Hg | [21] |
Variable | Female Total n = 616 | Male Total n = 330 | p-Value | Female PA n = 335 | Female NA n = 281 | p-Value | Male PA n = 184 | Male NA n = 146 | p-Value |
---|---|---|---|---|---|---|---|---|---|
Mean ± SD | Mean ± SD | Mean Male Sex ± SD | Mean ± SD | Mean ± SD | Mean ± SD | ||||
Age (years) | 43.77 ± 11.63 | 43.61 ± 12.78 | 0.850 | 43.24 ± 12.26 | 44.39 ± 10.82 | 0.222 | 43.20 ± 12.55 | 44.12 ± 13.10 | 0.513 |
Weight (kg) | 68.88 ± 13.44 | 80.73 ± 13.81 | <0.001 * | 67.62 ± 12.92 | 70.39 ± 13.92 | 0.011 * | 81.51 ± 14.04 | 79.74 ± 13.51 | 0.249 |
Height (m) | 1.58 ± 0.06 | 1.70 ± 0.07 | <0.001 * | 1.58 ± 0.06 | 1.58 ± 0.06 | 0.746 | 1.70 ± 0.71 | 1.71 ± 0.07 | 0.232 |
Body Mass Index (kg/m2) | 27.42 ± 5.21 | 27.77 ± 4.33 | 0.264 | 26.95 ± 5.04 | 27.99 ± 5.35 | 0.013 * | 28.16 ± 4.32 | 27.29 ± 4.30 | 0.070 |
Fat by bioimpedance (%) | 35.03 ± 6.91 | 25.21 ± 6.77 | <0.001 * | 34.30 ± 7.46 | 35.89 ± 6.10 | 0.004 * | 26.09 ± 6.58 | 24.11 ± 6.87 | 0.008 * |
Waist (cm) | 87.79 ± 13.14 | 96.01 ± 11.55 | <0.001 * | 86.55 ± 12.67 | 89.27 ± 13.54 | 0.010 * | 97.02 ± 11.28 | 94.73 ± 11.79 | 0.074 |
Hip (cm) | 104.56 ± 10.45 | 102.72 ± 8.29 | <0.001 * | 103.53 ± 10.49 | 105.78 ± 10.99 | 0.008 * | 103.37 ± 8.77 | 101.92 ± 7.59 | 0.114 |
Skinfold bicipital (mm) | 20.83 ± 9.34 | 15.35 ± 9.11 | <0.001 * | 19.89 ± 9.40 | 21.94 ± 9.16 | 0.007 * | 15.41 ± 9.03 | 15.30 ± 9.23 | 0.915 |
Skinfold tricipital (mm) | 27.93 ± 8.23 | 20.55 ± 8.67 | <0.001 * | 27.39 ± 8.22 | 28.56 ± 8.37 | 0.080 | 20.81 ± 8.40 | 20.21 ± 9.01 | 0.525 |
Skinfold suprailiac (mm) | 27.59 ± 9.33 | 25.58 ± 10.49 | 0.004 * | 27.21 ± 9.11 | 28.03 ± 9.59 | 0.277 | 25.90 ± 10.63 | 25.17 ± 10.36 | 0.530 |
Skinfold subscapular (mm) | 25.20 ± 9.45 | 23.09 ± 8.95 | 0.001 * | 25.11 ± 9.39 | 25.31 ± 9.55 | 0.793 | 23.02 ± 9.14 | 23.19 ± 9.14 | 0.857 |
Fold sum (mm) | 101.53 ± 29.56 | 84.58 ± 29.91 | <0.001 * | 99.60 ± 29.28 | 103.84 ± 29.77 | 0.076 | 85.14 ± 29.39 | 83.87 ± 30.64 | 0.702 |
Systolic pressure (mm/Hg) | 115.05 ± 15.36 | 119.21 ± 15.16 | <0.001 * | 114.90 ± 15.24 | 115.22 ± 15.53 | 0.801 | 118.67 ± 13.90 | 119.89 ± 16.64 | 0.469 |
Diastolic pressure (mm/Hg) | 74.48 ± 10.22 | 77.64 ± 10.39 | <0.001 * | 74.36 ± 9.74 | 74.61 ± 10.79 | 0.760 | 77.33 ± 9.72 | 78.03 ± 11.20 | 0.545 |
Heart rate (beats/min) | 69.01 ± 7.47 | 68.88 ± 7.56 | 0.798 | 68.64 ± 7.41 | 69.45 ± 7.54 | 0.185 | 68.97 ± 7.88 | 68.76 ± 7.16 | 0.800 |
Breathing rate (breaths/min) | 17.19 ± 2.33 | 17.21 ± 2.48 | 0.885 | 17.32 ± 2.33 | 17.03 ± 2.32 | 0.119 | 17.23 ± 2.57 | 17.18 ± 2.30 | 0.873 |
Hemoglobin (g/dL) | 13.45 ± 1.30 | 15.03 ± 1.44 | <0.001 * | 13.50 ± 1.25 | 13.39 ± 1.35 | 0.307 | 14.96 ± 1.41 | 15.13 ± 1.48 | 0.274 |
Hematocrit (mm/dL) | 42.14 ± 3.48 | 46.94 ± 3.57 | <0.001 * | 42.18 ± 3.42 | 42.10 ± 3.55 | 0.771 | 46.94 ± 3.61 | 46.94 ± 3.55 | 0.996 |
Glucose (mg/dL) | 94.51 ± 22.79 | 95.75 ± 20.13 | 0.407 | 93.84 ± 24.27 | 95.30 ± 20.91 | 0.430 | 95.54 ± 18.48 | 96.01 ± 22.10 | 0.832 |
Total cholesterol (mg/dL) | 183.87 ± 41.45 | 193.34 ± 49.53 | 0.003 * | 181.08 ± 41.19 | 187.19 ± 41.59 | 0.069 | 192.62 ± 48.24 | 194.25 ± 51.27 | 0.767 |
HDL cholesterol (mg/dL) | 44.16 ± 18.72 | 40.75 ± 18.04 | 0.007 * | 43.22 ± 18.76 | 45.27 ± 18.63 | 0.175 | 40.44 ± 17.97 | 41.15 ± 18.17 | 0.723 |
LDL cholesterol (mg/dL) | 113.78 ± 41.22 | 118.21 ± 48.03 | 0.156 | 112.40 ± 40.93 | 115.43 ± 41.59 | 0.365 | 118.45 ± 45.44 | 117.93 ± 51.27 | 0.921 |
VLDL cholesterol (mg/dL) | 25.99 ± 13.35 | 34.47 ± 20.81 | <0.001 * | 25.53 ± 14.22 | 26.55 ± 12.24 | 0.347 | 34.11 ± 21.01 | 34.93 ± 20.63 | 0.724 |
Triglycerides (mg/dL) | 129.98 ± 66.76 | 172.98 ± 104.81 | <0.001 * | 127.67 ± 71.11 | 132.74 ± 61.18 | 0.347 | 170.55 ± 105.06 | 176.04 ± 104.76 | 0.637 |
Globular sedimentation velocity (mm/h) | 14.84 ± 10.05 | 11.80 ± 9.59 | <0.001 * | 15.43 ± 10.57 | 14.13 ± 9.35 | 0.107 | 12.73 ± 10.94 | 10.62 ± 7.43 | 0.047* |
Fibrinogen (mg/dL) | 327.75 ± 86.53 | 328.63 ± 85.15 | 0.880 | 322.57 ± 85.43 | 333.92 ± 87.58 | 0.105 | 330.58 ± 86.42 | 326.18 ± 83.74 | 0.641 |
Insulin (U/mL) | 10.24 ± 10.15 | 10.47 ± 10.28 | 0.735 | 10.20 ± 11.66 | 10.29 ± 8.01 | 0.909 | 9.39 ± 6.53 | 11.84 ± 13.51 | 0.031* |
Ultrasensitive CRP (mg/L) | 1.89 ± 3.04 | 2.04 ± 3.05 | 0.483 | 1.91 ± 3.49 | 1.88 ± 2.42 | 0.901 | 1.99 ± 3.09 | 2.09 ± 3.01 | 0.783 |
Variables | Quartile 1 <74.89 mm n = 237 | Quartile 2 74.90–93.99 mm n = 237 | Quartile 3 94.00–114.99 mm n = 236 | Quartile 4 >114.10 mm n = 236 | p-Value |
---|---|---|---|---|---|
Mean ±SD | Mean ±SD | Mean ±SD | Mean ±SD | ||
Systolic pressure (mm/Hg) | 113.76 ± 14.28 | 117.41 ± 15.74 | 116.93 ± 17.63 | 117.89 ± 13.37 | 0.015 a,b |
Diastolic pressure (mm/Hg) | 73.35 ± 9.77 | 76.16 ± 10.24 | 76.25 ± 11.28 | 76.58 ± 9.90 | 0.002 a,b,c |
Heart rate (beats/min) | 67.16 ± 7.70 | 69.03 ± 8.06 | 69.92 ± 6.99 | 69.75 ± 6.88 | <0.001 a,b,c |
Breathing rate (breaths/min) | 17.77 ± 2.40 | 16.97 ± 2.54 | 17.08 ± 2.23 | 16.95 ± 2.20 | <0.001 a,b,c |
Hemoglobin (g/dL) | 14.51 ± 1.65 | 13.83 ± 1.49 | 13.84 ± 1.52 | 13.81 ± 1.41 | <0.001 a,b,c |
Hematocrit (mm/dL) | 44.66 ± 4.36 | 43.58 ± 4.43 | 43.60 ± 4.12 | 43.42 ± 3.71 | 0.004 a,b,c |
Glucose (mg/dL) | 91.16 ± 18.55 | 91.92 ± 15.40 | 96.64 ± 24.85 | 100.55 ± 26.74 | <0.001 b,c,d |
Total cholesterol (mg/dL) | 184.57 ± 48.36 | 184.42 ± 41.76 | 188.61 ± 44.68 | 191.47 ± 43.63 | 0.249 |
HDL cholesterol (mg/dL) | 42.43 ± 19.39 | 42.14 ± 18.71 | 44.62 ± 19.23 | 42.87 ± 16.91 | 0.469 |
LDL cholesterol (mg/dL) | 114.71 ± 46.65 | 114.91 ± 44.05 | 114.97 ± 42.72 | 116.85 ± 41.57 | 0.947 |
VLDL cholesterol (mg/dL) | 27.55 ± 18.40 | 27.43 ± 13.69 | 29.09 ± 16.37 | 31.82 ± 18.15 | 0.015 b,d |
Triglycerides (mg/dL) | 138.63 ± 93.49 | 137.13 ± 68.45 | 145.47 ± 81.93 | 159.09 ± 90.77 | 0.019 b,d |
Globular sedimentation velocity (mm/h) | 11.49 ± 8.53 | 12.82 ± 8.07 | 14.42 ± 9.62 | 16.43 ± 12.53 | <0.001 b,c,d |
Fibrinogen (mg/dL) | 300.97 ± 76.89 | 327.79 ± 82.96 | 330.25 ± 83.48 | 353.58 ± 92.27 | <0.001 a,b,c,d,e |
Insulin (U/mL) | 8.66 ± 9.03 | 10.38 ± 11.02 | 10.66 ± 10.48 | 11.60 ± 9.95 | 0.016 b |
C-reactive protein (mg/L) | 1.31 ± 3.36 | 1.82 ± 2.73 | 1.75 ± 2.28 | 2.90 ± 3.43 | <0.001 b,d,e |
Fat by bioimpedance (%) | 24.46 ± 7.73 | 31.91 ± 6.75 | 33.43 ± 6.81 | 36.68 ± 6.67 | <0.001 a,b,c,d,e |
Fat mass (kg) | 16.92 ± 7.77 | 22.41 ± 7.38 | 24.06 ± 7.40 | 28.42 ± 9.30 | <0.001 a,b,c,d,e |
Cardiometabolic Risk | Bicipital (mm) | Tricipital (mm) | Suprailiac (mm) | Subscapular (mm) | |||||
---|---|---|---|---|---|---|---|---|---|
% (number of cases) | (19.7) NA | (18.3) PA | (25.7) NA | (25.1) PA | (27.1) NA | (26.7) PA | (24.6) NA | (24.4) PA | |
Cardiovascular by waist–height index 76.8% (n = 727) | Cramer´s V | (23.6) n = 338 0.218 ** | (21.1) n = 389 0.229 ** | (28.7) n = 338 0.269 ** | (26.6) n = 389 0.263 ** | (30.5) n = 338 0.400 ** | (28.7) n = 389 0.397 ** | (27.6) n = 338 0.444 ** | (26.6) n = 389 0.452 ** |
Hypoalphalipoproteinemia 62.1% (n = 587) | (28.5) n = 251 0.179 * | (24.9) n = 336 0.151 * | |||||||
Abdominal obesity 53.5% (n = 506) | (22.0) n = 232 0.224 ** | (20.3) n = 274 0.248 ** | (28.3) n = 232 0.257 ** | (27.3) n = 274 0.233 ** | (31.3) n = 232 0.459 ** | (30.6) n = 274 0.434 ** | (28.5) n = 232 0.469 ** | (28.3) n = 274 0.466 ** | |
Hypertriglyceridemia 31.7% (n = 300) | (29.4) n = 145 0.184 * | (29.1) n = 155 0.164 * | (26.3) n = 145 0.141 * | (26.8) n = 155 0.168 * | |||||
Hyperglycemia 26.6% (n = 252) | (23.8) n = 118 0.257 ** | (20.8) n = 134 0.198 ** | (28.79 n = 118 0.190 ** | (26.4) n = 134 0.143 * | (30.7) n = 118 0.196 ** | (28.4) n = 134 0.130 * | (28.0) n = 118 0.218 ** | (26.2) n = 134 0.136 ** | |
Hypertension 24.3% (n = 300) | (19.4) n = 121 0.141* | (26.5) n = 121 0.136* | (26.4) n = 121 0.146 * | ||||||
Insulin resistance by HOMA-IR index 22.3% (n = 211) | (22.1) n = 109 0.152 * | (31.6) n = 109 0.292 ** | (30.2) n = 102 0.179 ** | (29.2) n = 109 0.237 ** | (27.7) n = 102 0.180 * |
Cardiometabolic Risk | Bicipital | Tricipital | Suprailiac | Subscapular | Fold Sum | ||
---|---|---|---|---|---|---|---|
Abdominal obesity | Correlation coefficient | S | r = 0.230 ** | r = 0.267 ** | r = 0.457 ** | r = 0.473 ** | r = 0.433 ** |
Waist/Height ratio | S | r = 0.232 ** | r = 0.266 ** | r = 0.408 ** | r = 0.463 ** | r = 0.408 ** | |
Insulin resistance | S | r = 0.115 ** | r = 0.109 ** | r = 0.233 ** | r = 0.211 ** | r = 0.205 ** | |
Hyperglycemia | S | r = 0.210 ** | r = 0.144 ** | r = 0.163 ** | r = 0.164 ** | r = 0.204 ** | |
Glucose | P | r = 0.159 ** | r = 0.129 ** | r = 0.123 ** | r = 0.177 ** | r = 0.181 ** | |
C-reactive protein | P | r = 0.133 ** | r = 0.123 ** | r = 0.214 ** | r = 0.213 ** | r = 0.210 ** | |
Heart rate | P | r = 0.132 ** | r = 0.123 ** | r = 0.124 ** | r = 0.137 ** | ||
Systolic pressure | P | r = 0.125 ** | r = 0.166 ** | r = 0.134 ** | |||
Diastolic pressure | P | r = 0.111 ** | r = 0.162 ** | r = 0.107 ** | |||
Systemic arterial hypertension | S | r = 0.106 ** | |||||
Breathing rate | S | r = −0.155 ** | r = −0.149 ** | r = −0.122 ** | |||
Hemoglobin | P | r = −0.218 ** | r = −0.318 ** | r = −0.155 ** | |||
Hypertriglyceridemia | S | r = 0.168 ** | r = 0.157 ** | r = 0.122 ** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
González-Torres, S.; Anaya-Esparza, L.M.; Trigueros del Valle, G.F.; Rivera-León, E.A.; Villagrán, Z.; Sánchez-Enríquez, S. Skinfold Thickness as a Cardiometabolic Risk Predictor in Sedentary and Active Adult Populations. J. Pers. Med. 2023, 13, 1326. https://doi.org/10.3390/jpm13091326
González-Torres S, Anaya-Esparza LM, Trigueros del Valle GF, Rivera-León EA, Villagrán Z, Sánchez-Enríquez S. Skinfold Thickness as a Cardiometabolic Risk Predictor in Sedentary and Active Adult Populations. Journal of Personalized Medicine. 2023; 13(9):1326. https://doi.org/10.3390/jpm13091326
Chicago/Turabian StyleGonzález-Torres, Sughey, Luis Miguel Anaya-Esparza, Gabriel Fermín Trigueros del Valle, Edgar Alfonso Rivera-León, Zuamí Villagrán, and Sergio Sánchez-Enríquez. 2023. "Skinfold Thickness as a Cardiometabolic Risk Predictor in Sedentary and Active Adult Populations" Journal of Personalized Medicine 13, no. 9: 1326. https://doi.org/10.3390/jpm13091326
APA StyleGonzález-Torres, S., Anaya-Esparza, L. M., Trigueros del Valle, G. F., Rivera-León, E. A., Villagrán, Z., & Sánchez-Enríquez, S. (2023). Skinfold Thickness as a Cardiometabolic Risk Predictor in Sedentary and Active Adult Populations. Journal of Personalized Medicine, 13(9), 1326. https://doi.org/10.3390/jpm13091326