Triglycerides, Obesity and Education Status Are Associated with the Risk of Developing Type 2 Diabetes in Young Adults, Cohort Study
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Global Burden of Disease Study 2013 Collaborators; Vos, T.; Allen, C.; Arora, M.; Barber, R.M.; Bhutta, Z.A.; Brown, A.; Liang, X.; Kawashima, T.; Coggeshall, M.; et al. Global, regional, and national incidence, prevalence, and years lived with disability for 301 acute and chronic diseases and injuries in 188 countries, 1990–2013: A systematic analysis for the Global Burden of Disease Study 2013. Lancet 2015, 386, 743–800. [Google Scholar] [CrossRef] [PubMed]
- Dedov, I.I.; Shestakova, M.V.; Suntsov, Y.I.; Peterkova, V.A.; Galstyan, G.R.; Mayorov, A.Y.; Kuraeva, T.L.; Sukhareva, O.Y.E. Federal targeted programme ‘Prevention and Management of Socially Significant Diseases (2007–2012)’: Results of the ‘Diabetes mellitus’ sub-programme. Diabetes Mellit. 2013, 16, 1–48. [Google Scholar] [CrossRef]
- Dedov, I.I.; Shestakova, M.V.; Galstyan, G.R. The prevalence of type 2 diabetes mellitus in the adult population of Russia (NA-TION study). Diabetes Mellit. 2016, 19, 104–112. [Google Scholar] [CrossRef]
- International Diabetes Federation (IDF). IDF Diabetes Atlas, 8th ed.; International Diabetes Fedration: Brussels, Belgium, 2017; ISBN 978-2-930229-87-4. [Google Scholar]
- Dedov, I.I.; Shestakova, M.V.; Vikulova, O.K.; Zheleznyakova, A.V.; Isakov, M. Epidemiological characteristics of diabetes mellitus in the Russian Federation: Clinical and statistical analysis according to the Federal diabetes register data of 01.01.2021. Diabetes Mellit. 2021, 24, 204–221. [Google Scholar] [CrossRef]
- Dedov, I.I.; Shestakova, M.V.; Vikulova, O.K.; Zheleznyakova, A.V.; Isakov, M.A. Diabetes mellitus in Russian Federation: Prevalence, morbidity, mortality, parameters of glycaemic control and structure of glucose lowering therapy according to the Federal Diabetes Register, status 2017. Diabetes Mellit. 2018, 21, 144–159. [Google Scholar] [CrossRef]
- Al-Sofiani, M.E.; Ganji, S.S.; Kalyani, R.R. Body composition changes in diabetes and aging. J. Diabetes Its Complicat. 2019, 33, 451–459. [Google Scholar] [CrossRef] [PubMed]
- Kelly, T.; Yang, W.; Chen, C.-S.; Reynolds, K.; He, J. Global burden of obesity in 2005 and projections to 2030. Int. J. Obes. 2008, 32, 1431–1437. [Google Scholar] [CrossRef]
- Alberti, K.G.M.M.; Eckel, R.H.; Grundy, S.M.; Zimmet, P.Z.; Cleeman, J.I.; Donato, K.A.; Fruchart, J.C.; James, W.P.T.; Loria, C.M.; Smith, S.C., Jr. Harmonizing the metabolic syndrome: A joint interim statement of the international diabetes federation task force on epidemiology and prevention; National heart, lung, and blood institute; American heart association; World heart federation; International Atherosclerosis Society; and International Association for the Study of Obesity. Circulation 2009, 120, 1640–1645. [Google Scholar] [CrossRef]
- Mach, F.; Baigent, C.; Catapano, A.L.; Koskinas, K.C.; Casula, M.; Badimon, L.; Chapman, M.J.; De Backer, G.G.; Delgado, V.; Ference, B.A.; et al. 2019 ESC/EAS Guidelines for the management of dyslipidaemias: Lipid modification to reduce cardiovascular risk. Eur. Heart J. 2020, 41, 111–188. [Google Scholar] [CrossRef]
- Mustafina, S.V.; Rymar, O.D.; Malyutina, S.K.; Denisova, D.V.; Shcherbakova, L.V.; Voevoda, M.I. Prevalence of diabetes in the adult population of Novosibirsk. Diabetes Mellit. 2017, 20, 329–334. [Google Scholar] [CrossRef]
- Wild, S.; Roglic, G.; Green, A.; Sicree, R.; King, H. Global prevalence of diabetes: Estimates for the year 2000 and projections for 2030. Diabetes Care. Diabetes Care 2004, 27, 1047–1053. [Google Scholar] [CrossRef]
- Algoblan, A.; Alalfi, M.; Khan, M.Z. Mechanism linking diabetes mellitus and obesity. Diabetes Metab. Syndr. Obes. 2014, 7, 587–591. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.; Yang, H.; Xu, Z.; Tang, X. Association between Different Obesity Patterns and the Risk of Developing Type 2 Diabetes Mellitus Among Adults in Eastern China: A Cross-Sectional Study. Diabetes Metab. Syndr. Obes. 2021, 14, 2631–2639. [Google Scholar] [CrossRef] [PubMed]
- Hamman, R.F.; Wing, R.R.; Edelstein, S.L.; Lachin, J.M.; Bray, G.A.; Delahanty, L.; Hoskin, M.; Kriska, A.M.; Mayer-Davis, E.J.; Pi-Sunyer, X.; et al. Effect of Weight Loss with Lifestyle Intervention on Risk of Diabetes. Diabetes Care 2006, 29, 2102–2107. [Google Scholar] [CrossRef]
- Lachin, J.M.; Christophi, C.A.; Edelstein, S.L.; Ehrmann, D.A.; Hamman, R.F.; Kahn, S.E.; Knowler, W.C.; Nathan, D.M.; on behalf of the DPP Research Group. Factors Associated with Diabetes Onset during Metformin versus Placebo Therapy in the Diabetes Prevention Program. Diabetes 2007, 56, 1153–1159. [Google Scholar] [CrossRef]
- Schnurr, T.M.; Jakupović, H.; Carrasquilla, G.D.; Ängquist, L.; Grarup, N.; Sørensen, T.I.A.; Tjønneland, A.; Overvad, K.; Pedersen, O.; Hansen, T.; et al. Obesity, unfavourable lifestyle and genetic risk of type 2 diabetes: A case-cohort study. Diabetologia 2020, 63, 1324–1332. [Google Scholar] [CrossRef] [PubMed]
- Neeland, I.J.; Turer, A.T.; Ayers, C.R.; Berry, J.D.; Rohatgi, A.; Das, S.R.; Khera, A.; Vega, G.L.; McGuire, D.K.; Grundy, S.M.; et al. Body Fat Distribution and Incident Cardiovascular Disease in Obese Adults. J. Am. Coll. Cardiol. 2015, 65, 2150–2151. [Google Scholar] [CrossRef]
- Hayashi, T.; Boyko, E.J.; McNeely, M.J.; Leonetti, D.L.; Kahn, S.E.; Fujimoto, W.Y. Visceral Adiposity, Not Abdominal Subcutaneous Fat Area, Is Associated with an Increase in Future Insulin Resistance in Japanese Americans. Diabetes 2008, 57, 1269–1275. [Google Scholar] [CrossRef]
- Chen, M.E.; Chandramouli, A.G.; Considine, R.V.; Hannon, T.S.; Mather, K.J. Comparison of β-Cell Function Between Overweight/Obese Adults and Adolescents Across the Spectrum of Glycemia. Diabetes Care 2017, 41, 318–325. [Google Scholar] [CrossRef]
- Norhammar, A.; Schenck-Gustafsson, K. Type 2 diabetes and cardiovascular disease in women. Diabetologia 2012, 56, 1–9. [Google Scholar] [CrossRef]
- Tirosh, A.; Shai, I.; Bitzur, R.; Kochba, I.; Tekes-Manova, D.; Israeli, E.; Shochat, T.; Rudich, A. Changes in Triglyceride Levels over Time and Risk of Type 2 Diabetes in Young Men. Diabetes Care 2008, 31, 2032–2037. [Google Scholar] [CrossRef]
- Zhao, J.; Zhang, Y.; Wei, F.; Song, J.; Cao, Z.; Chen, C.; Zhang, K.; Feng, S.; Wang, Y.; Li, W.-D. Triglyceride is an independent predictor of type 2 diabetes among middle-aged and older adults: A prospective study with 8-year follow-ups in two cohorts. J. Transl. Med. 2019, 17, 403. [Google Scholar] [CrossRef] [PubMed]
- Peng, J.; Zhao, F.; Yang, X.; Pan, X.; Xin, J.; Wu, M.; Peng, Y.G. Association between dyslipidemia and risk of type 2 diabetes mellitus in middle-aged and older Chinese adults: A secondary analysis of a nationwide cohort. BMJ Open 2021, 11, e042821. [Google Scholar] [CrossRef] [PubMed]
- Beshara, A.; Cohen, E.; Goldberg, E.; Lilos, P.; Garty, M.; Krause, I. Triglyceride levels and risk of type 2 diabetes mellitus: A longitudinal large study. J. Investig. Med. 2016, 64, 383–387. [Google Scholar] [CrossRef] [PubMed]
- Scherer, P.E. Adipose Tissue: From lipid storage compartment to endocrine organ. Diabetes 2006, 55, 1537–1545. [Google Scholar] [CrossRef] [PubMed]
- Boden, G. Obesity and Free Fatty Acids. Endocrinol. Metab. Clin. N. Am. 2008, 37, 635–646. [Google Scholar] [CrossRef]
- Boden, G.; Chen, X.; Ruiz, J.; White, J.V.; Rossetti, L. Mechanisms of fatty acid-induced inhibition of glucose uptake. J. Clin. Investig. 1994, 93, 2438–2446. [Google Scholar] [CrossRef] [PubMed]
- E Agardh, E.; Sidorchuk, A.; Hallqvist, J.; Ljung, R.; Peterson, S.; Moradi, T.; Allebeck, P. Burden of type 2 diabetes attributed to lower educational levels in Sweden. Popul. Health Metr. 2011, 9, 60. [Google Scholar] [CrossRef]
- Mathisen, J.; Jensen, A.K.G.; Andersen, I.; Andersen, G.S.; Hvidtfeldt, U.A.; Rod, N.H. Education and incident type 2 diabetes: Quantifying the impact of differential exposure and susceptibility to being overweight or obese. Diabetologia 2020, 63, 1764–1774. [Google Scholar] [CrossRef]
- Demakakos, P.; Marmot, M.; Steptoe, A. Socioeconomic position and the incidence of type 2 diabetes: The ELSA study. Eur. J. Epidemiol. 2012, 27, 367–378. [Google Scholar] [CrossRef]
- Sacerdote, C.; Ricceri, F.; Rolandsson, O.; Baldi, I.; Chirlaque, M.D.; Feskens, E.; Bendinelli, B.; Ardanaz, E.; Arriola, L.; Balkau, B.; et al. Lower educational level is a predictor of incident type 2 diabetes in Euro-pean countries: The EPIC-InterAct study. Int. J. Epidemiol. 2012, 41, 1162–1173. [Google Scholar] [CrossRef] [PubMed]
- Smith, P.M.; Smith, B.T.; Mustard, C.A.; Lu, H.; Glazier, R.H. Estimating the direct and indirect pathways between education and diabetes incidence among Canadian men and women: A mediation analysis. Ann. Epidemiol. 2013, 23, 143–149. [Google Scholar] [CrossRef] [PubMed]
- Duan, M.-J.F.; Zhu, Y.; Dekker, L.H.; Mierau, J.O.; Corpeleijn, E.; Bakker, S.J.; Navis, G. Effects of Education and Income on Incident Type 2 Diabetes and Cardiovascular Diseases: A Dutch Prospective Study. J. Gen. Intern. Med. 2022, 37, 3907–3916. [Google Scholar] [CrossRef] [PubMed]
Parameters | Patients with Developed T2DM n = 11 | Patients without T2DM n = 1330 | p |
---|---|---|---|
Age | 39 (31; 44) | 37 (31; 41) | 0.253 |
Men (n, %) | 6 (54.5%) | 616 (46.3%) | 0.763 |
Women (n, %) | 5 (45.5%) | 714 (53.7%) | |
Physical activity less than 3 h/week (n, %) | 9 (81.8%) | 882 (66.6%) | 0.355 |
Smoking (n, %) | 5 (45.5%) | 438 (33.1%) | 0.386 |
Married (n, %) | 7 (63.6%) | 953 (71.9%) | 0.515 |
Employed (n, %) | 7 (63.6%) | 1108 (83.6%) | 0.076 |
Higher education (n, %) | 2 (18.2%) | 833 (62.9%) | 0.003 |
WC, sm | 101.00 (90.00; 122.00) | 85.00 (76.0; 95,40) | <0.001 |
SBP, mm Hg | 132.50 (121.50; 140.00) | 119.00 (110.00; 129.00) | 0.033 |
DBP, mm Hg | 84.50 (76.00; 96.00) | 78.00 (71.00; 86.00) | 0.095 |
Presence of AH | 4 (36.4%) | 237 (17.9%) | 0.120 |
BMI, kg/m2 | 32.37 (29.78; 39.44) | 25.01 (22.04; 28.70) | <0.001 |
≤25 kg/m2 | 0 | 663 (49.9%) | |
25–29.9 kg/m2 | 3 (27.3%) | 425 (32.0%) | <0.001 |
≥30 kg/m2 | 8 (72.7%) | 240 (18.1%) | <0.001 |
TG, mmol/L | 1.75 (1.22; 2.89) | 0.94 (0.68; 1.38) | 0.003 |
TG ≥ 1.7 mmol/L (n, %) | 7 (63.6%) | 216 (16.3%) | 0.001 |
HDL-C, mmol/L | 1.03 (10.90; 1.16) | 1.29 (1.08; 1.52) | 0.001 |
HDL < 1 mmol/L for men and <1.2 mmol/L for women (n, %) | 7 (63.6%) | 389 (29.4%) | 0.020 |
LDL-C, mmol/L | 2.85 (2.17; 3.77) | 3.13 (2.53; 3.69) | 0.370 |
LDL-C ≥ 3 mmol/L (n, %) | 4 (36.4%) | 739 (55.9%) | 0.231 |
TCH, mmol/L | 5.22 (3.85; 5.68) | 4.96 (4.34; 5.63) | 0.715 |
TCH ≥ 5 mmol/L (n, %) | 6 (54.5%) | 646 (48.9%) | 0.769 |
Creatinine, umol/L | 72.00 (65.00; 81.50) | 74.00 (67.00; 82.00) | 0.701 |
GFR CKD-EPI, mL/min/1.73 m2 | 1 (10.0%) | 220 (23.6%) | 0.467 |
GFR CKD-EPI < 90 mL/min/1.73 m2 (n, %) | 106.38 (94.98; 110.323) | 101.47 (90.66; 110.21) | 0.505 |
Albumin, g/L | 41.65 (38.65; 43.93) | 42.70 (40.80; 44.60) | 0.267 |
Urea, mmol/L | 3.95 (3.05; 5.63) | 4.30 (3.70; 5.20) | 0.534 |
Glucose, mmol/L | 5.83 (5.31; 6.98) | 5.73 (5.31; 6.04) | 0.251 |
Glucose ≥ 6.1, mmol/L | 4 (36.4%) | 292 (22.1%) | 0.257 |
Indicators | Logistic Regression Analysis | |||
---|---|---|---|---|
OR | 95% Confidence Interval (CI) | p | ||
Lower Bound | Upper Bound | |||
BMI, per 1 kg/m2 | 1.200 | 1.119 | 1.287 | <0.001 |
SBP, per 10 mm Hg | 1.357 | 1.010 | 1.842 | 0.050 |
TG, per 1 mmol/L | 1.475 | 1.079 | 2.017 | 0.015 |
TG ≥ 1.7 mmol/L vs. TG < 1.7 mmol/L | 9.013 | 2.491 | 32.614 | 0.001 |
HDL-C, per 1 mmol/L | 0.022 | 0.002 | 0.293 | 0.004 |
HDL-C < 1 mmol/L for men (vs. ≥1 mmol/L) and <1.2 mmol/L for women (vs. ≥1.2 mmol/L) | 4.413 | 1.271 | 15.322 | 0.019 |
WC, by 1 cm | 1.086 | 1.049 | 1.123 | <0.001 |
AO (WC ≥ 80 cm vs. WC < 80 cm for women and ≥94 cm vs. WC < 94 cm for men) | 12.967 | 1.634 | 102.927 | 0.015 |
Level of education, higher education vs. other types of education | 7.014 | 1.484 | 33.151 | 0.014 |
Analyzed Factors | Model 1 | Model 2 | Model 3 | Model 4 | ||||
---|---|---|---|---|---|---|---|---|
OR (95% CI) | p | OR (95% CI) | p | OR (95% CI) | p | OR (95% CI) | p | |
Gender, male vs. female | 1.083 (0.308–3.811) | 0.901 | 0.992 (0.265–3.711) | 0.990 | 0.884 (0.226–3.454) | 0.860 | 1.353 (0.367–4.986) | 0.650 |
Age, per 1 year | 1.029 (0.922–1.149) | 0.606 | 1.053 (0.938–1.183) | 0.381 | 1.043 (0.925–1.176) | 0.493 | 1.018 (0.912–1.137) | 0.747 |
TG ≥ 1.7 mmol/L vs. TG < 1.7 mmol/L | 5.314 (1.424–19.833) | 0.013 | 5.119 (1.345–19.477) | 0.017 | 5.365 (1.371–20.995) | 0.016 | 5.220 (1.348–20.217) | 0.017 |
Availability of AO vs. absence of AO | 7.893 (0.945–65.914) | 0.056 | - | - | - | - | - | - |
BMI, per 1 kg/m2 | - | - | 1.184 (1.098–1.277) | <0.001 | 1.183 (1.083–1.293) | <0.001 | - | - |
BMI ≥ 30 kg/m2 vs. BMI < 30 kg/m2 | - | - | - | - | - | - | 6.461 (1.600–26.098) | 0.009 |
Level of education, all types of education except higher vs. higher education | - | - | - | - | 5.172 (1.027–26.035) | 0.046 | 5.649 (1.178–27.094) | 0.030 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Garbuzova, E.V.; Shcherbakova, L.V.; Rymar, O.D.; Khudiakova, A.D.; Shramko, V.S.; Ragino, Y.I. Triglycerides, Obesity and Education Status Are Associated with the Risk of Developing Type 2 Diabetes in Young Adults, Cohort Study. J. Pers. Med. 2023, 13, 1403. https://doi.org/10.3390/jpm13091403
Garbuzova EV, Shcherbakova LV, Rymar OD, Khudiakova AD, Shramko VS, Ragino YI. Triglycerides, Obesity and Education Status Are Associated with the Risk of Developing Type 2 Diabetes in Young Adults, Cohort Study. Journal of Personalized Medicine. 2023; 13(9):1403. https://doi.org/10.3390/jpm13091403
Chicago/Turabian StyleGarbuzova, Evgeniia V., Lilia V. Shcherbakova, Oksana D. Rymar, Alyona D. Khudiakova, Victoria S. Shramko, and Yulia I. Ragino. 2023. "Triglycerides, Obesity and Education Status Are Associated with the Risk of Developing Type 2 Diabetes in Young Adults, Cohort Study" Journal of Personalized Medicine 13, no. 9: 1403. https://doi.org/10.3390/jpm13091403
APA StyleGarbuzova, E. V., Shcherbakova, L. V., Rymar, O. D., Khudiakova, A. D., Shramko, V. S., & Ragino, Y. I. (2023). Triglycerides, Obesity and Education Status Are Associated with the Risk of Developing Type 2 Diabetes in Young Adults, Cohort Study. Journal of Personalized Medicine, 13(9), 1403. https://doi.org/10.3390/jpm13091403