A 5-Year Mortality Prediction Model for Prostate Cancer Patients Based on the Korean Nationwide Health Insurance Claims Database
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Source
2.2. Study Population and Definition of Malignant Neoplasms
2.3. Prediction Variables
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kang, M.J.; Jung, K.W.; Bang, S.H.; Choi, S.H.; Park, E.H.; Yun, E.H.; Kim, H.J.; Kong, H.J.; Im, J.S.; Seo, H.G.; et al. Cancer Statistics in Korea: Incidence, Mortality, Survival, and Prevalence in 2020. Cancer Res. Treat. 2023, 55, 385–399. [Google Scholar] [CrossRef] [PubMed]
- Bray, F.; Laversanne, M.; Sung, H.; Ferlay, J.; Siegel, R.L.; Soerjomataram, I.; Jemal, A. Global cancer statistics 2022; GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2024, 74, 229–263. [Google Scholar] [CrossRef] [PubMed]
- Global Cancer Observatory. Available online: https://gco.iarc.who.int/media/globocan/factsheets/populations/900-world-fact-sheet.pdf (accessed on 31 August 2024).
- Park, E.H.; Jung, K.W.; Park, N.J.; Kang, M.J.; Yun, E.H.; Kim, H.J.; Kim, J.E.; Kong, H.J.; Im, J.S.; Seo, H.G.; et al. Cancer Statistics in Korea: Incidence, Mortality, Survival, and Prevalence in 2021. Cancer Res. Treat. 2024, 56, 357–371. [Google Scholar] [CrossRef] [PubMed]
- Kang, H.T. Current Status of the National Health Screening Programs in South Korea. Korean J. Fam. Med. 2022, 43, 168–173. [Google Scholar] [CrossRef] [PubMed]
- García-Albéniz, X.; Hsu, J.; Etzioni, R.; Chank, J.M.; Shi, J.; Dickerman, B.; Hernan, M.A. Prostate-Specific Antigen Screening and Prostate Cancer Mortality: An Emulation of Target Trials in US Medicare. JCO Clin. Cancer Inform. 2024, 8, e2400094. [Google Scholar] [CrossRef]
- Ilic, D.; Djulbegovic, M.; Jung, J.H.; Hwang, E.C.; Zhou, Q.; Cleves, A.; Agoritsas, T.; Dahm, P. Prostate cancer screening with prostate-specific antigen (PSA) test: A systematic review and meta-analysis. BMJ 2018, 362, k3519. [Google Scholar] [CrossRef]
- Pak, S.; You, D.; Jeong, I.G.; Lee, D.E.; Kim, S.H.; Joung, J.Y.; Lee, K.H.; Hong, J.H.; Kim, C.S.; Ahn, H. Cause of Mortality after Radical Prostatectomy and the Impact of Comorbidity in Men with Prostate Cancer: A Multi-institutional Study in Korea. Cancer Res. Treat. 2020, 52, 1242–1250. [Google Scholar] [CrossRef]
- Onerup, A.; Mehlig, K.; Ekblom-Bak, E.; Lissner, L.; Börjesson, M.; Åberg, M. Cardiorespiratory fitness and BMI measured in youth and 5-year mortality after site-specific cancer diagnoses in men-A population-based cohort study with register linkage. Cancer Med. 2023, 12, 20000–20014. [Google Scholar] [CrossRef]
- Han, K.T.; Kim, D.W.; Kim, W. Impact of Cardiovascular Diseases on Mortality in Gastric Cancer Patients with Preexisting Chronic Disease. Yonsei Med. J. 2022, 63, 1043–1049. [Google Scholar] [CrossRef]
- Hong, J.S.; Yi, S.W.; Yi, J.J.; Hong, S.; Ohrr, H. Body Mass Index and Cancer Mortality Among Korean Older Middle-Aged Men: A Prospective Cohort Study. Medicine 2016, 95, e3684. [Google Scholar] [CrossRef]
- Bressi, B.; Iotti, C.; Cagliari, M.; Fugazzaro, S.; Cavuto, S.; Bergamaschi, F.A.M.; Moscato, A.; Costi, S. Physical exercise habits, lifestyle behaviors, and motivation to change among men with prostate cancer: A cross-sectional study. Support Care Cancer 2022, 30, 5017–5026. [Google Scholar] [CrossRef]
- Coughlin, S.S. A review of social determinants of prostate cancer risk, stage, and survival. Prostate Int. 2020, 8, 49–54. [Google Scholar] [CrossRef] [PubMed]
- Health Insurance Review & Assessment Service. Special Diseases. Available online: https://www.hira.or.kr/dummy.do?pgmid=HIRAA030037000000&isPopupYn=Y&isNewWindow=Y&cmsurl=/cms/popup/03/03/1344228_26965.html (accessed on 31 August 2024).
- Matthes, K.L.; Pestoni, G.; Korol, D.; Van Hemelrijck, M.; Rohrmann, S. The risk of prostate cancer mortality and cardiovascular mortality of nonmetastatic prostate cancer patients: A population-based retrospective cohort study. Urol. Oncol. 2018, 36, 309.e15–309.e23. [Google Scholar] [CrossRef] [PubMed]
- Kunutsor, S.K.; Apekey, T.A.; Khan, H. Liver enzymes and risk of cardiovascular disease in the general population: A meta-analysis of prospective cohort studies. Atherosclerosis 2014, 236, 7–17. [Google Scholar] [CrossRef] [PubMed]
- Yun, K.E.; Shin, C.Y.; Yoon, Y.S.; Park, H.S. Elevated alanine aminotransferase levels predict mortality from cardiovascular disease and diabetes in Koreans. Atherosclerosis 2009, 205, 533–537. [Google Scholar] [CrossRef] [PubMed]
- Charlson, M.E.; Pompei, P.; Ales, K.L.; MacKenzie, C.R. A new method of classifying prognostic comorbidity in longitudinal studies: Development and validation. J. Chronic Dis. 1987, 40, 373–383. [Google Scholar] [CrossRef]
- Chan, T.C.; Luk, J.K.; Chu, L.W.; Chan, F.H. Validation study of Charlson Comorbidity Index in predicting mortality in Chinese older adults. Geriatr. Gerontol. Int. 2014, 14, 452–457. [Google Scholar] [CrossRef]
- Wolf, P.A.; D’Agostino, R.B.; Belanger, A.J.; Kannel, W.B. Probability of stroke: A risk profile from the Framingham Study. Stroke 1991, 22, 312–318. [Google Scholar] [CrossRef]
- Jee, S.H.; Park, J.W.; Lee, S.Y.; Nam, B.H.; Ryu, H.G.; Kim, S.Y.; Kim, Y.N.; Lee, J.K.; Choi, S.M.; Yun, J.E. Stroke risk prediction model: A risk profile from the Korean study. Atherosclerosis 2008, 197, 318–325. [Google Scholar] [CrossRef]
- Hanley, J.A.; McNeil, B.J. The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiology 1982, 143, 29–36. [Google Scholar] [CrossRef]
- Culp, M.B.; Soerjomataram, I.; Efstathiou, J.A.; Bray, F.; Jemal, A. Recent Global Patterns in Prostate Cancer Incidence and Mortality Rates. Eur. Urol. 2020, 77, 38–52. [Google Scholar] [CrossRef] [PubMed]
- National Cancer Center. Annual Cancer Statistics Reports in 2021. Available online: https://ncc.re.kr/cancerStatsView.ncc?bbsnum=678&searchKey=total&searchValue=&pageNum=1 (accessed on 31 August 2024).
- Wei, J.T.; Barocas, D.; Carlsson, S.; Coakley, F.; Eggener, S.; Etzioni, R.; Fine, S.W.; Han, M.; Kim, S.K.; Kirkby, E.; et al. Early Detection of Prostate Cancer: AUA/SUO Guideline Part I: Prostate Cancer Screening. J. Urol. 2023, 210, 46–53. [Google Scholar] [CrossRef] [PubMed]
- Elmehrath, A.O.; Afifi, A.M.; Al-Husseini, M.J.; Saad, A.M.; Wilson, N.; Shohdy, K.S.; Pilie, P.; Sonbol, M.B.; Alhalabi, O. Causes of Death Among Patients With Metastatic Prostate Cancer in the US From 2000 to 2016. JAMA Netw. Open 2021, 4, e2119568. [Google Scholar] [CrossRef] [PubMed]
- Zaorsky, N.G.; Churilla, T.M.; Egleston, B.L.; Fisher, S.G.; Ridge, J.A.; Horwitz, E.M.; Meyer, J.E. Causes of death among cancer patients. Ann. Oncol. 2017, 28, 400–407. [Google Scholar] [CrossRef]
- Park, J.; Han, K.; Shin, D.W.; Park, S.H.; Shin, H.B. Conditional Relative Survival and Competing Mortality of Patients with Prostate Cancer in Korea: A Nationwide Cohort Study. Cancer Epidemiol. Biomark. Prev. 2021, 30, 326–334. [Google Scholar] [CrossRef]
- Koo, K.C.; Lee, K.S.; Kim, S.; Min, C.; Min, G.R.; Lee, Y.H.; Han, W.K.; Rha, K.H.; Hong, S.J.; Yang, S.C.; et al. Long short-term memory artificial neural network model for prediction of prostate cancer survival outcomes according to initial treatment strategy: Development of an online decision-making support system. World J. Urol. 2020, 38, 2469–2476. [Google Scholar] [CrossRef]
- Woo, Y.; Son, T.; Song, K.; Okumura, N.; Hu, Y.; Cho, G.S.; Kim, J.W.; Choi, S.H.; Noh, S.H.; Hyung, W.J. A Novel Prediction Model of Prognosis After Gastrectomy for Gastric Carcinoma: Development and Validation Using Asian Databases. Ann. Surg. 2016, 264, 114–120. [Google Scholar] [CrossRef]
- Chang, Y.; Hwang, S.H.; Cho, S.A.; Lee, H.; Cho, E.; Lee, J.Y. Health Inequities in Cancer Incidence According to Economic Status and Regions Are Still Existed even under Universal Health Coverage System in Korea: A Nationwide Population Based Study using National Health Insurance Database. Cancer Res. Treat. 2023, 56, 380–403. [Google Scholar] [CrossRef]
- Kweon, S.S.; Kim, M.G.; Kang, M.R.; Shin, M.H.; Choi, J.S. Difference of stage at cancer diagnosis by socioeconomic status for four target cancers of the National Cancer Screening Program in Korea: Results from the Gwangju and Jeonnam cancer registries. J. Epidemiol. 2017, 27, 299–304. [Google Scholar] [CrossRef]
- Khang, Y.H.; Kim, H.R. Socioeconomic Inequality in mortality using 12-year follow-up data from nationally representative surveys in South Korea. Int. J. Equity Health 2016, 15, 51. [Google Scholar] [CrossRef]
Category | Male |
---|---|
Number | 14,228 |
Age, years | 69.13 ± 6.97 |
Body mass index, kg/m2 | 23.92 ± 2.85 |
Systolic blood pressure, mmHg | 127.89 ± 15.43 |
Fasting glucose, mg/dL | 127.89 ± 27.39 |
Alanine aminotransferase, IU/L | 25.09 ± 22.49 |
Gamma-glutamyl transferase, IU/L | 44.68 ± 63.19 |
Total cholesterol, mg/dL | 186.67 ± 39.11 |
Smoking status, n (%) | |
Never smokers | 6236 (43.8%) |
Former smokers | 5000 (35.2%) |
Current smokers | 2985 (21.0%) |
Alcohol consumption, n (%) | |
Rare | 7363 (51.8%) |
Moderate | 3808 (26.8%) |
Heavy | 3057 (21.5%) |
Physical activity, n (%) | |
Low | 10,229 (71.9%) |
Moderate | 741 (5.2%) |
High | 3258 (22.9%) |
Household income, n (%) | |
0th–20th | 2542 (17.9%) |
21st–40th | 2294 (16.1%) |
41st–60th | 2870 (20.2%) |
61st–80th | 3412 (24.0%) |
81st–100th | 3110 (21.9%) |
Charlson Comorbidity Index, n (%) | |
0 | 9538 (67.0%) |
1 | 3020 (21.2%) |
2 | 966 (6.8%) |
≥3 | 704 (4.9%) |
Time since diagnosis | 1 year | 3 years | 5 years |
Number at risk | 13,585 | 12,521 | 11,436 |
Number of deaths | 634 | 1050 | 880 |
Survival rate (95% CIs *) | 0.955 (0.952−0.959) | 0.882 (0.876−0.887) | 0.820 (0.813−0.826) |
Category | Coefficient | HR (95% CIs) |
---|---|---|
Age, years | 0.0777 | 1.081 (1.075–1.086) |
Body mass index, kg/m2 | −0.0477 | 0.953 (0.944–0.963) |
Systolic blood pressure, mmHg | 0.0009 | 1.001 (0.999–1.003) |
Fasting glucose, mg/dL | 0.0023 | 1.002 (1.001–1.003) |
Alanine aminotransferase, IU/L | −0.0020 | 0.998 (0.996–1.000) |
Gamma-glutamyl transferase, IU/L | 0.0022 | 1.002 (1.002–1.003) |
Total cholesterol, mg/dL | −0.0023 | 0.998 (0.997–0.998) |
Smoking status, n (%) | ||
Never smokers | 0.000 | Reference |
Former smokers | −0.0082 | 0.992 (0.930–1.058) |
Current smokers | 0.4020 | 1.495 (1.394–1.603) |
Alcohol consumption, n (%) | ||
Rare | 0.000 | Reference |
Moderate | −0.1563 | 0.855 (0.798–0.916) |
Heavy | −0.1189 | 0.888 (0.826–0.955) |
Physical activity, n (%) | ||
Low | 0.000 | Reference |
Moderate | −0.2592 | 0.772 (0.681–0.875) |
High | −0.2165 | 0.805 (0.751–0.864) |
Household income, n (%) | ||
0th–20th | 0.000 | Reference |
21st–40th | −0.0505 | 0.951 (0.868–1.041) |
41st–60th | −0.1126 | 0.894 (0.819–0.974) |
61st–80th | −0.1753 | 0.839 (0.772–0.912) |
81st–100th | −0.2905 | 0.748 (0.685–0.817) |
Charlson Comorbidity Index, n (%) | ||
0 | 0.000 | Reference |
1 | 0.1556 | 1.168 (1.091–1.251) |
2 | 0.5532 | 1.202 (1.582–1.911) |
≥3 | 1.0092 | 2.743 (2.488–3.024) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, J.; Kim, Y.-H.; Kim, Y.-J.; Kang, H.-T. A 5-Year Mortality Prediction Model for Prostate Cancer Patients Based on the Korean Nationwide Health Insurance Claims Database. J. Pers. Med. 2024, 14, 1058. https://doi.org/10.3390/jpm14101058
Kim J, Kim Y-H, Kim Y-J, Kang H-T. A 5-Year Mortality Prediction Model for Prostate Cancer Patients Based on the Korean Nationwide Health Insurance Claims Database. Journal of Personalized Medicine. 2024; 14(10):1058. https://doi.org/10.3390/jpm14101058
Chicago/Turabian StyleKim, Joungyoun, Yong-Hoon Kim, Yong-June Kim, and Hee-Taik Kang. 2024. "A 5-Year Mortality Prediction Model for Prostate Cancer Patients Based on the Korean Nationwide Health Insurance Claims Database" Journal of Personalized Medicine 14, no. 10: 1058. https://doi.org/10.3390/jpm14101058
APA StyleKim, J., Kim, Y. -H., Kim, Y. -J., & Kang, H. -T. (2024). A 5-Year Mortality Prediction Model for Prostate Cancer Patients Based on the Korean Nationwide Health Insurance Claims Database. Journal of Personalized Medicine, 14(10), 1058. https://doi.org/10.3390/jpm14101058