Thymus Surgery Prospectives and Perspectives in Myasthenia Gravis
Abstract
:1. Introduction
2. Indications for Thymectomy
3. Limits and Risks of Surgical Intervention
4. Types of Surgical Approach in Thymectomy
- (a)
- Transcervical thymectomy,
- (b)
- Minimally invasive thymectomy (video-assisted or robotic);
- (c)
- Trans-sternal thymectomy;
- (d)
- Combined trans-cervical–trans-sternal thymectomy [42].
5. Determining the Moment to Perform the Thymectomy and the Preoperative Preparation of the Patient
- -
- Recent evolution of the disease,
- -
- Degree of muscle weakness,
- -
- Drug treatments included in the patient’s therapy at the time of evaluation,
- -
- Comorbidities,
- -
- Pulmonary function [67].
6. Postoperative Follow-Up of Thymectomized Patients
- -
- Weakness of respiratory muscles,
- -
- A vital pulmonary capacity of less than 2 L,
- -
- Bulbar manifestations,
- -
- History of the myasthenic crisis,
- -
- A serum level of anti-acetylcholine receptor antibodies exceeding 100 nmol/L,
- -
- Intraoperative blood loss greater than 1 L [76].
- -
- In the case of patients with MG, who receive treatment with acetylcholinesterase inhibitors in high doses;
- -
- In the case of patients who are under post-general anesthesia and have received high doses of acetylcholinesterase inhibitors to neutralize neuromuscular blocking agents during the intervention, such as neostigmine;
- -
- In case of exposure to a chemical substance that causes the inactivation of acetylcholinesterase: sarin gas, some pesticides, and insecticides [80].
7. VATS Thymectomy
- -
- Reduced postoperative pain,
- -
- Faster mobilization of patients,
- -
- Reduced hospitalization period,
- -
- Better results in terms of the postoperative scar [90].
8. Robotic Thymectomy
- -
- The complete resection of the surgical parts targeted by the surgical intervention is essential;
- -
- The most serious complication of the procedure is represented by the injury to the great blood vessels during the dissection performed in order to extirpate the thymus or thymomas;
- -
- The most common technical problem is the interaction of the robotic arm with the patient’s right shoulder. To avoid this problem, the shoulder should be positioned as low as possible. Placing the port for the robotic arm as anteriorly as possible and using a trocar for the long robotic arm are also helpful;
- -
- It is not mandatory to place the camera on the left side of the patient to visualize the left phrenic nerve. A 30° down chamber can be exchanged for a 0° chamber and used if the rib is not visible. If the nerve is masked by a tumor mass, an additional camera can be added, depending on the particularity of the case, on a new port, positioned on the left side [95].
- -
- The ability to have a three-dimensionally thoracic view, during the surgical procedure;
- -
- Increasing the dexterity and precision of the specific maneuvers;
- -
- An easier and better approach to the anterior mediastinum [100].
9. Discussions
10. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Nitta, T.; Takayanagi, H. Non-Epithelial Thymic Stromal Cells: Unsung Heroes in Thymus Organogenesis and T Cell Development. Front. Immunol. 2021, 11, 620894. [Google Scholar] [CrossRef]
- Klein, L.; Kyewski, B.; Allen, P.M.; Hogquist, K.A. Positive and Negative Selection of the T Cell Repertoire: What Thymocytes See (and Don’t See). Nat. Rev. Immunol. 2014, 14, 377–391. [Google Scholar] [CrossRef] [PubMed]
- García Estévez, D.A.; Pardo Fernández, J. Myasthenia gravis. Update on diagnosis and therapy. Miastenia gravis. Actualización diagnóstica y terapéutica. Med. Clin. 2023, 161, 119–127. [Google Scholar] [CrossRef] [PubMed]
- Martínez Torre, S.; Gómez Molinero, I.; Martínez Girón, R. Puesta al día en la miastenia gravis [An update on myasthenia gravis]. SEMERGEN 2018, 44, 351–354. [Google Scholar] [CrossRef] [PubMed]
- Koneczny, I.; Cossins, J.; Waters, P.; Beeson, D.; Vincent, A. MuSK Myasthenia Gravis IgG4 Disrupts the Interaction of LRP4 with MuSK but Both IgG4 and IgG1-3 Can Disperse Preformed Agrin-Independent AChR Clusters. PLoS ONE 2013, 8, e80695. [Google Scholar] [CrossRef] [PubMed]
- Thapa, P.; Farber, D.L. The Role of the Thymus in the Immune Response. Thorac. Surg. Clin. 2019, 29, 123–131. [Google Scholar] [CrossRef] [PubMed]
- Marx, A.; Yamada, Y.; Simon-Keller, K.; Schalke, B.; Willcox, N.; Ströbel, P.; Weis, C.A. Thymus and autoimmunity. Semin. Immunopathol. 2021, 43, 45–64. [Google Scholar] [CrossRef] [PubMed]
- Duah, M.; Li, L.; Shen, J.; Lan, Q.; Pan, B.; Xu, K. Thymus Degeneration and Regeneration. Front. Immunol. 2021, 12, 706244. [Google Scholar] [CrossRef]
- Shichkin, V.P.; Antica, M. Thymus Regeneration and Future Challenges. Stem Cell Rev. Rep. 2020, 16, 239–250. [Google Scholar] [CrossRef]
- Soyoral, L.; Goktas, U.; Cegin, M.B.; Baydi, V. Successful use of sugammadex for caesarean section in a patient with myasthenia gravis. Braz. J. Anesthesiol. 2017, 67, 221–222. [Google Scholar] [CrossRef]
- Evoli, A.; Padua, L. Diagnosis and therapy of myasthenia gravis with antibodies to muscle-specific kinase. Autoimmun. Rev. 2013, 12, 931–935. [Google Scholar] [CrossRef]
- Aljaafari, D.; Ishaque, N. Thymectomy in Myasthenia Gravis: A Narrative Review. Saudi J. Med. Med. Sci. 2022, 10, 97–104. [Google Scholar] [CrossRef]
- Wolfe, G.I.; Kaminski, H.J.; Aban, I.B.; Minisman, G.; Kuo, H.C.; Marx, A.; Ströbel, P.; Mazia, C.; Oger, J.; Cea, J.G.; et al. Long-term effect of thymectomy plus prednisone versus prednisone alone in patients with non-thymomatous myasthenia gravis: 2-year extension of the MGTX randomised trial. Lancet Neurol. 2019, 18, 259–268. [Google Scholar] [CrossRef]
- Waheed, W.; Newman, E.; Aboukhatwa, M.; Moin, M.; Tandan, R. Practical Management for Use of Eculizumab in the Treatment of Severe, Refractory, Non-Thymomatous, AChR + Generalized Myasthenia Gravis: A Systematic Review. Ther. Clin. Risk Manag. 2022, 18, 699–719, Erratum in Ther. Clin. Risk Manag. 2022, 18, 773–774. [Google Scholar] [CrossRef]
- Menghesha, H.; Schroeter, M.; Doerr, F.; Schlachtenberger, G.; Heldwein, M.B.; Chiapponi, C.; Wahlers, T.; Bruns, C.; Hekmat, K. Der Stellenwert der Thymektomie ohne Thymom in der Therapie der Myasthenia gravis [The value of thymectomy in the treatment of non-thymomatous myasthenia gravis]. Chirurg 2022, 93, 48–55. [Google Scholar] [CrossRef]
- Deymeer, F. Myasthenia gravis: MuSK MG, late-onset MG and ocular MG. Acta Myol. 2020, 39, 345–352. [Google Scholar]
- Zhang, J.; Zhang, P.; Zhang, H.; Cui, Y.; Chen, Y.; Lv, P.; Li, X.; Zhang, P. Thymectomy in thymomatous generalized myasthenia gravis: An analysis of the prognosis and risk factors. Eur. J. Neurol. 2023, 30, 2012–2021. [Google Scholar] [CrossRef]
- Zouvelou, V. When Thymomatous Myasthenia Gravis Is Not Grave. J. Clin. Neuromuscul. Dis. 2019, 21, 124–125. [Google Scholar] [CrossRef]
- Wei, B.; Cerfolio, R. Robotic thymectomy. J. Vis. Surg. 2016, 2, 136. [Google Scholar] [CrossRef]
- Deboever, N.; Xu, Y.; Feldman, H.A.; Woodman, K.H.; Chen, M.; Shih, Y.T.; Rajaram, R. Outcomes after thymectomy in non-thymomatous myasthenia gravis. J. Thorac. Dis. 2023, 15, 3048–3053. [Google Scholar] [CrossRef]
- Rabiou, S.; Toudou-Daouda, M.; Lakranbi, M.; Issoufou, I.; Ouadnouni, Y.; Smahi, M. Outcomes after Thymectomy in Patients with Thymomatous Myasthenia Gravis. J. Neurosci. Rural. Pract. 2022, 13, 321–325. [Google Scholar] [CrossRef]
- Morren, J.A.; Li, Y. Myasthenia gravis: Frequently asked questions. Clevel. Clin. J. Med. 2016, 90, 103–113. [Google Scholar] [CrossRef]
- Alhaidar, M.K.; Abumurad, S.; Soliven, B.; Rezania, K. Current Treatment of Myasthenia Gravis. J. Clin. Med. 2022, 11, 1597. [Google Scholar] [CrossRef]
- Ambrogi, V.; Tacconi, F.; Sellitri, F.; Tamburrini, A.; Perroni, G.; Carlea, F.; La Rocca, E.; Vanni, G.; Schillaci, O.; Mineo, T.C. Subxiphoid completion thymectomy for refractory non-thymomatous myasthenia gravis. J. Thorac. Dis. 2020, 12, 2388–2394. [Google Scholar] [CrossRef]
- Akaishi, T.; Motomura, M.; Aoki, M.; Utsugisawa, K. MGTX extension study longitudinally favors early thymectomy in non-thymomatous young-adult patients with AChR antibody-positive myasthenia gravis. Ann. Transl. Med. 2019, 7 (Suppl. S6), S208. [Google Scholar] [CrossRef]
- Hess, N.R.; Sarkaria, I.S.; Pennathur, A.; Levy, R.M.; Christie, N.A.; Luketich, J.D. Minimally invasive versus open thymectomy: A systematic review of surgical techniques, patient demographics, and perioperative outcomes. Ann. Cardiothorac. Surg. 2016, 5, 1–9. [Google Scholar]
- Aydin, Y.; Ulas, A.B.; Mutlu, V.; Colak, A.; Eroglu, A. Thymectomy in Myasthenia Gravis. Eurasian J. Med. 2017, 49, 48–52. [Google Scholar] [CrossRef]
- Singh, N.; Goyal, V. Thymectomy in Non-Thymomatous Myasthenia Gravis: Does An RCT Solve The 75-Year-Old Controversy? Ann. Indian. Acad. Neurol. 2020, 23, 10–12. [Google Scholar]
- Marcuse, F.; Hoeijmakers, J.G.J.; Hochstenbag, M.; Hamid, M.A.; Keijzers, M.; Mané-Damas, M.; Martinez-Martinez, P.; Verschuuren, J.; Kuks, J.; Beekman, R.; et al. Outcomes after robotic thymectomy in nonthymomatous versus thymomatous patients with acetylcholine-receptor-antibody-associated myasthenia gravis. Neuromuscul. Disord. 2023, 33, 417–424. [Google Scholar] [CrossRef]
- Wolfe, G.I.; Kaminski, H.J.; Aban, I.B.; Minisman, G.; Kuo, H.C.; Marx, A.; Ströbel, P.; Mazia, C.; Oger, J.; Cea, J.G.; et al. MGTX Study Group. Randomized trial of thymectomy in myasthenia gravis. N. Engl. J. Med. 2016, 375, 511–522. [Google Scholar] [CrossRef]
- Zhu, H.; Liu, Z.; Yao, X.; Zou, J.; Zeng, B.; Zhang, X.; Chen, Z.; Su, C. Neurological outcomes of extended thymectomy for thymomatous myasthenia gravis: Subxiphoid vs. trans-sternal approaches. Front. Surg. 2022, 9, 973954. [Google Scholar] [CrossRef] [PubMed]
- Bhandarwar, A.; Jadhav, S.; Tandur, A.; Dhimole, N.; Wagh, A.; Bhondve, S. Management of thymomatous myasthenia gravis—Case report of a rare Covid19 infection sequelae. Int. J. Surg. Case Rep. 2021, 81, 105771. [Google Scholar] [CrossRef] [PubMed]
- Massa, R.; Greco, G.; Testi, M.; Rastelli, E.; Terracciano, C.; Frezza, E.; Garibaldi, M.; Marfia, G.A.; Locatelli, F.; Mercuri, N.B.; et al. Thymomatous myasthenia gravis: Novel association with HLA DQB1*05:01 and strengthened evidence of high clinical and serological severity. J. Neurol. 2019, 266, 982–989. [Google Scholar] [CrossRef] [PubMed]
- Coco, D.; Leanza, S. Robotic thymectomy: A review of techniques and results. Kardiochirurgia I Torakochirurgia Pol. Pol. J. Cardio-Thorac. Surg. 2023, 20, 36–44. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Chen, Z.; Li, B.; Su, C.; Zhu, H.; Zhong, B.; Zou, J. Efficiency of ectopic thymectomy by three surgical approaches in non-thymomatous myasthenia gravis. Updates Surg. 2022, 74, 1435–1443. [Google Scholar] [CrossRef] [PubMed]
- Na, K.J.; Kang, C.H. Robotic thymectomy for advanced thymic epithelial tumor: Indications and technical aspects. J. Thorac. Dis. 2020, 12, 63–69. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.X.; Qian, K.; Deng, Y.; Zheng, Y.Y.; Ou, C.M.; Liu, J.; Jiang, L.H. Complications of robot-assisted thymectomy: A single-arm meta-analysis and systematic review. Int. J. Med. Robot. Comput. Assist. Surg. MRCAS 2021, 17, e2333. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Chen, Y.; Zhang, H.; Yang, Z.; Zhang, P. Effects of thymectomy on late-onset non-thymomatous myasthenia gravis: Systematic review and meta-analysis. Orphanet J. Rare Dis. 2021, 16, 232. [Google Scholar] [CrossRef]
- Narayanaswami, P.; Sanders, D.B.; Wolfe, G.; Benatar, M.; Cea, G.; Evoli, A.; Gilhus, N.E.; Illa, I.; Kuntz, N.L.; Massey, J.; et al. International Consensus Guidance for Management of Myasthenia Gravis: 2020 Update. Neurology 2021, 96, 114–122. [Google Scholar] [CrossRef]
- Wang, H.; Wang, M.; Xin, N.; Wei, R.; Huang, K. Effect Evaluation of Subxiphoid and Intercostal Thymectomy: A Meta-Analysis and Systematic Review. Front. Surg. 2022, 9, 925003. [Google Scholar] [CrossRef]
- Chung, H.Y.; Kim, S.W.; Lee, J.G.; Shim, H.S.; Shin, H.Y. Thymectomy and disease duration in non-thymomatous acetylcholine receptor antibody-positive myasthenia gravis: A single-centre, cross-sectional study. J. Neurol. Neurosurg. Psychiatry 2023, 94, 328–330. [Google Scholar] [CrossRef] [PubMed]
- Kaul, P.; Kaul, P.; Poonia, D.R.; Jakhetiya, A.; Arora, V.; Garg, P.K. Risk Benefit Analysis of Routine Thymectomy for Differentiated Thyroid Cancers: A Systematic Review. Surg. J. 2021, 7, e307–e313. [Google Scholar] [CrossRef] [PubMed]
- Meyers, B.F.; Cooper, J.D. Transcervical thymectomy for myasthenia gravis. Chest Surg. Clin. N. Am. 2001, 11, 363–368. [Google Scholar] [PubMed]
- Na, K.J.; Hyun, K.; Kang, C.H.; Park, S.; Lee, H.J.; Park, I.K.; Kim, Y.T.; Lee, G.D.; Kim, H.R.; Choi, S.H.; et al. Predictors of post-thymectomy long-term neurological remission in thymomatous myasthenia gravis: An analysis from a multi-institutional database. Eur. J. Cardiothorac. Surg. 2020, 57, 867–873. [Google Scholar] [CrossRef] [PubMed]
- Zhu, H.; Zou, J.; Zeng, B.; Yang, L.; Xiao, J.; Zhang, X.; Feng, Y.; Su, C. Expression of Programmed Cell Death 1 Ligand 2 in Patients With Thymoma and Thymomatous Myasthenia Gravis. Am. J. Clin. Pathol. 2022, 158, 646–654. [Google Scholar] [CrossRef] [PubMed]
- Yoshida, M.; Kondo, K.; Matsui, N.; Izumi, Y.; Bando, Y.; Yokoishi, M.; Kajiura, K.; Tangoku, A. Prediction of improvement after extended thymectomy in non-thymomatous myasthenia gravis patients. PLoS ONE 2020, 15, e0239756. [Google Scholar] [CrossRef] [PubMed]
- Thanner, J.; Bekos, C.; Veraar, C.; Janik, S.; Laggner, M.; Boehm, P.M.; Schiefer, A.I.; Müllauer, L.; Klepetko, W.; Ankersmit, H.J.; et al. Heat shock protein 90α in thymic epithelial tumors and non-thymomatous myasthenia gravis. Oncoimmunology 2020, 9, 1756130. [Google Scholar] [CrossRef] [PubMed]
- Kissel, J.T.; Franklin, G.M. Treatment of myasthenia gravis: A call to arms. Neurology 2000, 55, 3–4. [Google Scholar] [CrossRef]
- Urriola, N.; Soosapilla, K.; Drummond, J.; Thieben, M. Fulminant thymomatous AMPAR-antibody limbic encephalitis with hypertonic coma, bruxism, an isoelectric electroencephalogram and temporal cortical atrophy, with recovery. BMJ Case Rep. 2019, 12, e227893. [Google Scholar] [CrossRef]
- Kim, S.W.; Choi, Y.C.; Kim, S.M.; Shim, H.S.; Shin, H.Y. Effect of thymectomy in elderly patients with non-thymomatous generalized myasthenia gravis. J. Neurol. 2019, 266, 960–968. [Google Scholar] [CrossRef]
- Toker, A. Red flags in minimally invasive thymoma resections. Mediastinum 2019, 3, 20. [Google Scholar] [CrossRef]
- Frist, W.; Thirumalai, S.; Doehring, C.; Merrill, W.; Stewart, J.; Fenichel, G.; Bender, H.W., Jr. Thymectomy for the myasthenia gravis patient: Factors influencing outcome. Ann. Thorac. Surg. 1994, 57, 334–338. [Google Scholar] [CrossRef]
- Masaoka, A.; Yamakawa, Y.; Niwa, H.; Fukai, I.; Kondo, A.; Kobayashi, M. Extended thymectomy for myasthenia gravis patients: A 20 year review. Ann. Thorac. Surg. 1996, 62, 853–959. [Google Scholar] [CrossRef]
- Venuta, F.; Rendina, E.; De Giacomo, T.; Della Rocca, G.; Antonini, G.; Ciccone, A.; Ricci, C.; Coloni, G.F. Thymectomy for myasthenia gravis: A 27-year experience. Eur. J. Cardiothorac. Surg. 1999, 15, 621–625. [Google Scholar] [CrossRef]
- Budde, J.; Morris, C.; Gal, A.; Mansour, K.; Miller, J. Predictors of outcome in thymectomy for myasthenia gravis. Ann. Thorac. Surg. 2001, 72, 197–202. [Google Scholar] [CrossRef]
- De Perrot, M.; Licker, M.; Spiliopoulus, A. Factors influencing improvement and remission rates after thymectomy for myasthenia gravis. Respiration 2001, 68, 601–605. [Google Scholar] [CrossRef]
- Mantegazza, R.; Baggi, F.; Bernasconi, P.; Antozzi, C.; Confalonieri, P.; Novellino, L.; Spinelli, L.; Ferrò, M.T.; Beghi, E.; Cornelio, F. Video-assisted thoracoscopic extended thymectomy and extended transsternal thymectomy (T-3b) in non-thymomatous myasthenia gravis patients: Remission after 6 years of follow up. J. Neurol. Sci. 2003, 212, 31–36. [Google Scholar] [CrossRef]
- Tansel, T.; Onursal, E.; Barlas, S.; Tireli, E.; Alpagut, U. Results of Surgical Treatment for Nonthymomatous Myasthenia Gravis. Surg. Today 2003, 33, 666–670. [Google Scholar] [CrossRef]
- El-Medany, Y.; Hajjar, W.; Essa, M.; Al-Kattan, K.; Hariri, Z.; Ashour, M. Predictors of Outcome for Myasthenia Gravis after Thymectomy. Asian Cardiovasc. Thorac. Ann. 2003, 11, 323–327. [Google Scholar] [CrossRef]
- Kawaguchi, N.; Kuwabara, S.; Nemoto, Y.; Fukutake, T.; Arimura, K.; Osame, M.; Hattori, T. Effects of thymectomy on late-onset myasthenia gravis without thymoma. Clin. Neurol. Neurosurg. 2007, 109, 858–861. [Google Scholar] [CrossRef]
- Pompeo, E.; Tacconi, F.; Massa, R.; Mineo, D.; Nahmias, S.; Mineo, T.C. Long-term outcome of thoracoscopic extended thymectomy for nonthymomatous myasthenia gravis. Eur. J. Cardio-Thoracic Surg. 2009, 36, 164–169. [Google Scholar] [CrossRef]
- Lin, M.; Chang, Y.; Huang, P.; Lee, Y. Thymectomy for non-thymomatous myasthenia gravis: A comparison of surgical methods and analysis of prognostic factors. Eur. J. Cardiothorac. Surg. 2010, 37, 7–12. [Google Scholar] [CrossRef]
- Spillane, J.; Hayward, M.; Hirsch, N.; Taylor, C.; Kullmann, D.; Howard, R. Thymectomy: Role in the treatment of myasthenia gravis. J. Neurol. 2013, 206, 1798–1801. [Google Scholar] [CrossRef]
- Voulaz, E.; Veronesi, G.; Infante, M.; Cariboni, U.; Testori, A.; Novellis, P.; Alloisio, M. Radical thymectomy versus conservative thymomectomy in the surgical treatment of thymic malignancies. J. Thorac. Dis. 2018, 10, 4127–4136. [Google Scholar] [CrossRef]
- Cabrera-Maqueda, J.M.; Alba-Isasi, M.T.; Hernández, R.; Arroyo-Tristán, A.; Morales-Ortiz, A. Timectomía en miastenia grave timomatosa y no timomatosa: Análisis de una cohorte de 46 pacientes [Thymectomy in thymomatous and non-thymomatous myasthenia gravis: Analysis of a cohort of 46 patients]. Rev. Neurol. 2020, 70, 213–219. [Google Scholar]
- Haoshuai, Z.; Jianyong, Z.; Lei, Y.; Bo, Z.; Xiao, J.; Zhang, X.; Chen, Z.; Chunhua, S. Factors affecting improvement of neurologic status evaluated by Quantitative Myasthenia Gravis Score for patients with thymomatous myasthenia gravis after extended thymectomy. J. Transl. Med. 2021, 19, 413. [Google Scholar] [CrossRef]
- Elseidy, S.A.; Alkader, A.A.A.A.; Naserallah, H.H.; Awad, A.K. Case Series: A case of familial thymomatous myasthenia gravis in a family of three male brothers. J. Surg. Case Rep. 2020, 2020, rjaa321. [Google Scholar] [CrossRef]
- Li, F.; Ismail, M.; Elsner, A.; Uluk, D.; Bauer, G.; Meisel, A.; Rueckert, J.C. Surgical Techniques for Myasthenia Gravis: Robotic-Assisted Thoracoscopic Surgery. Thorac. Surg. Clin. 2019, 29, 177–186. [Google Scholar] [CrossRef]
- Mineo, T.C.; Ambrogi, V. Surgical Techniques for Myasthenia Gravis: Video-Assisted Thoracic Surgery. Thorac. Surg. Clin. 2019, 29, 165–175. [Google Scholar] [CrossRef]
- Yang, H.; Liu, D.; Hong, X.; Sun, H.; Yang, B.; Wang, W. Effectiveness and safety of thymectomy plus prednisone compares with prednisone monotherapy for the treatment of non-thymomatous Myasthenia Gravis: Protocol for a systematic review. Medicine 2020, 99, e20832. [Google Scholar] [CrossRef]
- Nguyen, T.; Phan, C.L.; Supsupin, E., Jr.; Sheikh, K. Therapeutic and Diagnostic Challenges in Myasthenia Gravis. Neurol. Clin. 2020, 38, 577–590. [Google Scholar] [CrossRef]
- Shogase, T.; Ohtsuru, S.; Morita, Y.; Osaki, Y.; Furuya, H.; Anayama, T. A case of non-thymomatous refractory anti-AChR, Kv1.4 and titin antibodies positive generalized myasthenia gravis successfully treated by extended thymectomy. Rinsho Shinkeigaku. 2023, 63, 92–96. [Google Scholar] [CrossRef]
- Cunha, S.; Faustino, P.; Jorge, A.; Graça, L.L.; Almendra, L.; Matos, A.; Negrão, L.; Pancas, R. The Impact Of Thymectomy In Thymomatous And Nonthymomatous Myasthenia Gravis—The Experience Of A Tertiary Center. Port. J. Card. Thorac. Vasc. Surg. 2024, 30, 31–38. [Google Scholar]
- Álvarez-Velasco, R.; Gutiérrez-Gutiérrez, G.; Trujillo, J.C.; Martínez, E.; Segovia, S.; Arribas-Velasco, M.; Fernández, G.; Paradas, C.; Vélez-Gómez, B.; Casasnovas, C.; et al. Clinical characteristics and outcomes of thymoma-associated myasthenia gravis. Eur. J. Neurol. 2021, 28, 2083–2091. [Google Scholar] [CrossRef]
- Fionda, L.; Rossini, E.; Lauletta, A.; Leonardi, L.; Tufano, L.; Costanzo, R.; Marchetti, P.; Salvetti, M.; Garibaldi, M.; Morino, S.; et al. Eculizumab for myasthenic exacerbation during treatment with immune-checkpoint inhibitors. Neurol. Sci. 2024, 45, 1243–1247. [Google Scholar] [CrossRef]
- Adeyinka, A.; Kondamudi, N.P. Cholinergic Crisis. In StatPearls; StatPearls Publishing: St. Petersburg, FL, USA, 2019. [Google Scholar]
- Meacci, E.; Nachira, D.; Congedo, M.T.; Petracca-Ciavarella, L.; Vita, M.L.; Porziella, V.; Chiappetta, M.; Lococo, F.; Tabacco, D.; Triumbari, E.K.A.; et al. Learning Curve of Robot-Assisted Thymectomy: Single Surgeon’s 7-Year Experience. Front. Surg. 2022, 9, 860899. [Google Scholar] [CrossRef]
- Nair, S.S.; Shreedhara, A.; Unnikrishnan, M.; Sandhyamani, S.; Sarma, P.; Nair, M.; Sarada, C. Determinants of Suboptimal Outcome Following Thymectomy in Myasthenia Gravis. Neurol. India 2021, 69, 419–425. [Google Scholar] [CrossRef]
- Menghesha, H.; Schroeter, M.; Nelke, C.; Ruck, T.; Schlachtenberger, G.; Welskop, C.; Camo, A.; Heldwein, M.; Bennink, G.; Wahlers, T.; et al. The impact of thymectomy in subgroups of Myasthenia gravis patients: A single center longitudinal observation. Neurol. Res. Pract. 2023, 5, 24. [Google Scholar] [CrossRef]
- Murthy, J.K.; Gutta, A.K.; Yerasu, M.R.; Boorgu, S.K.; Osman, S.; Jaiswal, S.K.; Pidaparthi, L.; Gudavalli, B.P. COVID-19 in Patients with Myasthenia Gravis: Mechanisms of Respiratory Failure. Neurol. India 2021, 69, 1772–1776. [Google Scholar] [CrossRef]
- Cacho-Díaz, B.; Salmerón-Moreno, K.; Lorenzana-Mendoza, N.A.; Texcocano, J.; Arrieta, O. Myasthenia gravis as a prognostic marker in patients with thymoma. J. Thorac. Dis. 2018, 10, 2842–2848. [Google Scholar] [CrossRef]
- Yildiz Celik, S.; Durmus, H.; Yilmaz, V.; Saruhan Direskeneli, G.; Gulsen Parman, Y.; Serdaroglu Oflazer, P.; Deymeer, F. Late-onset generalized myasthenia gravis: Clinical features, treatment, and outcome. Acta Neurol. Belg. 2020, 120, 133–140. [Google Scholar] [CrossRef]
- Sarkkinen, J.; Dunkel, J.; Tuulasvaara, A.; Huuskonen, A.; Atula, S.; Kekäläinen, E.; Laakso, S.M. Ectopic germinal centers in the thymus accurately predict prognosis of myasthenia gravis after thymectomy. Mod. Pathol. 2022, 35, 1168–1174. [Google Scholar] [CrossRef]
- Alqarni, F.; Almalki, D.; Aljohani, Z.; Ali, A.; AlSaleem, A.; Alotaibi, N.; Odeh, S.; Al Dalbhi, S. Prevalence and risk factors of myasthenia gravis recurrence post-thymectomy. Neurosciences 2021, 26, 4–14. [Google Scholar] [CrossRef] [PubMed]
- Tian, W.; Yu, H.; Sun, Y.; He, J.; Wu, Q.; Ma, C.; Jiao, P.; Huang, C.; Li, D.; Tong, H. Thymoma negatively affects the neurological outcome of myasthenia gravis after thymectomy: A propensity score matching study. J. Cardiothorac. Surg. 2024, 19, 37. [Google Scholar] [CrossRef] [PubMed]
- Sinaei, F.; Fatehi, F.; Oveis Gharan, S.; Ehsan, S.; Kamali, K.; Nafissi, S. Disease severity and response to treatment in Iranian patients with myasthenia gravis. Neurol. Sci. 2022, 43, 1233–1237. [Google Scholar] [CrossRef]
- Caronia, F.P.; Arrigo, E.; Trovato, S.; Lo Monte, A.I.; Cottone, S.; Sgalambro, F.; Guglielmo, M.; Volpicelli, A.; Fiorelli, A. Uniportal bilateral video-assisted sequential thoracoscopic extended thymectomy. J. Vis. Surg. 2017, 3, 69. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.; Asaf, B.B.; Pulle, M.V.; Puri, H.V.; Bishnoi, S.; Gopinath, S.K. Minimal Access Surgery for Thymoma. Indian J. Surg. Oncol. 2020, 11, 625–632. [Google Scholar] [CrossRef]
- Comacchio, G.M.; Dell’Amore, A.; Marino, M.C.; Russo, M.D.; Schiavon, M.; Mammana, M.; Faccioli, E.; Lorenzoni, G.; Gregori, D.; Pasello, G.; et al. Vascular Involvement in Thymic Epithelial Tumors: Surgical and Oncological Outcomes. Cancers 2021, 1, 3355. [Google Scholar] [CrossRef]
- Shintani, Y.; Funaki, S.; Ose, N.; Kanou, T.; Fukui, E.; Kimura, K.; Minami, M. Surgical management of thymic epithelial tumors. Surg. Today 2021, 51, 331–339. [Google Scholar] [CrossRef]
- Kim, A.G. Thoracoscopic thymectomy for juvenile myasthenia gravis. Pediatr. Surg. Int. 2019, 35, 603–610. [Google Scholar] [CrossRef]
- Funaki, S.; Shintani, Y.; Fukui, E.; Kanzaki, R.; Kanou, T.; Ose, N.; Minami, M.; Okumura, M. Surgical treatment strategies for invasive thymoma. J. Thorac. Dis. 2020, 12, 7619–7625. [Google Scholar] [CrossRef] [PubMed]
- Evoli, A.; Meacci, E. An update on thymectomy in myasthenia gravis. Expert Rev. Neurother. 2019, 19, 823–833. [Google Scholar] [CrossRef] [PubMed]
- Möller, T.; Egberts, J.H. Roboterassistierte Thoraxchirurgie—Anwendungsgebiete und Limitationen [Robot-assisted thoracic surgery-Areas of application and limitations]. Der. Chirurg. 2021, 92, 122–127. [Google Scholar] [CrossRef] [PubMed]
- Montagne, F.; Delacour, D.; Fommarty, M.; Chaari, Z.; Papet, E.; Baste, J.M. Robotic radical thymothymectomy for thymomatous myasthenia gravis in the elderly: Case report and mini-review. J. Vis. Surg. 2021, 7, 20. [Google Scholar] [CrossRef]
- Comacchio, G.M.; Marulli, G.; Mammana, M.; Natale, G.; Schiavon, M.; Rea, F. Surgical Decision Making: Thymoma and Myasthenia Gravis. Thorac. Surg. Clin. 2019, 29, 203–213. [Google Scholar] [CrossRef] [PubMed]
- Alvarez, A.; Moreno, P. Minimally invasive thymectomy: The best option for early and locally advanced epithelial thymomas. Eur. J. Cardiothorac. Surg. 2022, 62, ezac279. [Google Scholar] [CrossRef] [PubMed]
- Filosso, P.L.; Roffinella, M.; Ruffini, E. Minimally invasive thymectomy for myasthenia gravis: The world seems to turn left. Eur. J. Cardiothorac. Surg. 2021, 60, 906–907. [Google Scholar] [CrossRef] [PubMed]
- Granell-Gil, M.; Murcia-Anaya, M.; Sevilla, S.; Martínez-Plumed, R.; Biosca-Pérez, E.; Cózar-Bernal, F.; Garutti, I.; Gallart, L.; Ubierna-Ferreras, B.; Sukia-Zilbeti, I.; et al. Clinical guide to perioperative management for videothoracoscopy lung resection (Section of Cardiac, Vascular and Thoracic Anesthesia, SEDAR; Spanish Society of Thoracic Surgery, SECT; Spanish Society of Physiotherapy). Rev. Española Anestesiol. Reanim. 2022, 69, 266–301. [Google Scholar] [CrossRef]
- Abdel Jalil, R.; Abou Chaar, M.K.; Al-Qudah, O.; Al-Edwan, A.; Almajali, O.; Ababneh, H.; U’wais, A.; Al-Ghazawi, M.; Al-Najjar, H.; Abu-Shanab, A. Early surgical and oncological outcomes during adoption of a single port VATS lung resection in a tertiary cancer center: A retrospective analysis. J. Cardiothorac. Surg. 2022, 17, 26. [Google Scholar] [CrossRef]
- Abdellateef, A.; Ali, J.M.; Jiang, G.; Aresu, G.; Jiang, L. Tips and tricks for success in subxiphoid video-assisted thoracic surgery. J. Thorac Dis. 2019, 11, 292–301. [Google Scholar] [CrossRef]
- Hirji, S.A.; Dezube, A.; Phillips, W.; Balderson, S.S.; Kara, H.V.; D’Amico, T.A. Video-Assisted Thoracic Surgery Technique for Chest Wall Resection. Oper. Tech. Thorac. Cardiovasc. Surg. 2022, 27, 345–358. [Google Scholar] [CrossRef]
Pacients | Indications | Comments |
---|---|---|
Thymomatous |
|
|
Nonthymomatous |
|
|
Authors | Number of Subjects | Group Characteristics | Types of Approach | Results of the Intervention | Type of Study |
---|---|---|---|---|---|
Frist et al. (1994) [52] | 46 | Patients with and nonthymomatous included in the study | Thymectomy through sternotomy | 28% complete remission | Retrospective study |
Masaoka et al. (1996) [53] | 286 | Patients with nonthymomatous MG | Thymectomy through sternotomy | 55.7% complete remission 10 years postoperatively | Retrospective study |
Venuta et al. (1999) [54] | 217 | Patients with nonthymomatous MG | Transcervical thymectomy and sternotomy | 46% complete remission at 18 months postoperatively | Retrospective study |
Budde et al. (2001) [55] | 113 | Patients with thymoma and nonthymomatous included in the study | Thymectomy through sternotomy in 84% of cases | Different degrees of remission in 75% of patients in the postoperative period | Retrospective study |
De Perrot et al. (2001) [56] | 35 | Patients with nonthymomatous MG | Transcervical approach | Different degrees of remission in 88% of patients in the postoperative period | Retrospective study |
Mantegazza et al. (2003) [57] | 206 | Patients with nonthymomatous MG | VATS | Complete remission in 53.9% of patients at 6 years | Prospective study |
Tansel et al. (2003) [58] | 204 | Patients with nonthymomatous MG | Thymectomy through median sternotomy | The remission rate in different degrees was 72% at 1 year | Retrospective study |
El-Medany et al. (2003) [59] | 100 | 7 patients with thymoma and 93 nonthymomatos included in the study | Maximal thymectomy (combined approach—transcervical and transsternal | Complete remission was observed in 75% of subjects 15 years postoperatively | Retrospective study |
Kawaguchi et al. (2007) [60] | 34 | Patients with nonthymomatous MG | 20 patients benefited from thymectomy (different types and approaches) 14 patients benefited only from drug therapy | Clinical remission was observed in 50% of patients with thymectomy vs. 17% in patients treated only with medication | Retrospective study |
Pompeo et al. (2009) [61] | 32 | Patients with nonthymomatous MG | VATS | VATS thymectomy has highly satisfactory long-term results in non-thymomatous MG, with a 10-year remission rate of 50% and an overall response rate of 90% | Retrospective study |
Lin et al. (2010) [62] | 60 | Patients with nonthymomatous MG | Transsternal thymectomy and VATS | The complete remission rate was not influenced by the type of approach, being approximately 32% at 38.5 months in both cases | Retrospective study |
Spillane et al. (2013) [63] | 89 | Patients with thymoma and nonthymomatous included in the study | Extended transsternal thymectomy | The need for corticosteroid administration decreased from 73% of cases preoperatively to 47% postoperatively | Retrospective study |
Voulaz et al. (2018) [64] | 157 | Patients with thymoma included in the study | VATS thymectomy was attempted in 34 cases. 123 open surgery tehiques. | Five and ten-year disease-free survival rates were 91.1% (radical thymectomy) and 81.8% (conservative) | Retrospective study |
Cabrera-Masqueda et al. (2020) [65] | 46 | Patients with thymoma and nonthymomatous included in the study | 84.8% VATS 15.2% open surgery. | After ten years of follow-up, 9.8% reached complete stable remission, a total of 32 patients (78%) had a favourable outcome and thymoma was not correlated | Retrospective study |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Salahoru, P.; Grigorescu, C.; Hinganu, M.V.; Lunguleac, T.; Halip, A.I.; Hinganu, D. Thymus Surgery Prospectives and Perspectives in Myasthenia Gravis. J. Pers. Med. 2024, 14, 241. https://doi.org/10.3390/jpm14030241
Salahoru P, Grigorescu C, Hinganu MV, Lunguleac T, Halip AI, Hinganu D. Thymus Surgery Prospectives and Perspectives in Myasthenia Gravis. Journal of Personalized Medicine. 2024; 14(3):241. https://doi.org/10.3390/jpm14030241
Chicago/Turabian StyleSalahoru, Paul, Cristina Grigorescu, Marius Valeriu Hinganu, Tiberiu Lunguleac, Alina Ioana Halip, and Delia Hinganu. 2024. "Thymus Surgery Prospectives and Perspectives in Myasthenia Gravis" Journal of Personalized Medicine 14, no. 3: 241. https://doi.org/10.3390/jpm14030241
APA StyleSalahoru, P., Grigorescu, C., Hinganu, M. V., Lunguleac, T., Halip, A. I., & Hinganu, D. (2024). Thymus Surgery Prospectives and Perspectives in Myasthenia Gravis. Journal of Personalized Medicine, 14(3), 241. https://doi.org/10.3390/jpm14030241