Association between Gout and Gastric Cancer: A Nested Case–Control Study Using a National Health Sample Cohort
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Definition of Gout
2.3. Definition of Gastric Cancer
2.4. Patient Selection
2.5. Covariates
2.6. Statistical Analysis
3. Results
3.1. Baseline Characteristics of the Study Patients
3.2. Relationship between Gout and Gastric Cancer
3.3. Subgroup Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef]
- Jung, K.W.; Won, Y.J.; Kang, M.J.; Kong, H.J.; Im, J.S.; Seo, H.G. Prediction of cancer incidence and mortality in Korea, 2022. Cancer Res. Treat. 2022, 54, 345–351. [Google Scholar] [CrossRef]
- He, Q.; Mok, T.N.; Sin, T.H.; Yin, J.; Li, S.; Yin, Y.; Ming, W.K.; Feng, B. Global, regional, and national prevalence of gout from 1990 to 2019: Age-period-cohort analysis with future burden prediction. JMIR Public Health Surveill 2023, 9, e45943. [Google Scholar] [CrossRef] [PubMed]
- Singh, J.A.; Gaffo, A. Gout epidemiology and comorbidities. Semin. Arthritis Rheum. 2020, 50, S11–S16. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.S.; Myung, J.; Lee, H.A.; Hong, S.; Lee, C.K.; Yoo, B.; Oh, J.S.; Kim, Y.G. Risk of cancer in middle-aged patients with gout: A nationwide population-based study in Korea. J. Rheumatol. 2021, 48, 1465–1471. [Google Scholar] [CrossRef] [PubMed]
- Oh, Y.J.; Lee, Y.J.; Lee, E.; Park, B.; Kwon, J.W.; Heo, J.; Moon, K.W. Cancer risk in Korean patients with gout. Korean J. Intern. Med. 2022, 37, 460–467. [Google Scholar] [CrossRef] [PubMed]
- Allegrini, S.; Garcia-Gil, M.; Pesi, R.; Camici, M.; Tozzi, M.G. The good, the bad and the new about uric acid in cancer. Cancers 2022, 14, 4959. [Google Scholar] [CrossRef]
- Chen, C.J.; Yen, J.H.; Chang, S.J. Gout patients have an increased risk of developing most cancers, especially urological cancers. Scand. J. Rheumatol. 2014, 43, 385–390. [Google Scholar] [CrossRef] [PubMed]
- Boffetta, P.; Nordenvall, C.; Nyrén, O.; Ye, W. A prospective study of gout and cancer. Eur. J. Cancer Prev. 2009, 18, 127–132. [Google Scholar] [CrossRef] [PubMed]
- Kuo, C.F.; Luo, S.F.; See, L.C.; Chou, I.J.; Fang, Y.F.; Yu, K.H. Increased risk of cancer among gout patients: A nationwide population study. Jt. Bone Spine 2012, 79, 375–378. [Google Scholar] [CrossRef]
- Lee, J.; Lee, J.S.; Park, S.H.; Shin, S.A.; Kim, K. Cohort profile: The National Health Insurance Service–National Sample Cohort (NHIS-NSC), South Korea. Int. J. Epidemiol. 2017, 46, e15. [Google Scholar] [CrossRef]
- Kyoung, D.S.; Kim, H.S. Understanding and utilizing claim data from the Korean National Health Insurance Service (NHIS) and Health Insurance Review & Assessment (HIRA) database for research. J. Lipid Atheroscler. 2022, 11, 103. [Google Scholar] [CrossRef]
- Kim, J.W.; Kwak, S.G.; Lee, H.; Kim, S.K.; Choe, J.Y.; Park, S.H. Prevalence and incidence of gout in Korea: Data from the national health claims database 2007–2015. Rheumatol. Int. 2017, 37, 1499–1506. [Google Scholar] [CrossRef] [PubMed]
- Kwon, M.J.; Byun, S.H.; Kim, J.H.; Kim, J.H.; Kim, S.H.; Kim, N.Y.; Park, H.R.; Choi, H.G. Longitudinal follow-up study of the association between statin use and chronic periodontitis using national health screening cohort of Korean population. Sci. Rep. 2022, 12, 5504. [Google Scholar] [CrossRef] [PubMed]
- Quan, H.; Li, B.; Couris, C.M.; Fushimi, K.; Graham, P.; Hider, P.; Januel, J.M.; Sundararajan, V. Updating and validating the Charlson comorbidity index and score for risk adjustment in hospital discharge abstracts using data from 6 countries. Am. J. Epidemiol. 2011, 173, 676–682. [Google Scholar] [CrossRef] [PubMed]
- Austin, P.C. Balance diagnostics for comparing the distribution of baseline covariates between treatment groups in propensity-score matched samples. Stat. Med. 2009, 28, 3083–3107. [Google Scholar] [CrossRef] [PubMed]
- Li, F.; Morgan, K.L.; Zaslavsky, A.M. Balancing covariates via propensity score weighting. J. Am. Stat. Assoc. 2018, 113, 390–400. [Google Scholar] [CrossRef]
- Slobodnick, A.; Krasnokutsky, S.; Lehmann, R.A.; Keenan, R.T.; Quach, J.; Francois, F.; Pillinger, M.H. Colorectal cancer among gout patients undergoing colonoscopy. J. Clin. Rheumatol. 2019, 25, 335–340. [Google Scholar] [CrossRef] [PubMed]
- Thomas, L.E.; Li, F.; Pencina, M.J. Overlap weighting: A propensity score method that mimics attributes of a randomized clinical trial. JAMA 2020, 323, 2417–2418. [Google Scholar] [CrossRef]
- Fini, M.A.; Elias, A.; Johnson, R.J.; Wright, R.M. Contribution of uric acid to cancer risk, recurrence, and mortality. Clin. Transl. Med. 2012, 1, 16. [Google Scholar] [CrossRef]
- Giebułtowicz, J.; Wroczyński, P.; Samolczyk-Wanyura, D. Comparison of antioxidant enzymes activity and the concentration of uric acid in the saliva of patients with oral cavity cancer, odontogenic cysts and healthy subjects. J. Oral Pathol. Med. 2011, 40, 726–730. [Google Scholar] [CrossRef] [PubMed]
- Cho, S.K.; Chang, Y.; Kim, I.; Ryu, S. U-Shaped Association Between Serum Uric Acid Level and Risk of Mortality: A Cohort Study. Arthritis Rheumatol. 2018, 70, 1122–1132. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.F.; Huang, J.J.; Mi, N.N.; Lin, Y.Y.; He, Q.S.; Lu, Y.W.; Yue, P.; Bai, B.; Zhang, J.D.; Zhang, C.; et al. Associations between serum uric acid and hepatobiliary-pancreatic cancer: A cohort study. World J. Gastroenterol. 2020, 26, 7061–7075. [Google Scholar] [CrossRef] [PubMed]
- Crawley, W.T.; Jungels, C.G.; Stenmark, K.R.; Fini, M.A. U-shaped association of uric acid to overall-cause mortality and its impact on clinical management of hyperuricemia. Redox Biol. 2022, 51, 102271. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Cao, T.T.; Guo, S.; Zhong, Q.; Li, C.H.; Li, Y.; Dong, L.; Zheng, S.; Wang, G.; Yin, S.F. Discovery of novel allopurinol derivatives with anticancer activity and attenuated xanthine oxidase inhibition. Molecules 2016, 21, 771. [Google Scholar] [CrossRef] [PubMed]
- Cho, J.H.; Joo, Y.H.; Shin, E.Y.; Park, E.J.; Kim, M.S. Anticancer effects of colchicine on hypopharyngeal cancer. Anticancer Res. 2017, 37, 6269–6280. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.; Sharma, P.R.; Mondhe, D.M. Potential anticancer role of colchicine-based derivatives: An overview. Anticancer Drugs 2017, 28, 250–262. [Google Scholar] [CrossRef]
- Linden, A.H.; Honekopp, J. Heterogeneity of research results: A new perspective from which to assess and promote progress in psychological science. Perspect. Psychol. Sci. 2021, 16, 358–376. [Google Scholar] [CrossRef]
- Chuang, J.P.; Lee, J.C.; Leu, T.H.; Hidajah, A.C.; Chang, Y.H.; Li, C.Y. Association of gout and colorectal cancer in Taiwan: A nationwide population-based cohort study. BMJ Open 2019, 9, e028892. [Google Scholar] [CrossRef]
- Kwon, M.J.; Han, K.M.; Kim, J.H.; Kim, J.H.; Kim, M.J.; Kim, N.Y.; Choi, H.G.; Kang, H.S. Gout and colorectal cancer likelihood: Insights from a nested case-control study of the Korean population utilizing the Korean National Health Insurance Service-National Sample Cohort. Cancers 2023, 15, 5602. [Google Scholar] [CrossRef]
- Coker, O.O.; Dai, Z.; Nie, Y.; Zhao, G.; Cao, L.; Nakatsu, G.; Wu, W.K.; Wong, S.H.; Chen, Z.; Sung, J.J.Y.; et al. Mucosal microbiome dysbiosis in gastric carcinogenesis. Gut 2018, 67, 1024–1032. [Google Scholar] [CrossRef] [PubMed]
- Ağagündüz, D.; Cocozza, E.; Cemali, Ö.; Bayazıt, A.D.; Nanì, M.F.; Cerqua, I.; Morgillo, F.; Saygılı, S.K.; Berni Canani, R.; Amero, P.; et al. Understanding the role of the gut microbiome in gastrointestinal cancer: A review. Front. Pharmacol. 2023, 14, 1130562. [Google Scholar] [CrossRef] [PubMed]
- Tong, S.; Zhang, P.; Cheng, Q.; Chen, M.; Chen, X.; Wang, Z.; Lu, X.; Wu, H. The role of gut microbiota in gout: Is gut microbiota a potential target for gout treatment. Front. Cell Infect. Microbiol. 2022, 12, 1051682. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Li, Y.; Liao, W.; Huang, J.; Liu, Y.; Li, Z.; Tang, J. Gut microbiota remodeling: A promising therapeutic strategy to confront hyperuricemia and gout. Front. Cell Infect. Microbiol. 2022, 12, 935723. [Google Scholar] [CrossRef] [PubMed]
- Azevedo, V.F.; Kos, I.A.; Vargas-Santos, A.B.; da Rocha Castelar Pinheiro, G.; Dos Santos Paiva, E. Benzbromarone in the treatment of gout. Adv. Rheumatol. 2019, 59, 37. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Wei, Z.; Cheng, P.; Qian, C.; Xu, F.; Yang, Y.; Wang, A.; Chen, W.; Sun, Z.; Lu, Y. Rhein modulates host purine metabolism in intestine through gut microbiota and ameliorates experimental colitis. Theranostics 2020, 10, 10665–10679. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Yang, D.; Mei, L.; Yuan, L.; Xie, A.; Yuan, J. Screening and characterization of purine nucleoside degrading lactic acid bacteria isolated from Chinese sauerkraut and evaluation of the serum uric acid lowering effect in hyperuricemic rats. PLoS ONE 2014, 9, e105577. [Google Scholar] [CrossRef]
- Yamada, N.; Iwamoto, C.; Kano, H.; Yamaoka, N.; Fukuuchi, T.; Kaneko, K.; Asami, Y. Evaluation of purine utilization by Lactobacillus gasseri strains with potential to decrease the absorption of food-derived purines in the human intestine. Nucleosides Nucleotides Nucleic Acids 2016, 35, 670–676. [Google Scholar] [CrossRef]
Characteristics | Before PS Overlap-Weighted Adjustment | After PS Overlap-Weighted Adjustment | |||||
---|---|---|---|---|---|---|---|
Gastric Cancer | Control | SD | Gastric Cancer | Control | SD | ||
Age (n, %) | 0.00 | 0.00 | |||||
0–4 | N/A | N/A | N/A | N/A | |||
5–9 | 1 (0.01) | 4 (0.01) | 1 (0.01) | 1 (0.01) | |||
10–14 | 3 (0.03) | 12 (0.03) | 2 (0.02) | 2 (0.02) | |||
15–19 | N/A | N/A | N/A | N/A | |||
20–24 | 1 (0.01) | 4 (0.01) | 1 (0.01) | 1 (0.01) | |||
25–29 | 19 (0.19) | 76 (0.19) | 13 (0.17) | 13 (0.17) | |||
30–34 | 95 (0.93) | 380 (0.93) | 63 (0.85) | 63 (0.85) | |||
35–39 | 205 (2.01) | 820 (2.01) | 141 (1.92) | 141 (1.92) | |||
40–44 | 466 (4.58) | 1864 (4.58) | 336 (4.57) | 336 (4.57) | |||
45–49 | 711 (6.99) | 2844 (6.99) | 506 (6.89) | 506 (6.89) | |||
50–54 | 994 (9.77) | 3976 (9.77) | 702 (9.56) | 702 (9.56) | |||
55–59 | 1197 (11.77) | 4788 (11.77) | 856 (11.66) | 856 (11.66) | |||
60–64 | 1449 (14.24) | 5796 (14.24) | 1046 (14.24) | 1046 (14.24) | |||
65–69 | 1463 (14.38) | 5852 (14.38) | 1059 (14.43) | 1059 (14.43) | |||
70–74 | 1490 (14.65) | 5960 (14.65) | 1087 (14.80) | 1087 (14.80) | |||
75–79 | 1071 (10.53) | 4284 (10.53) | 787 (10.72) | 787 (10.72) | |||
80–84 | 693 (6.81) | 2772 (6.81) | 509 (6.93) | 509 (6.93) | |||
85+ | 316 (3.11) | 1264 (3.11) | 236 (3.21) | 236 (3.21) | |||
Sex (n, %) | 0.00 | 0.00 | |||||
Male | 6834 (67.17) | 27,336 (67.17) | 4933 (67.18) | 4933 (67.18) | |||
Female | 3340 (32.83) | 13,360 (32.83) | 2410 (32.82) | 2410 (32.82) | |||
Income (n, %) | 0.00 | 0.00 | |||||
1 (lowest) | 1959 (19.25) | 7836 (19.25) | 1404 (19.12) | 1404 (19.12) | |||
2 | 1260 (12.38) | 5040 (12.38) | 899 (12.24) | 899 (12.24) | |||
3 | 1621 (15.93) | 6484 (15.93) | 1169 (15.92) | 1169 (15.92) | |||
4 | 2144 (21.07) | 8576 (21.07) | 1540 (20.97) | 1540 (20.97) | |||
5 (highest) | 3190 (31.35) | 12,760 (31.35) | 2332 (31.75) | 2332 (31.75) | |||
Region of residence (n, %) | 0.00 | 0.00 | |||||
Urban | 4310 (42.36) | 17,240 (42.36) | 3111 (42.36) | 3111 (42.36) | |||
Rural | 5864 (57.64) | 23,456 (57.64) | 4233 (57.64) | 4233 (57.64) | |||
CCI score (Mean, SD) | 2.40 (2.70) | 0.92 (1.59) | 0.67 | 1.72 (1.89) | 1.72 (0.97) | 0.00 | |
Gout (n, %) | 390 (3.83) | 1432 (3.52) | 0.02 | 277 (3.78) | 272 (3.70) | 0.00 |
Characteristics | Number of Patients with GC | Number of Control Patients | Odd Ratios for GC (95% Confidence Interval) | ||||
---|---|---|---|---|---|---|---|
(Exposure/Total, %) | (Exposure/Total, %) | Crude | p-Value | Overlap-Weighted Model † | p-Value | ||
Total patients (n = 50,870) | |||||||
Gout | 390/10,174 (3.8) | 1432/40,696 (3.5) | 1.09 (0.98–1.23) | 0.127 | 1.02 (0.93–1.12) | 0.652 | |
Control | 9784/10,174 (96.2) | 39,264/40,696 (96.5) | 1 | 1 | |||
Age < 65 years (n = 25,705) | |||||||
Gout | 157/5,141 (3.1) | 573/20,564 (2.8) | 1.10 (0.92–1.31) | 0.302 | 1.04 (0.90–1.20) | 0.639 | |
Control | 4984/5141 (96.9) | 19,991/20,564 (97.2) | 1 | 1 | |||
Age ≥ 65 years (n = 25,165) | |||||||
Gout | 233/5033 (4.6) | 859/20,132 (4.3) | 1.09 (0.94–1.26) | 0.259 | 1.02 (0.90–1.15) | 0.774 | |
Control | 4800/5033 (95.4) | 19,273/20,132 (95.7) | 1 | 1 | |||
Male (n = 34,170) | |||||||
Gout | 348/6,834 (5.1) | 1298/27,336 (4.7) | 1.08 (0.95–1.22) | 0.235 | 1.01 (0.92–1.11) | 0.842 | |
Control | 6486/6834 (94.9) | 26,038/27,336 (95.3) | 1 | 1 | |||
Female (n = 16,700) | |||||||
Gout | 42/3340 (1.3) | 134/13,360 (1.0) | 1.26 (0.89–1.78) | 0.198 | 1.16 (0.87–1.54) | 0.306 | |
Control | 3298/3340 (98.7) | 13,226/13,360 (99.0) | 1 | 1 | |||
Low-income (n = 24,200) | |||||||
Gout | 168/4840 (3.5) | 634/19,360 (3.3) | 1.06 (0.89–1.26) | 0.495 | 0.98 (0.85–1.12) | 0.74 | |
Control | 4672/4840 (96.5) | 18,726/19,360 (96.7) | 1 | 1 | |||
High-income (n = 26,670) | |||||||
Gout | 222/5334 (4.2) | 798/21,336 (3.7) | 1.12 (0.96–1.30) | 0.151 | 1.06 (0.93–1.20) | 0.375 | |
Control | 5112/5334 (95.8) | 20,538/21,336 (96.3) | 1 | 1 | |||
Urban resident (n = 21,550) | |||||||
Gout | 172/4310 (4.0) | 605/17,240 (3.5) | 1.14 (0.96–1.36) | 0.13 | 1.11 (0.96–1.28) | 0.146 | |
Control | 4138/4310 (96.0) | 16,635/17,240 (96.5) | 1 | 1 | |||
Rural resident (n = 29,320) | |||||||
Gout | 218/5864 (3.7) | 827/23,456 (3.5) | 1.06 (0.91–1.23) | 0.472 | 0.96 (0.85–1.08) | 0.512 | |
Control | 5646/5864 (96.3) | 22,629/23,456 (96.5) | 1 | 1 | |||
CCI scores = 0 (n = 28,141) | |||||||
Gout | 110/3480 (3.2) | 737/24,661 (3.0) | 1.06 (0.86–1.30) | 0.577 | 1.10 (0.96–1.26) | 0.185 | |
Control | 3370/3480 (96.8) | 23,924/24,661 (97.0) | 1 | 1 | |||
CCI scores = 1 (n = 8,958) | |||||||
Gout | 62/1990 (3.1) | 248/6968 (3.6) | 0.87 (0.66–1.16) | 0.34 | 0.88 (0.70–1.12) | 0.292 | |
Control | 1928/1990 (96.9) | 6720/6968 (96.4) | 1 | 1 | |||
CCI scores ≥ 2 (n = 13,771) | |||||||
Gout | 218/4704 (4.6) | 447/9067 (4.9) | 0.94 (0.79–1.11) | 0.447 | 1.04 (0.89–1.21) | 0.644 | |
Control | 4486/4704 (95.4) | 8620/9067 (95.1) | 1 | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kwon, M.J.; Han, K.M.; Kim, J.H.; Kim, J.-H.; Kim, M.-J.; Kim, N.Y.; Choi, H.G.; Kang, H.S. Association between Gout and Gastric Cancer: A Nested Case–Control Study Using a National Health Sample Cohort. J. Pers. Med. 2024, 14, 229. https://doi.org/10.3390/jpm14030229
Kwon MJ, Han KM, Kim JH, Kim J-H, Kim M-J, Kim NY, Choi HG, Kang HS. Association between Gout and Gastric Cancer: A Nested Case–Control Study Using a National Health Sample Cohort. Journal of Personalized Medicine. 2024; 14(3):229. https://doi.org/10.3390/jpm14030229
Chicago/Turabian StyleKwon, Mi Jung, Kyeong Min Han, Ji Hee Kim, Joo-Hee Kim, Min-Jeong Kim, Nan Young Kim, Hyo Geun Choi, and Ho Suk Kang. 2024. "Association between Gout and Gastric Cancer: A Nested Case–Control Study Using a National Health Sample Cohort" Journal of Personalized Medicine 14, no. 3: 229. https://doi.org/10.3390/jpm14030229
APA StyleKwon, M. J., Han, K. M., Kim, J. H., Kim, J.-H., Kim, M.-J., Kim, N. Y., Choi, H. G., & Kang, H. S. (2024). Association between Gout and Gastric Cancer: A Nested Case–Control Study Using a National Health Sample Cohort. Journal of Personalized Medicine, 14(3), 229. https://doi.org/10.3390/jpm14030229