Serum Levels of S100B Protein and Myelin Basic Protein as a Potential Biomarkers of Recurrent Depressive Disorders
Abstract
:1. Introduction
2. Materials and Methods
2.1. Design
2.2. Participants
2.3. Measurements
2.3.1. Phenotype Measures
2.3.2. Biomarkers
2.3.3. Statistical Analysis
3. Results
3.1. Demographics and Clinical Characteristics of the Study Population
3.2. The Levels of S100B, MBP and GFAP in the Entire Study Group
3.3. Correlations of Clinical and Biological Characteristics in the Study Groups
3.4. ROC Analysis of Diagnostic Value of Serum Markers
4. Discussion
4.1. S100B in DD
4.2. GFAP in DD
4.3. MBP in DD
4.4. Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kennis, M.; Gerritsen, L.; van Dalen, M.; Williams, A.; Cuijpers, P.; Bockting, C. Prospective Biomarkers of Major Depressive Disorder: A Systematic Review and Meta-Analysis. Mol. Psychiatry 2020, 25, 321–338. [Google Scholar] [CrossRef] [PubMed]
- Mayegowda, S.B.; Thomas, C. Glial Pathology in Neuropsychiatric Disorders: A Brief Review. J. Basic. Clin. Physiol. Pharmacol. 2019, 30, 20180120. [Google Scholar] [CrossRef]
- Kaul, D.; Schwab, S.G.; Mechawar, N.; Matosin, N. How Stress Physically Re-Shapes the Brain: Impact on Brain Cell Shapes, Numbers and Connections in Psychiatric Disorders. Neurosci. Biobehav. Rev. 2021, 124, 193–215. [Google Scholar] [CrossRef] [PubMed]
- Keshavarz, M. Glial Cells as Key Elements in the Pathophysiology and Treatment of Bipolar Disorder. Acta Neuropsychiatr. 2017, 29, 140–152. [Google Scholar] [CrossRef] [PubMed]
- Karabulut, S.; Taşdemir, İ.; Akcan, U.; Küçükali, C.İ.; Tüzün, E.; Çakır, S. Inflammation and Neurodegeneration in Patients with Early-Stageand Chronic Bipolar Disorder. Turk. Psikiyatr. Derg. 2019, 30, 75–81. [Google Scholar]
- Block, M.L.; Hong, J.-S. Microglia and Inflammation-Mediated Neurodegeneration: Multiple Triggers with a Common Mechanism. Prog. Neurobiol. 2005, 76, 77–98. [Google Scholar] [CrossRef]
- Zavorotnyy, M.; Zöllner, R.; Schulte-Güstenberg, L.R.; Wulff, L.; Schöning, S.; Dannlowski, U.; Kugel, H.; Arolt, V.; Konrad, C. Low Left Amygdala Volume Is Associated with a Longer Duration of Unipolar Depression. J. Neural Transm. 2018, 125, 229–238. [Google Scholar] [CrossRef]
- Dean, J.; Keshavan, M. The Neurobiology of Depression: An Integrated View. Asian J. Psychiatr. 2017, 27, 101–111. [Google Scholar] [CrossRef]
- Kruyer, A.; Kalivas, P.W.; Scofield, M.D. Astrocyte Regulation of Synaptic Signaling in Psychiatric Disorders. Neuropsychopharmacology 2023, 48, 21–36. [Google Scholar] [CrossRef]
- Wang, Q.; Jie, W.; Liu, J.-H.; Yang, J.-M.; Gao, T.-M. An Astroglial Basis of Major Depressive Disorder? An Overview. Glia 2017, 65, 1227–1250. [Google Scholar] [CrossRef]
- Yang, L.; Zhou, Y.; Jia, H.; Qi, Y.; Tu, S.; Shao, A. Affective Immunology: The Crosstalk Between Microglia and Astrocytes Plays Key Role? Front. Immunol. 2020, 11, 01818. [Google Scholar] [CrossRef]
- Linnerbauer, M.; Wheeler, M.A.; Quintana, F.J. Astrocyte Crosstalk in CNS Inflammation. Neuron 2020, 108, 608–622. [Google Scholar] [CrossRef]
- Colombo, E.; Farina, C. Astrocytes: Key Regulators of Neuroinflammation. Trends Immunol. 2016, 37, 608–620. [Google Scholar] [CrossRef] [PubMed]
- Vainchtein, I.D.; Molofsky, A.V. Astrocytes and Microglia: In Sickness and in Health. Trends Neurosci. 2020, 43, 144–154. [Google Scholar] [CrossRef]
- O’Leary, L.A.; Mechawar, N. Implication of Cerebral Astrocytes in Major Depression: A Review of Fine Neuroanatomical Evidence in Humans. Glia 2021, 69, 2077–2099. [Google Scholar] [CrossRef] [PubMed]
- Schroeter, M.; Sacher, J.; Steiner, J.; Schoenknecht, P.; Mueller, K. Serum S100B Represents a New Biomarker for Mood Disorders. Curr. Drug Targets 2013, 14, 1237–1248. [Google Scholar] [CrossRef] [PubMed]
- Michetti, F.; D’Ambrosi, N.; Toesca, A.; Puglisi, M.A.; Serrano, A.; Marchese, E.; Corvino, V.; Geloso, M.C. The S100B Story: From Biomarker to Active Factor in Neural Injury. J. Neurochem. 2019, 148, 168–187. [Google Scholar] [CrossRef] [PubMed]
- Miguel-Hidalgo, J.J.; Waltzer, R.; Whittom, A.A.; Austin, M.C.; Rajkowska, G.; Stockmeier, C.A. Glial and Glutamatergic Markers in Depression, Alcoholism, and Their Comorbidity. J. Affect. Disord. 2010, 127, 230–240. [Google Scholar] [CrossRef]
- Jakobsson, J.; Bjerke, M.; Ekman, C.J.; Sellgren, C.; Johansson, A.G.; Zetterberg, H.; Blennow, K.; Landén, M. Elevated Concentrations of Neurofilament Light Chain in the Cerebrospinal Fluid of Bipolar Disorder Patients. Neuropsychopharmacology 2014, 39, 2349–2356. [Google Scholar] [CrossRef]
- Steinacker, P.; Al Shweiki, M.R.; Oeckl, P.; Graf, H.; Ludolph, A.C.; Schönfeldt-Lecuona, C.; Otto, M. Glial Fibrillary Acidic Protein as Blood Biomarker for Differential Diagnosis and Severity of Major Depressive Disorder. J. Psychiatr. Res. 2021, 144, 54–58. [Google Scholar] [CrossRef]
- Rajewska-Rager, A.; Pawlaczyk, M. The Role of S100B Protein as a Potential Marker in Affective Disorders. Psychiatr. Pol. 2016, 50, 849–857. [Google Scholar] [CrossRef] [PubMed]
- Valdés-Tovar, M.; Rodríguez-Ramírez, A.M.; Rodríguez-Cárdenas, L.; Sotelo-Ramírez, C.E.; Camarena, B.; Sanabrais-Jiménez, M.A.; Solís-Chagoyán, H.; Argueta, J.; López-Riquelme, G.O. Insights into Myelin Dysfunction in Schizophrenia and Bipolar Disorder. World J. Psychiatry 2022, 12, 264–285. [Google Scholar] [CrossRef] [PubMed]
- Williams, M.R.; Sharma, P.; Macdonald, C.; Pearce, R.K.B.; Hirsch, S.R.; Maier, M. Axonal Myelin Decrease in the Splenium in Major Depressive Disorder. Eur. Arch. Psychiatry Clin. Neurosci. 2019, 269, 387–395. [Google Scholar] [CrossRef]
- World Health Organization. International Statistical Classification of Diseases and Health Related Problems ICD-10; World Health Organization: Geneva, Switzerland, 2004. [Google Scholar]
- Hamilton, M. A rating scale for depression. J. Neurol. Neurosurg. Psychiatry 1960, 23, 56–62. [Google Scholar] [CrossRef]
- Williams, J.B.W.; Link, M.J.; Rosenthal, N.E.; Terman, M. Structured Interview Guide for the Hamilton Depression Rating Scale-Seasonal Affective Disorder Version (SIGH-SAD); New York Psychiatric Institute: New York, NY, USA, 1988. [Google Scholar]
- Hamilton, M. The assessment of anxiety states by rating. Br. J. Med. Psychol. 1959, 32, 50–55. [Google Scholar] [CrossRef]
- Guy, W. ECDEU Assessment Manual for Psychopharmacology; US Department of Health, Education, and Welfare, Public Health Service, Alcohol, Drug Abuse, and Mental Health Administration, National Institute of Mental Health, Psychopharmacology Research Branch, Division of Extramural Research Programs: Rockville, MD, USA, 1976.
- Snaith, R.P.; Hamilton, M.; Morley, S.; Humayan, A.; Hargreaves, D.; Trigwell, P. A Scale for the Assessment of Hedonic Tone the Snaith–Hamilton Pleasure Scale. Br. J. Psychiatry 1995, 167, 99–103. [Google Scholar] [CrossRef]
- Ameli, R.; Luckenbaugh, D.A.; Gould, N.F.; Holmes, M.K.; Lally, N.; Ballard, E.D.; Zarate, C.A. SHAPS-C: The Snaith-Hamilton Pleasure Scale Modified for Clinician Administration. PeerJ 2014, 2, e429. [Google Scholar] [CrossRef]
- Buschert, J.; Hohoff, C.; Touma, C.; Palme, R.; Rothermundt, M.; Arolt, V.; Zhang, W.; Ambrée, O. S100B Overexpression Increases Behavioral and Neural Plasticity in Response to the Social Environment during Adolescence. J. Psychiatr. Res. 2013, 47, 1791–1799. [Google Scholar] [CrossRef]
- Losenkov, I.S.; Mulder, N.J.V.; Levchuk, L.A.; Vyalova, N.M.; Loonen, A.J.M.; Bosker, F.J.; Simutkin, G.G.; Boiko, A.S.; Bokhan, N.A.; Wilffert, B.; et al. Association Between BDNF Gene Variant Rs6265 and the Severity of Depression in Antidepressant Treatment-Free Depressed Patients. Front. Psychiatry 2020, 11, 38. [Google Scholar] [CrossRef]
- Rădulescu, I.; Drăgoi, A.; Trifu, S.; Cristea, M. Neuroplasticity and Depression: Rewiring the Brain’s Networks through Pharmacological Therapy (Review). Exp. Ther. Med. 2021, 22, 1131. [Google Scholar] [CrossRef] [PubMed]
- Bartoli, F.; Misiak, B.; Crocamo, C.; Carrà, G. Glial and Neuronal Markers in Bipolar Disorder: A Meta-Analysis Testing S100B and NSE Peripheral Blood Levels. Prog. Neuropsychopharmacol. Biol. Psychiatry 2020, 101, 109922. [Google Scholar] [CrossRef] [PubMed]
- Navinés, R.; Oriolo, G.; Horrillo, I.; Cavero, M.; Aouizerate, B.; Schaefer, M.; Capuron, L.; Meana, J.J.; Martin-Santos, R. High S100B Levels Predict Antidepressant Response in Patients with Major Depression Even When Considering Inflammatory and Metabolic Markers. Int. J. Neuropsychopharmacol. 2022, 25, 468–478. [Google Scholar] [CrossRef]
- Tural, U.; Irvin, M.K.; Iosifescu, D.V. Correlation between S100B and Severity of Depression in MDD: A Meta-Analysis. World J. Biol. Psychiatry 2022, 23, 456–463. [Google Scholar] [CrossRef]
- Jang, B.-S.; Kim, H.; Lim, S.-W.; Jang, K.-W.; Kim, D.-K. Serum S100B Levels and Major Depressive Disorder: Its Characteristics and Role in Antidepressant Response. Psychiatry Investig. 2008, 5, 193. [Google Scholar] [CrossRef] [PubMed]
- Michel, M.; Fiebich, B.L.; Kuzior, H.; Meixensberger, S.; Berger, B.; Maier, S.; Nickel, K.; Runge, K.; Denzel, D.; Pankratz, B.; et al. Increased GFAP Concentrations in the Cerebrospinal Fluid of Patients with Unipolar Depression. Transl. Psychiatry 2021, 11, 308. [Google Scholar] [CrossRef]
- Shen, Z.; Cui, L.; Mou, S.; Ren, L.; Yuan, Y.; Shen, X.; Li, G. Combining S100B and Cytokines as Neuro-Inflammatory Biomarkers for Diagnosing Generalized Anxiety Disorder: A Proof-of-Concept Study Based on Machine Learning. Front. Psychiatry 2022, 13, 881241. [Google Scholar] [CrossRef] [PubMed]
- Uher, T.; Bob, P. Cerebrospinal Fluid S100B Levels Reflect Symptoms of Depression in Patients with Non-Inflammatory Neurological Disorders. Neurosci. Lett. 2012, 529, 139–143. [Google Scholar] [CrossRef]
- Mesman, E.; Hillegers, M.H.; Ambree, O.; Arolt, V.; Nolen, W.A.; Drexhage, H.A. Monocyte Activation, Brain-Derived Neurotrophic Factor (BDNF), and S100B in Bipolar Offspring: A Follow-up Study from Adolescence into Adulthood. Bipolar Disord. 2015, 17, 39–49. [Google Scholar] [CrossRef]
- Kim, R.; Healey, K.L.; Sepulveda-Orengo, M.T.; Reissner, K.J. Astroglial Correlates of Neuropsychiatric Disease: From Astrocytopathy to Astrogliosis. Prog. Neuropsychopharmacol. Biol. Psychiatry 2018, 87, 126–146. [Google Scholar] [CrossRef]
- Qi, X.-R.; Kamphuis, W.; Shan, L. Astrocyte Changes in the Prefrontal Cortex from Aged Non-Suicidal Depressed Patients. Front. Cell Neurosci. 2019, 13, 503. [Google Scholar] [CrossRef]
- Fatemi, S.H.; Laurence, J.A.; Araghi-Niknam, M.; Stary, J.M.; Schulz, S.C.; Lee, S.; Gottesman, I.I. Glial Fibrillary Acidic Protein Is Reduced in Cerebellum of Subjects with Major Depression, but Not Schizophrenia. Schizophr. Res. 2004, 69, 317–323. [Google Scholar] [CrossRef] [PubMed]
- Webster, M.J.; O’Grady, J.; Kleinman, J.E.; Weickert, C.S. Glial Fibrillary Acidic Protein MRNA Levels in the Cingulate Cortex of Individuals with Depression, Bipolar Disorder and Schizophrenia. Neuroscience 2005, 133, 453–461. [Google Scholar] [CrossRef]
- Cobb, J.A.; O’Neill, K.; Milner, J.; Mahajan, G.J.; Lawrence, T.J.; May, W.L.; Miguel-Hidalgo, J.; Rajkowska, G.; Stockmeier, C.A. Density of GFAP-Immunoreactive Astrocytes Is Decreased in Left Hippocampi in Major Depressive Disorder. Neuroscience 2016, 316, 209–220. [Google Scholar] [CrossRef] [PubMed]
- Levchuk, L.A.; Bokhan, N.A.; Ivanova, S.A. Neurospecific Proteins as Transdiagnostic Markers of Affective Disorders. Neurochem. J. 2023, 17, 25–29. [Google Scholar] [CrossRef]
- Bellani, M.; Boschello, F.; Delvecchio, G.; Dusi, N.; Altamura, C.A.; Ruggeri, M.; Brambilla, P. DTI and Myelin Plasticity in Bipolar Disorder: Integrating Neuroimaging and Neuropathological Findings. Front. Psychiatry 2016, 7, 21. [Google Scholar] [CrossRef]
- Tang, J.; Zhen, Y.; Yu, L.; Lv, C.; Zheng, J.; Liang, H. Analyzing the Neuropsychological Characteristics and Changes in Serum Markers of Patients with Chronic Cerebral Circulation Insufficiency. Rev. Assoc. Med. Bras. 2018, 64, 41–46. [Google Scholar] [CrossRef]
- Zhang, L.; Verwer, R.W.H.; Zhao, J.; Huitinga, I.; Lucassen, P.J.; Swaab, D.F. Changes in Glial Gene Expression in the Prefrontal Cortex in Relation to Major Depressive Disorder, Suicide and Psychotic Features. J. Affect. Disord. 2021, 295, 893–903. [Google Scholar] [CrossRef]
- Levchuk, L.A.; Roshchina, O.V.; Simutkin, G.G.; Bokhan, N.A.; Ivanova, S.A. Peripheral Markers of Nervous Tissue Damage in Addictive and Affective Disorders. Neurochem. J. 2021, 15, 86–90. [Google Scholar] [CrossRef]
- Galkin, S.A.; Levchuk, L.A.; Simutkin, G.G.; Ivanova, S.A.; Bokhan, N.A. Coherence of the Electroencephalogram and Peripheral Markers of Nerve Tissue Damage in Depressive Disorders. Zhurnal Nevrol. I Psikhiatrii Im. SS Korsakova 2023, 123, 82. [Google Scholar] [CrossRef]
- Baecker, J.; Wartchow, K.; Sehm, T.; Ghoochani, A.; Buchfelder, M.; Kleindienst, A. Treatment with the Neurotrophic Protein S100B Increases Synaptogenesis after Traumatic Brain Injury. J. Neurotrauma 2020, 37, 1097–1107. [Google Scholar] [CrossRef]
Indicators | DE (n = 28) | RDD (n = 21) | HC (n = 25) | p-Value |
---|---|---|---|---|
Age, years | 44.5 (31; 54.75) | 47 (40.5; 60.5) | 38 (32.5; 42.5) | 0.039 (Kruskal–Wallis) |
Gender (Male, n (%)/Female, n (%)) | 8 (28.57%)/20 (71.43%) | 3 (14.29%)/18 (85.71%) | 13 (52%)/12 (48%) | 0.022 (Chi-square test) |
Number of depressive episodes experienced (excluding current) | 0 | 3 (1.5; 6.5) | - | |
Duration of the disease (years) | 1 (1; 2.5) | 9 (3; 17) | - | 0.001 (Mann-Whitney) |
Duration of the last therapeutic remission (months) | - | 6 (4; 18) | - | |
Duration of the maintenance therapy (months) | - | 10.5 (3.75; 12) | - | |
Duration of the current affective episode (month) | 5.5 (3; 10) | 3 (2; 7) | - | p = 0.087 (Mann–Whitney test). |
Severity of Symptoms | p-Value (Mann–Whitney test) | |||
HAMD-17 | 27.5 (22.25; 32.00) | 31.00 (24.00; 34.00) | - | 0.412 |
HARS | 20.5 (17.00; 25.5) | 17.00 (13.00; 25.5) | - | 0.248 |
SHAPS | 28.00 (23.00; 38.00) | 32.5 (22.50; 39.00) | - | 0.712 |
CGI-S | 4.00 (4.00; 5.00) | 4.00 (4.00; 4.00) | - | 0.226 |
Indicators | DE (n = 28) | RDD (n = 21) | HC (n = 25) | p-Value Kruskal-Wallis |
---|---|---|---|---|
S100B, pg/mL | 28.76 (22.3; 44.19) | 25.49 (16.86; 32.32) p = 0.011 * | 33.88 (28.46; 36.56) | 0.05 |
MBP, pg/mL | 38.48 (28.54; 45.8) | 42.17 (33; 49.09) p = 0.015 * | 29.75 (18.7; 40.49) | 0.026 |
GFAP, ng/mL | 0.31 (0.06; 1.36) | 0.12 (0.08; 1.32) | 0.38 (0.13; 1.07) | 0.537 |
DE | RDD | |||||
---|---|---|---|---|---|---|
S100B | MBP | GFAP | S100B | MBP | GFAP | |
Number of depressive episodes experienced | - | - | - | r = −0.153 p = 0.531 | r = −0.470 p = 0.037 | r = 0.257 p = 0.260 |
Duration of the disease | r = −0.151 p = 0.471 | r = −0.356 p = 0.081 | r = 0.193 p = 0.366 | r = −0.033 p = 0.886 | r = 0.031 p = 0.895 | r = −0.294 p = 0.195 |
Duration of the last therapeutic remission (months) | - | - | - | r = −0.271 p = 0.277 | r = 0.018 p = 0.943 | r = −0.443 p = 0.050 |
Duration of the maintenance therapy (months) | - | - | - | r = 0.388 p = 0.112 | r = 0.229 p = 0.345 | r = 0.200 p = 0.398 |
Duration of the current affective episode (month) | r = −0.109 p = 0.621 | r = −0.094 p = 0.668 | r = −0.061 p = 0.793 | r = −0.052 p = 0.834 | r = −0.276 p = 0.240 | r = −0.401 p = 0.071 |
HARS | r = 0.331 p = 0.085 | r = 0.222 p = 0.256 | r = 0.042 p = 0.836 | r = 0.170 p = 0.461 | r = −0.270 p = 0.237 | r = 0.331 p = 0.143 |
HAMD−17 | r = 0.583 ** p = 0.001 | r = 0.432 * p = 0.022 | r = 0.351 p = 0.072 | r = −0.068 p = 0.769 | r = −0.242 p = 0.290 | r = 0.063 p = 0.786 |
SHAPS | r = −0.156 p = 0.468 | r = −0.141 p = 0.511 | r = −0.276 p = 0.191 | r = −0.404 p = 0.096 | r = −0.246 p = 0.324 | r = −0.337 p = 0.171 |
CGI-S | r = 0.211 p = 0.280 | r = 0.201 p = 0.304 | r = 0.148 p = 0.463 | r = 0.220 p = 0.337 | r = −0.080 p = 0.730 | r = 0.221 p = 0.337 |
Indicators | S100B | MBP | GFAP |
---|---|---|---|
DE | r = −0.080 p = 0.685 | r = −0.193 p = 0.325 | r = −0.234 p = 0.249 |
RDD | r = 0.425 p = 0.069 | r = 0.313 p = 0.179 | r = 0.055 p = 0.814 |
HC | r = 0.045 p = 0.847 | r = −0.031 p = 0.882 | r = −0.068 p = 0.751 |
Indicators | Female (n = 50) | Male (n = 24) | p-Value, Mann–Whitney Test |
---|---|---|---|
S100B | 28.77 (17.36; 37.61) | 31.39 (27.3; 38.36) | 0.281 |
MBP | 36.63 (25.26; 44.96) | 36.93 (30.5; 50.48) | 0.226 |
GFAP | 0.55 (0.098; 1.46) | 0.14 (0.07; 0.66) | 0.167 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Levchuk, L.A.; Roschina, O.V.; Mikhalitskaya, E.V.; Epimakhova, E.V.; Simutkin, G.G.; Bokhan, N.A.; Ivanova, S.A. Serum Levels of S100B Protein and Myelin Basic Protein as a Potential Biomarkers of Recurrent Depressive Disorders. J. Pers. Med. 2023, 13, 1423. https://doi.org/10.3390/jpm13091423
Levchuk LA, Roschina OV, Mikhalitskaya EV, Epimakhova EV, Simutkin GG, Bokhan NA, Ivanova SA. Serum Levels of S100B Protein and Myelin Basic Protein as a Potential Biomarkers of Recurrent Depressive Disorders. Journal of Personalized Medicine. 2023; 13(9):1423. https://doi.org/10.3390/jpm13091423
Chicago/Turabian StyleLevchuk, Lyudmila A., Olga V. Roschina, Ekaterina V. Mikhalitskaya, Elena V. Epimakhova, German G. Simutkin, Nikolay A. Bokhan, and Svetlana A. Ivanova. 2023. "Serum Levels of S100B Protein and Myelin Basic Protein as a Potential Biomarkers of Recurrent Depressive Disorders" Journal of Personalized Medicine 13, no. 9: 1423. https://doi.org/10.3390/jpm13091423
APA StyleLevchuk, L. A., Roschina, O. V., Mikhalitskaya, E. V., Epimakhova, E. V., Simutkin, G. G., Bokhan, N. A., & Ivanova, S. A. (2023). Serum Levels of S100B Protein and Myelin Basic Protein as a Potential Biomarkers of Recurrent Depressive Disorders. Journal of Personalized Medicine, 13(9), 1423. https://doi.org/10.3390/jpm13091423