Efficacy of Filter Trocar for Clear Visualization during Laparoscopic Cholecystectomy: A Prospective Randomized Controlled Trial
Abstract
:1. Introduction
2. Materials and Methods
2.1. Inclusion and Exclusion Criteria
2.2. Sample Size Calculation
2.3. Randomization
2.4. Surgical Procedure
2.5. Endpoints
2.6. Data Collection and Statistical Analysis
3. Results
3.1. Clinicopathologic Characteristics
3.2. Primary Endpoint
3.3. Secondary Endpoint
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Spearman, J.; Tsavellas, G.; Nichols, P. Current attitudes and practices towards diathermy smoke. Ann. R. Coll. Surg. Engl. 2007, 89, 162–165. [Google Scholar] [CrossRef]
- Weld, K.J.; Dryer, S.; Ames, C.D.; Cho, K.; Hogan, C.; Lee, M.; Biswas, P.; Landman, J. Analysis of surgical smoke produced by various energy-based instruments and effect on laparoscopic visibility. J. Endourol. 2007, 21, 347–351. [Google Scholar] [CrossRef] [PubMed]
- Choi, S.H.; Kwon, T.G.; Chung, S.K.; Kim, T.H. Surgical smoke may be a biohazard to surgeons performing laparoscopic surgery. Surg. Endosc. 2014, 28, 2374–2380. [Google Scholar] [CrossRef] [PubMed]
- Baan, R.; Grosse, Y.; Straif, K.; Secretan, B.; El Ghissassi, F.; Bouvard, V.; Benbrahim-Tallaa, L.; Guha, N.; Freeman, C.; Galichet, L.; et al. A review of human carcinogens—Part F: Chemical agents and related occupations. Lancet Oncol. 2009, 10, 1143–1144. [Google Scholar] [CrossRef]
- Mintz, Y.; Arezzo, A.; Boni, L.; Chand, M.; Brodie, R.; Fingerhut, A.; the Technology Committee of the European Association for Endoscopic Surgery. A Low-cost, Safe, and Effective Method for Smoke Evacuation in Laparoscopic Surgery for Suspected Coronavirus Patients. Ann. Surg. 2020, 272, e7–e8. [Google Scholar] [CrossRef]
- The American College of Surgeons (ACS). COVID-19 and Surgery. 2020. Available online: https://www.facs.org/covid-19/clinical-guidance (accessed on 11 February 2024).
- The Society of American Gastrointestinal and Endoscopic Surgeons (SAGES). Recommendations Regarding Surgical Response to COVID-19 Crisis 2020. Available online: https://www.sages.org/recommendations-surgical-response-covid-19/ (accessed on 11 February 2024).
- The Royal College of Surgeons. Updated Intercollegiate General Surgery Guidance on COVID-19. 2020. Available online: https://www.rcseng.ac.uk/coronavirus/joint-guidance-for-surgeons-v2/ (accessed on 11 February 2024).
- Hahn, K.Y.; Kang, D.W.; Azman, Z.A.M.; Kim, S.Y.; Kim, S.H. Removal of Hazardous Surgical Smoke Using a Built-in-Filter Trocar: A Study in Laparoscopic Rectal Resection. Surg. Laparosc. Endosc. Percutan Tech. 2017, 27, 341–345. [Google Scholar] [CrossRef]
- Choi, S.H.; Choi, D.H.; Kang, D.H.; Ha, Y.-S.; Lee, J.N.; Kim, B.S.; Kim, H.T.; Yoo, E.S.; Kwon, T.G.; Chung, S.K.; et al. Activated carbon fiber filters could reduce the risk of surgical smoke exposure during laparoscopic surgery: Application of volatile organic compounds. Surg. Endosc. 2018, 32, 4290–4298. [Google Scholar] [CrossRef]
- Ha, H.I.; Choi, M.C.; Jung, S.G.; Joo, W.D.; Lee, C.; Song, S.H.; Park, H. Chemicals in Surgical Smoke and the Efficiency of Built-in-Filter Ports. JSLS 2019, 23, e2019.00037. [Google Scholar] [CrossRef]
- Robertson, D.; Sterke, F.; van Weteringen, W.; Arezzo, A.; Mintz, Y.; Technology Committee of the European Association for Endoscopic Surgery (EAES); Horeman, T. Escape of surgical smoke particles, comparing conventional and valveless trocar systems. Surg. Endosc. 2023, 37, 8552–8561. [Google Scholar] [CrossRef]
- Sermonesi, G.; Tian, B.W.C.A.; Vallicelli, C.; Abu-Zidan, F.M.; Damaskos, D.; Kelly, M.D.; Leppäniemi, A.; Galante, J.M.; Tan, E.; Kirkpatrick, A.W.; et al. Cesena guidelines: WSES consensus statement on laparoscopic-first approach to general surgery emergencies and abdominal trauma. World J. Emerg. Surg. 2023, 18, 57. [Google Scholar] [CrossRef]
- Annino, F.; Topazio, L.; Autieri, D.; Verdacchi, T.; De Angelis, M.; Asimakopoulos, A.D. Robotic partial nephrectomy performed with Airseal versus a standard CO2 pressure pneumoperitoneum insufflator: A prospective comparative study. Surg. Endosc. 2017, 31, 1583–1590. [Google Scholar] [CrossRef]
- Hamed, H. Underwater-seal evacuation of surgical smoke in laparoscopy during the COVID-19 pandemic: A feasibility report of a simple technique. Br. J. Surg. 2020, 107, e640–e641. [Google Scholar] [PubMed]
- da Costa, K.M.; Saxena, A.K. Coronavirus disease 2019 pandemic and identifying insufflators with desufflation mode and surgical smoke evacuators for safe CO2 removal. Asian J. Endosc. Surg. 2021, 14, 165–169. [Google Scholar] [CrossRef]
- Hirota, M.; Takahashi, H.; Takahashi, T.; Kurokawa, Y.; Yamasaki, M.; Eguchi, H.; Doki, Y.; Nakajima, K. A Smoke Evacuator Equipped With a Filter Contributes Enough to Safe Gas Exhaustion From the Abdominal Cavity. Asian J. Endosc. Surg. 2022, 15, 427–431. [Google Scholar] [CrossRef]
- Ansell, J.; Warren, N.; Wall, P.; Cocks, K.; Goddard, S.; Whiston, R.; Stechman, M.; Scott-Coombes, D.; Torkington, J. Electrostatic precipitation is a novel way of maintaining visual field clarity during laparoscopic surgery: A prospective double-blind randomized controlled pilot study. Surg. Endosc. 2014, 28, 2057–2065. [Google Scholar] [CrossRef] [PubMed]
- Baggish, M.S.; Elbakry, M. The effects of laser smoke on the lungs of rats. Am. J. Obstet. Gynecol. 1987, 156, 1260–1265. [Google Scholar] [CrossRef] [PubMed]
- Baggish, M.S.; Baltoyannis, P.; Sze, E. Protection of the rat lung from the harmful effects of laser smoke. Lasers Surg. Med. 1988, 8, 248–253. [Google Scholar] [CrossRef]
- Alp, E.; Bijl, D.; Bleichrodt, R.P.; Hansson, B.; Voss, A. Surgical smoke and infection control. J. Hosp. Infect. 2006, 62, 1–5. [Google Scholar] [CrossRef]
- Sehulster, L.; Chinn, R.Y.; CDC; HICPAC. Guidelines for environmental infection control in health-care facilities: Recommendations of CDC and the Healthcare Infection Control Practices Advisory Committee (HICPAC). MMWR Recomm. Rep. 2003, 52, 1–42. [Google Scholar]
- He, K.; Sun, J.; Tang, X. Single Image Haze Removal Using Dark Channel Prior. IEEE Trans. Pattern Anal. Mach. Intell. 2011, 33, 2341–2353. [Google Scholar]
- Zhu, H.; Cheng, Y.; Peng, X.; Zhou, J.T.; Kang, Z.; Lu, S.; Fang, Z.; Li, L.; Lim, J.-H. Single-Image Dehazing via Compositional Adversarial Network. IEEE Trans. Cybern. 2021, 51, 829–838. [Google Scholar] [CrossRef] [PubMed]
- Pan, Y.; Bano, S.; Vasconcelos, F.; Park, H.; Jeong, T.T.; Stoyanov, D. DeSmoke-LAP: Improved unpaired image-to-image translation for desmoking in laparoscopic surgery. Int. J. Comput. Assist. Radiol. Surg. 2022, 17, 885–893. [Google Scholar] [CrossRef] [PubMed]
Filter Group (n = 50) | Control Group (n = 50) | p-Value | |
---|---|---|---|
Age (years) | 47.7 | 50.5 | 0.300 |
Sex, M:F | 21:29 | 25:25 | 0.433 |
Comorbidity | 15 (29.4%) | 12 (24.5%) | 0.579 |
DM | 7 (13.7%) | 4 (8.2%) | 0.374 |
Hepatitis | 2 (3.9%) | 4 (8.2%) | 0.372 |
Hypertension | 7 (13.7%) | 6 (12.2%) | 0.826 |
Previous op hx. | 12 (23.5%) | 15 (30.6%) | |
BMI | 25.2 | 24.7 | 0.491 |
Operation time (min) | 43.2 | 41.6 | 0.560 |
Pathologic result | |||
Chronic cholecystitis | 42 (82.4%) | 38 (79.2%) | 0.338 |
GB polyp | 9 (17.6%) | 8 (16.7%) | 0.230 |
GB cancer | 0 (0.0%) | 2 (4.2%) | 0.535 |
Postoperative complication | 1 (2%) * | 0 (0%) | 0.325 |
Filter Group (n = 50) | Control Group (n = 50) | p-Value | |
---|---|---|---|
LV* 1 score | 1.4 | 1.44 | 0.234 |
LV2 score | 1.94 | 1.88 | 0.027 |
LV3 score | 2.01 | 1.86 | 0.880 |
LV average score | 1.65 | 1.56 | 0.397 |
Filter Group (n = 50) | Control Group (n = 50) | p-Value | |
---|---|---|---|
Duration of suction after gallbladder removal (s) | 3.82 | 3.67 | 0.097 |
Number of laparoscope removals (times) | 0.55 | 0.22 | 0.963 |
Total time required for gallbladder dissection (s) | 221.58 | 177.09 | 0.253 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chae, H.-C.; Kim, B.-J.; Choi, Y.S.; Suh, S.-W.; Lee, S.E. Efficacy of Filter Trocar for Clear Visualization during Laparoscopic Cholecystectomy: A Prospective Randomized Controlled Trial. J. Pers. Med. 2024, 14, 204. https://doi.org/10.3390/jpm14020204
Chae H-C, Kim B-J, Choi YS, Suh S-W, Lee SE. Efficacy of Filter Trocar for Clear Visualization during Laparoscopic Cholecystectomy: A Prospective Randomized Controlled Trial. Journal of Personalized Medicine. 2024; 14(2):204. https://doi.org/10.3390/jpm14020204
Chicago/Turabian StyleChae, Ho-Chang, Beom-Jin Kim, Yoo Shin Choi, Suk-Won Suh, and Seung Eun Lee. 2024. "Efficacy of Filter Trocar for Clear Visualization during Laparoscopic Cholecystectomy: A Prospective Randomized Controlled Trial" Journal of Personalized Medicine 14, no. 2: 204. https://doi.org/10.3390/jpm14020204
APA StyleChae, H.-C., Kim, B.-J., Choi, Y. S., Suh, S.-W., & Lee, S. E. (2024). Efficacy of Filter Trocar for Clear Visualization during Laparoscopic Cholecystectomy: A Prospective Randomized Controlled Trial. Journal of Personalized Medicine, 14(2), 204. https://doi.org/10.3390/jpm14020204