Genetic Factors Contributing to the Pathogenesis of Essential Hypertension in Two African Populations
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ethical Approval and Study Cohort
2.2. Identification of Genetic Variants under Study
2.3. DNA Isolation and Genotyping
2.3.1. Illumina GoldenGate Assay
2.3.2. Allele-Specific PCR
2.4. Statistical Analysis
Multiple Logistic Regression
3. Results
3.1. Study Population
3.2. Genotyping Results
3.3. Statistical Analysis: Association Study
3.3.1. Allelic Genetic Model
3.3.2. Multiple Logistic Regression
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mills, K.T.; Stefanescu, A.; He, J. The Global Epidemiology of Hypertension. Nat. Rev. Nephrol. 2020, 16, 223–237. [Google Scholar] [CrossRef] [PubMed]
- Zhou, B.; Perel, P.; Mensah, G.A.; Ezzati, M. Global Epidemiology, Health Burden and Effective Interventions for Elevated Blood Pressure and Hypertension. Nat. Rev. Cardiol. 2021, 18, 785–802. [Google Scholar] [CrossRef] [PubMed]
- Kandala, N.-B.; Nnanatu, C.C.; Dukhi, N.; Sewpaul, R.; Davids, A.; Reddy, S.P. Mapping the Burden of Hypertension in South Africa: A Comparative Analysis of the National 2012 SANHANES and the 2016 Demographic and Health Survey. Int. J. Environ. Res. Public Health 2021, 18, 5445. [Google Scholar] [CrossRef]
- Reddy, S.P.; Mbewu, A.D.; Williams, D.R.; Harriman, N.W.; Sewpaul, R.; Morgan, J.W.; Sifunda, S.; Manyaapelo, T.; Mabaso, M. Race, Geographical Location and Other Risk Factors for Hypertension: South African National Health and Nutrition Examination Survey 2011/12. SSM—Popul. Health 2021, 16, 100986. [Google Scholar] [CrossRef]
- Shisana, O.; Labadarios, D.; Rehle, T.; Simbayi, L.; Zuma, K.; Dhansay, A.; Reddy, P.; Parker, W.; Hoosain, E.; Naidoo, P.; et al. South African National Health and Nutrition Examination Survey (SANHANES-1); HSRC Press: Cape Town, South Africa, 2013. [Google Scholar]
- National Department of Health (NDOH); Statistics South Africa (Stats SA). South Africa Demographic and Health Survey 2016; National Department of Health (NDOH): Pretoria, South Africa, 2019. [Google Scholar]
- Benade, M.; Mchiza, Z.; Raquib, R.V.; Prasad, S.K.; Yan, L.D.; Brennan, A.T.; Davies, J.; Sudharsanan, N.; Manne-Goehler, J.; Fox, M.P.; et al. Health Systems Performance for Hypertension Control Using a Cascade of Care Approach in South Africa, 2011-2017. PLoS Glob. Public Health 2023, 3, e0002055. [Google Scholar] [CrossRef]
- Adeloye, D.; Basquill, C. Estimating the Prevalence and Awareness Rates of Hypertension in Africa: A Systematic Analysis. PLoS ONE 2014, 9, e104300. [Google Scholar] [CrossRef]
- Abrahamowicz, A.A.; Ebinger, J.; Whelton, S.P.; Commodore-Mensah, Y.; Yang, E. Racial and Ethnic Disparities in Hypertension: Barriers and Opportunities to Improve Blood Pressure Control. Curr. Cardiol. Rep. 2023, 25, 17–27. [Google Scholar] [CrossRef]
- Howard, G.; Prineas, R.; Moy, C.; Cushman, M.; Kellum, M.; Temple, E.; Graham, A.; Howard, V. Racial and Geographic Differences in Awareness, Treatment, and Control of Hypertension: The REasons for Geographic And Racial Differences in Stroke Study. Stroke 2006, 37, 1171–1178. [Google Scholar] [CrossRef]
- Spence, J.D.; Rayner, B.L. Hypertension in Blacks: Individualized Therapy Based on Renin/Aldosterone Phenotyping. Hypertension 2018, 72, 263–269. [Google Scholar] [CrossRef]
- Aggarwal, R.; Chiu, N.; Wadhera, R.K.; Moran, A.E.; Raber, I.; Shen, C.; Yeh, R.W.; Kazi, D.S. Racial/Ethnic Disparities in Hypertension Prevalence, Awareness, Treatment, and Control in the United States, 2013 to 2018. Hypertension 2021, 78, 1719–1726. [Google Scholar] [CrossRef]
- Lackland, D.T. Racial Differences in Hypertension: Implications for High Blood Pressure Management. Am. J. Med. Sci. 2014, 348, 135–138. [Google Scholar] [CrossRef]
- Batuman, V. Salt and Hypertension: Why Is There Still a Debate? Kidney Int. Suppl. 2013, 3, 316–320. [Google Scholar] [CrossRef] [PubMed]
- Malinowska, J.K.; Żuradzki, T. Towards the Multileveled and Processual Conceptualisation of Racialised Individuals in Biomedical Research. Synthese 2023, 201, 11. [Google Scholar] [CrossRef] [PubMed]
- Mabhida, S.E.; Mashatola, L.; Kaur, M.; Sharma, J.R.; Apalata, T.; Muhamed, B.; Benjeddou, M.; Johnson, R. Hypertension in African Populations: Review and Computational Insights. Genes 2021, 12, 532. [Google Scholar] [CrossRef]
- Yako, Y.Y.; Balti, E.V.; Matsha, T.E.; Dzudie, A.; Kruger, D.; Sobngwi, E.; Agyemang, C.; Kengne, A.P. Genetic Factors Contributing to Hypertension in African-Based Populations: A Systematic Review and Meta-Analysis. J. Clin. Hypertens. 2018, 20, 485–495. [Google Scholar] [CrossRef] [PubMed]
- Ranjith, N.; Pegoraro, R.J.; Rom, L.; Lanning, P.A.; Naidoo, D.P. Renin-Angiotensin System and Associated Gene Polymorphisms in Myocardial Infarction in Young South African Indians. Cardiovasc. J. S. Afr. Off. J. S. Afr. Card. Soc. S. Afr. Soc. Card. Pract. 2004, 15, 22–26. [Google Scholar]
- Tchelougou, D.; Kologo, J.K.; Karou, S.D.; Yaméogo, V.N.; Bisseye, C.; Djigma, F.W.; Ouermi, D.; Compaoré, T.R.; Assih, M.; Pietra, V.; et al. Renin-Angiotensin System Genes Polymorphisms and Essential Hypertension in Burkina Faso, West Africa. Int. J. Hypertens. 2015, 2015, 979631. [Google Scholar] [CrossRef]
- Sombié, H.K.; Kologo, J.K.; Tchelougou, D.; Ouédraogo, S.Y.; Ouattara, A.K.; Compaoré, T.R.; Nagalo, B.M.; Sorgho, A.P.; Nagabila, I.; Soubeïga, S.T.; et al. Positive Association between ATP2B1 Rs17249754 and Essential Hypertension: A Case-Control Study in Burkina Faso, West Africa. BMC Cardiovasc. Disord. 2019, 19, 155. [Google Scholar] [CrossRef]
- Abouelfath, R.; Habbal, R.; Laaraj, A.; Khay, K.; Harraka, M.; Nadifi, S. ACE Insertion/Deletion Polymorphism Is Positively Associated with Resistant Hypertension in Morocco. Gene 2018, 658, 178–183. [Google Scholar] [CrossRef]
- Nassereddine, S.; Kassogue, Y.; Korchi, F.; Habbal, R.; Nadifi, S. Association of Methylenetetrahydrofolate Reductase Gene (C677T) with the Risk of Hypertension in Morocco. BMC Res. Notes 2015, 8, 775. [Google Scholar] [CrossRef]
- Ghogomu, S.M.; Ngolle, N.E.; Mouliom, R.N.; Asa, B.F. Association between the MTHFR C677T Gene Polymorphism and Essential Hypertension in South West Cameroon. Genet. Mol. Res. GMR 2016, 15. [Google Scholar] [CrossRef]
- Gamil, S.; Erdmann, J.; Abdalrahman, I.B.; Mohamed, A.O. Association of NOS3 Gene Polymorphisms with Essential Hypertension in Sudanese Patients: A Case Control Study. BMC Med. Genet. 2017, 18, 128. [Google Scholar] [CrossRef] [PubMed]
- Jemaa, R.; Kallel, A.; Sediri, Y.; Omar, S.; Feki, M.; Elasmi, M.; Haj-Taieb, S.; Sanhaji, H.; Kaabachi, N. Association between -786TC Polymorphism in the Endothelial Nitric Oxide Synthase Gene and Hypertension in the Tunisian Population. Exp. Mol. Pathol. 2011, 90, 210–214. [Google Scholar] [CrossRef]
- Kabadou, I.A.; Soualmia, H.; Jemaa, R.; Feki, M.; Kallel, A.; Souheil, O.; Taieb, S.H.; Sanhaji, H.; Kaabachi, N. G Protein Beta3 Subunit Gene C825T and Angiotensin Converting Enzyme Gene Insertion/Deletion Polymorphisms in Hypertensive Tunisian Population. Clin. Lab. 2013, 59, 85–92. [Google Scholar] [CrossRef]
- Birhan, T.A.; Molla, M.D.; Abdulkadir, M.; Tesfa, K.H. Association of Angiotensin-Converting Enzyme Gene Insertion/Deletion Polymorphisms with Risk of Hypertension among the Ethiopian Population. PLoS ONE 2022, 17, e0276021. [Google Scholar] [CrossRef]
- Mengesha, H.G.; Petrucka, P.; Spence, C.; Tafesse, T.B. Effects of Angiotensin Converting Enzyme Gene Polymorphism on Hypertension in Africa: A Meta-Analysis and Systematic Review. PLoS ONE 2019, 14, e0211054. [Google Scholar] [CrossRef]
- Farrag, W.; Eid, M.; El-Shazly, S.; Abdallah, M. Angiotensin II Type 1 Receptor Gene Polymorphism and Telomere Shortening in Essential Hypertension. Mol. Cell. Biochem. 2011, 351, 13–18. [Google Scholar] [CrossRef]
- Abdel Ghafar, M.T. Association of Aldosterone Synthase CYP11B2 (-344C/T) Gene Polymorphism with Essential Hypertension and Left Ventricular Hypertrophy in the Egyptian Population. Clin. Exp. Hypertens. 2019, 41, 779–786. [Google Scholar] [CrossRef]
- Bessa, S.S.; Ali, E.M.M.; Hamdy, S.M. The Role of Glutathione S- Transferase M1 and T1 Gene Polymorphisms and Oxidative Stress-Related Parameters in Egyptian Patients with Essential Hypertension. Eur. J. Intern. Med. 2009, 20, 625–630. [Google Scholar] [CrossRef]
- Sombié, H.K.; Sorgho, A.P.; Kologo, J.K.; Ouattara, A.K.; Yaméogo, S.; Yonli, A.T.; Djigma, F.W.; Tchelougou, D.; Somda, D.; Kiendrébéogo, I.T.; et al. Glutathione S-Transferase M1 and T1 Genes Deletion Polymorphisms and Risk of Developing Essential Hypertension: A Case-Control Study in Burkina Faso Population (West Africa). BMC Med. Genet. 2020, 21, 55. [Google Scholar] [CrossRef] [PubMed]
- Amrani-Midoun, A.; Kiando, S.R.; Treard, C.; Jeunemaitre, X.; Bouatia-Naji, N. Genetic Association Study between T-786C NOS3 Polymorphism and Essential Hypertension in an Algerian Population of the Oran City. Diabetes Metab. Syndr. 2019, 13, 1317–1320. [Google Scholar] [CrossRef]
- Nassereddine, S.; Hassani Idrissi, H.; Habbal, R.; Abouelfath, R.; Korch, F.; Haraka, M.; Karkar, A.; Nadifi, S. The Polymorphism G894 T of Endothelial Nitric Oxide Synthase (eNOS) Gene Is Associated with Susceptibility to Essential Hypertension (EH) in Morocco. BMC Med. Genet. 2018, 19, 127. [Google Scholar] [CrossRef]
- Mabhida, S.E.; Sharma, J.R.; Apalata, T.; Masilela, C.; Nomatshila, S.; Mabasa, L.; Fokkens, H.; Benjeddou, M.; Muhamed, B.; Shabalala, S.; et al. The Association of MTHFR (Rs1801133) with Hypertension in an Indigenous South African Population. Front. Genet. 2022, 13, 937639. [Google Scholar] [CrossRef]
- Nkeh, B.; Samani, N.J.; Badenhorst, D.; Libhaber, E.; Sareli, P.; Norton, G.R.; Woodiwiss, A.J. T594M Variant of the Epithelial Sodium Channel Beta-Subunit Gene and Hypertension in Individuals of African Ancestry in South Africa. Am. J. Hypertens. 2003, 16, 847–852. [Google Scholar] [CrossRef]
- Tiago, A.D.; Badenhorst, D.; Nkeh, B.; Candy, G.P.; Brooksbank, R.; Sareli, P.; Libhaber, E.; Samani, N.J.; Woodiwiss, A.J.; Norton, G.R. Impact of Renin-Angiotensin-Aldosterone System Gene Variants on the Severity of Hypertension in Patients with Newly Diagnosed Hypertension. Am. J. Hypertens. 2003, 16, 1006–1010. [Google Scholar] [CrossRef]
- Hendry, L.M.; Sahibdeen, V.; Choudhury, A.; Norris, S.A.; Ramsay, M.; Lombard, Z.; of the AWI-Gen Study and as Members of the H3Africa Consortium. Insights into the Genetics of Blood Pressure in Black South African Individuals: The Birth to Twenty Cohort. BMC Med. Genomics 2018, 11, 2. [Google Scholar] [CrossRef] [PubMed]
- Masilela, C.; Pearce, B.; Ongole, J.J.; Adeniyi, O.V.; Benjeddou, M. Genomic Association of Single Nucleotide Polymorphisms with Blood Pressure Response to Hydrochlorothiazide among South African Adults with Hypertension. J. Pers. Med. 2020, 10, 267. [Google Scholar] [CrossRef] [PubMed]
- Masilela, C.; Adeniyi, O.V.; Benjeddou, M. Single Nucleotide Polymorphisms in Amlodipine-Associated Genes and Their Correlation with Blood Pressure Control among South African Adults with Hypertension. Genes 2022, 13, 1394. [Google Scholar] [CrossRef]
- Choudhury, A.; Sengupta, D.; Ramsay, M.; Schlebusch, C. Bantu-Speaker Migration and Admixture in Southern Africa. Hum. Mol. Genet. 2021, 30, R56–R63. [Google Scholar] [CrossRef]
- Choudhury, A.; Aron, S.; Botigué, L.R.; Sengupta, D.; Botha, G.; Bensellak, T.; Wells, G.; Kumuthini, J.; Shriner, D.; Fakim, Y.J.; et al. High-Depth African Genomes Inform Human Migration and Health. Nature 2020, 586, 741–748. [Google Scholar] [CrossRef]
- Sengupta, D.; Choudhury, A.; Fortes-Lima, C.; Aron, S.; Whitelaw, G.; Bostoen, K.; Gunnink, H.; Chousou-Polydouri, N.; Delius, P.; Tollman, S.; et al. Genetic Substructure and Complex Demographic History of South African Bantu Speakers. Nat. Commun. 2021, 12, 2080. [Google Scholar] [CrossRef]
- Miller, S.A.; Dykes, D.D.; Polesky, H.F. A Simple Salting out Procedure for Extracting DNA from Human Nucleated Cells. Nucleic Acids Res. 1988, 16, 1215. [Google Scholar] [CrossRef]
- Illumina Technical Note: Designing Custom GoldenGate Genotyping Assay. Available online: https://www.illumina.com/Documents/products/technotes/technote_goldengate_design.pdf (accessed on 16 March 2024).
- Illumina Technical Note: GoldenGate Assay Workflow. Available online: https://www.illumina.com/documents/products/workflows/workflow_goldengate_assay.pdf (accessed on 16 March 2024).
- González-Neira, A. The GoldenGate Genotyping Assay: Custom Design, Processing, and Data Analysis. Methods Mol. Biol. 2013, 1015, 147–153. [Google Scholar] [CrossRef] [PubMed]
- Software Guide: GenomeStudio Genotyping Module v2.0. Available online: https://support.illumina.com/content/dam/illumina-support/documents/documentation/software_documentation/genomestudio/genomestudio-2-0/genomestudio-genotyping-module-v2-user-guide-11319113-01.pdf (accessed on 16 March 2024).
- Rigat, B.; Hubert, C.; Corvol, P.; Soubrier, F. PCR Detection of the Insertion/Deletion Polymorphism of the Human Angiotensin Converting Enzyme Gene (DCP1) (Dipeptidyl Carboxypeptidase 1). Nucleic Acids Res. 1992, 20, 1433. [Google Scholar] [CrossRef]
- Odawara, M.; Matsunuma, A.; Yamashita, K. Mistyping Frequency of the Angiotensin-Converting Enzyme Gene Polymorphism and an Improved Method for Its Avoidance. Hum. Genet. 1997, 100, 163–166. [Google Scholar] [CrossRef]
- Lindpaintner, K.; Pfeffer, M.A.; Kreutz, R.; Stampfer, M.J.; Grodstein, F.; LaMotte, F.; Buring, J.; Hennekens, C.H. A Prospective Evaluation of an Angiotensin-Converting-Enzyme Gene Polymorphism and the Risk of Ischemic Heart Disease. N. Engl. J. Med. 1995, 332, 706–711. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2021. [Google Scholar]
- Horita, N.; Kaneko, T. Genetic Model Selection for a Case-Control Study and a Meta-Analysis. Meta Gene 2015, 5, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Rayner, B.L.; Owen, E.P.; King, J.A.; Soule, S.G.; Vreede, H.; Opie, L.H.; Marais, D.; Davidson, J.S. A New Mutation, R563Q, of the Beta Subunit of the Epithelial Sodium Channel Associated with Low-Renin, Low-Aldosterone Hypertension. J. Hypertens. 2003, 21, 921–926. [Google Scholar] [CrossRef]
- Statistics South Africa (Stats SA). Post-Enumeration Survey (PES) 2022; Stats SA: Pretoria, South Africa, 2022. [Google Scholar]
- Fountain, J.H.; Kaur, J.; Lappin, S.L. Physiology, Renin Angiotensin System. Available online: https://pubmed.ncbi.nlm.nih.gov/29261862/ (accessed on 13 December 2023).
- Mondry, A.; Loh, M.; Liu, P.; Zhu, A.-L.; Nagel, M. Polymorphisms of the Insertion/Deletion ACE and M235T AGT Genes and Hypertension: Surprising New Findings and Meta-Analysis of Data. BMC Nephrol. 2005, 6, 1. [Google Scholar] [CrossRef]
- Al-Makki, A.; DiPette, D.; Whelton, P.K.; Murad, M.H.; Mustafa, R.A.; Acharya, S.; Beheiry, H.M.; Champagne, B.; Connell, K.; Cooney, M.T.; et al. Hypertension Pharmacological Treatment in Adults: A World Health Organization Guideline Executive Summary. Hypertension 2022, 79, 293–301. [Google Scholar] [CrossRef] [PubMed]
- Strazzullo, P.; Galletti, F. Genetics of Salt-Sensitive Hypertension. Curr. Hypertens. Rep. 2007, 9, 25–32. [Google Scholar] [CrossRef]
- Connell, J.M.C.; Fraser, R.; MacKenzie, S.M.; Friel, E.C.; Ingram, M.C.; Holloway, C.D.; Davies, E. The Impact of Polymorphisms in the Gene Encoding Aldosterone Synthase (CYP11B2) on Steroid Synthesis and Blood Pressure Regulation. Mol. Cell. Endocrinol. 2004, 217, 243–247. [Google Scholar] [CrossRef] [PubMed]
- Takeuchi, F.; Yamamoto, K.; Katsuya, T.; Sugiyama, T.; Nabika, T.; Ohnaka, K.; Yamaguchi, S.; Takayanagi, R.; Ogihara, T.; Kato, N. Reevaluation of the Association of Seven Candidate Genes with Blood Pressure and Hypertension: A Replication Study and Meta-Analysis with a Larger Sample Size. Hypertens. Res. Off. J. Jpn. Soc. Hypertens. 2012, 35, 825–831. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Zhang, B.; Li, M.; Li, C.; Liu, J.; Liu, Y.; Wang, Z.; Zhou, J.; Wen, S. Association between Single-Nucleotide Polymorphisms in Six Hypertensive Candidate Genes and Hypertension among Northern Han Chinese Individuals. Hypertens. Res. Off. J. Jpn. Soc. Hypertens. 2014, 37, 1068–1074. [Google Scholar] [CrossRef] [PubMed]
- Gouissem, I.; Midani, F.; Soualmia, H.; Bouchemi, M.; Ouali, S.; Kallele, A.; Romdhane, N.B.; Mourali, M.S.; Feki, M. Contribution of the ACE (Rs1799752) and CYP11B2 (Rs1799998) Gene Polymorphisms to Atrial Fibrillation in the Tunisian Population. Biol. Res. Nurs. 2022, 24, 31–39. [Google Scholar] [CrossRef] [PubMed]
- Shah, W.A.; Jan, A.; Khan, M.A.; Saeed, M.; Rahman, N.; Zakiullah; Afridi, M.S.; Khuda, F.; Akbar, R. Association between Aldosterone Synthase (CYP11B2) Gene Polymorphism and Hypertension in Pashtun Ethnic Population of Khyber Pakhtunkwha, Pakistan. Genes 2023, 14, 1184. [Google Scholar] [CrossRef] [PubMed]
- Nakajima, T.; Wooding, S.; Sakagami, T.; Emi, M.; Tokunaga, K.; Tamiya, G.; Ishigami, T.; Umemura, S.; Munkhbat, B.; Jin, F.; et al. Natural Selection and Population History in the Human Angiotensinogen Gene (AGT): 736 Complete AGT Sequences in Chromosomes from around the World. Am. J. Hum. Genet. 2004, 74, 898–916. [Google Scholar] [CrossRef]
- Powell, N.R.; Shugg, T.; Leighty, J.; Martin, M.; Kreutz, R.P.; Eadon, M.T.; Lai, D.; Lu, T.; Skaar, T.C. Analysis of the Combined Effect of Rs699 and Rs5051 on Angiotensinogen Expression and Hypertension. Chronic Dis. Transl. Med. 2023, 1–16. [Google Scholar] [CrossRef]
- Semianiv, M.M.; Sydorchuk, L.P.; Dzhuryak, V.S.; Gerush, O.V.; Vasylovich Gerush, O.; Palamar, A.O.; Muzyka, N.Y.; Korovenkova, O.M.; Blazhiievska, O.M.; Sydor, V.V.; et al. Association of AGTR1 (Rs5186), VDR (Rs2228570) Genes Polymorphism with Blood Pressure Elevation in Patients with Essential Arterial Hypertension. J. Med. Life 2021, 14, 782–789. [Google Scholar] [CrossRef]
- Charoen, P.; Eu-Ahsunthornwattana, J.; Thongmung, N.; Jose, P.A.; Sritara, P.; Vathesatogkit, P.; Kitiyakara, C. Contribution of Four Polymorphisms in Renin-Angiotensin-Aldosterone-Related Genes to Hypertension in a Thai Population. Int. J. Hypertens. 2019, 2019, 4861081. [Google Scholar] [CrossRef]
- Gupta, S.; Agrawal, B.K.; Goel, R.K.; Sehajpal, P.K. Angiotensin-Converting Enzyme Gene Polymorphism in Hypertensive Rural Population of Haryana, India. J. Emerg. Trauma Shock 2009, 2, 150–154. [Google Scholar] [CrossRef]
- Alsafar, H.; Hassoun, A.; Almazrouei, S.; Kamal, W.; Almaini, M.; Odama, U.; Rais, N. Association of Angiotensin Converting Enzyme Insertion-Deletion Polymorphism with Hypertension in Emiratis with Type 2 Diabetes Mellitus and Its Interaction with Obesity Status. Dis. Mark. 2015, 2015, 536041. [Google Scholar] [CrossRef]
- Kooffreh, M.E.; Anumudu, C.I.; Kumar, P.L. Insertion/Deletion Polymorphism of the Angiotensin-Converting Enzyme Gene and the Risk of Hypertension among Residents of Two Cities, South-South Nigeria. Adv. Biomed. Res. 2014, 3, 118. [Google Scholar] [CrossRef]
- Krishnan, R.; Sekar, D.; Karunanithy, S.; Subramanium, S. Association of Angiotensin Converting Enzyme Gene Insertion/Deletion Polymorphism with Essential Hypertension in South Indian Population. Genes Dis. 2016, 3, 159–163. [Google Scholar] [CrossRef] [PubMed]
- Morshed, M.; Khan, H.; Akhteruzzaman, S. Association between Angiotensin I-Converting Enzyme Gene Polymorphism and Hypertension in Selected Individuals of the Bangladeshi Population. J. Biochem. Mol. Biol. 2002, 35, 251–254. [Google Scholar] [CrossRef] [PubMed]
- Neto, A.B.L.; Vasconcelos, N.B.R.; Dos Santos, T.R.; Duarte, L.E.C.; Assunção, M.L.; de Sales-Marques, C.; Ferreira, H.D.S. Prevalence of IGFBP3, NOS3 and TCF7L2 Polymorphisms and Their Association with Hypertension: A Population-Based Study with Brazilian Women of African Descent. BMC Res. Notes 2021, 14, 186. [Google Scholar] [CrossRef] [PubMed]
Gene | Single Nucleotide Polymorphism (SNP) | Association | Reference |
---|---|---|---|
ACE | rs1799752 (also referred to as rs4646994) | DD genotype is involved in susceptibility to hypertension in Burkinabe and Ethiopian populations. D allele is associated with EH in Sub-Saharan African and Ethiopian populations. | [19,21,27,28] |
AGTR1 | rs5186 | A allele is associated with EH in an Egyptian population. | [29] |
ATP2B1 | rs17249754 | GG genotype had a higher risk of developing hypertension than AA+AG in Burkinabe. | [20] |
CYP11B2 | rs179998 (-344C/T) | T allele is associated with EH in Egyptian patients. | [30] |
GSTM1 and GSTT1 | (null) | GSTM1-null and GSTT1-null genotypes are potential factors to predict the development of EH in Egyptian patients. | [31] |
GSTT1 | (null) | GSTT1-null genotype is associated with EH in Burkinabe. | [32] |
MTHFR | rs1801133 (C677T) | TT genotype is associated with the risk of hypertension in a Moroccan population. T allele associated with a predisposition to hypertension in a South-West Cameroonian population. | [22,23] |
NOS3 | rs2070744 -786T/C | CC genotype was associated with EH in a Sudanese population. C allele is associated with an increased risk of hypertension in an Algerian population, a Tunisian population, and a Sudanese population. | [24,25,33] |
NOS3 | rs1799983 G894T | TT genotype is associated with EH in a Moroccan population. | [34] |
Study Population | Mixed Ancestry | Xhosa | Total |
---|---|---|---|
Hypertensive Individuals | 197 | 80 | 277 |
Normotensive Individuals | 116 | 60 | 176 |
Total | 313 | 140 | 453 |
Gene | Reference SNP Identification Number | Genotype | Hypertensive (N = 277) | Hypertensive % | Normotensive (N = 176) | Normotensive % | p-Value |
---|---|---|---|---|---|---|---|
CYP11B2 | rs1799998 -344C>T | CC | 145 | 52% | 26 | 15% | <2.2 × 10−16 |
CT | 107 | 39% | 60 | 34% | |||
TT | 25 | 9% | 90 | 51% | |||
AGT | rs5051 -30-3273G>T | GG | 24 | 9% | 86 | 49% | 0.0001635 |
GT | 134 | 48% | 56 | 32% | |||
TT | 119 | 43% | 34 | 19% | |||
AGTR1 | rs5186 A1166C | AA | 78 | 28% | 124 | 70% | <2.2 × 10−16 |
AC | 56 | 20% | 44 | 25% | |||
CC | 143 | 52% | 8 | 5% | |||
AGT | rs699 T776C | TT | 9 | 3% | 96 | 55% | 3.841 × 10−5 |
TC | 75 | 27% | 56 | 32% | |||
CC | 193 | 70% | 24 | 14% | |||
ACE | rs4646994 INDEL | II | 50 | 18% | 38 | 22% | 4.323 × 10−11 |
ID | 121 | 44% | 120 | 68% | |||
DD | 106 | 38% | 18 | 10% |
Gene | SNP ID | Genotype | Mixed Ancestry | Xhosa | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Hypertensive (N = 189) | Hypertensive (%) | Normotensive (N = 116) | Normotensive (%) | p-Value | Hypertensive (N = 88) | Hypertensive (%) | Normotensive (N = 60) | Normotensive (%) | p-Value | |||
CYP11B2 | rs1799998 | CC | 89 | 47% | 16 | 14% | 1.045 × 10−14 | 56 | 64% | 10 | 17% | 1.042 × 10−13 |
-344C>T | CT | 79 | 42% | 44 | 38% | 28 | 32% | 16 | 27% | |||
TT | 21 | 11% | 56 | 48% | 4 | 5% | 34 | 57% | ||||
AGTR1 | rs5186 | AA | 42 | 22% | 82 | 71% | <2.2 × 10−16 | 36 | 41% | 42 | 70% | 1.831 × 10−11 |
A1166C | AC | 50 | 26% | 28 | 24% | 6 | 7% | 16 | 27% | |||
CC | 97 | 51% | 6 | 5% | 46 | 52% | 2 | 3% | ||||
AGT | rs699 | TT | 8 | 4% | 24 | 21% | 4.556 × 10−5 | 1 | 1% | 0 | 0% | 4.775 × 10−6 |
T776C | TC | 71 | 38% | 36 | 31% | 4 | 5% | 20 | 33% | |||
CC | 110 | 58% | 56 | 48% | 83 | 94% | 40 | 67% | ||||
ACE | rs4646994 | II | 37 | 20% | 22 | 19% | 9.446 × 10−7 | 13 | 15% | 16 | 27% | 1.395 × 10−5 |
INDEL | ID | 90 | 48% | 84 | 72% | 31 | 35% | 36 | 60% | |||
DD | 62 | 33% | 10 | 9% | 44 | 50% | 8 | 13% |
Gene | SNP ID | Allele | Hypertensive (N = 554) | Hypertensive (%) | Normotensive (N = 352) | Normotensive (%) | p-Value | 95% CI | OR |
---|---|---|---|---|---|---|---|---|---|
CYP11B2 | rs1799998 -344C>T | C | 397 | 72% | 112 | 32% | <2.2 × 10−16 | 4.010–7.324 | 5.40 |
T | 157 | 28% | 240 | 68% | |||||
AGTR1 | rs5186 A1166C | A | 212 | 38% | 292 | 83% | <2.2 × 10−16 | 0.090–0.178 | 0.13 |
C | 342 | 62% | 60 | 17% | |||||
AGT | rs699 T776C | T | 93 | 17% | 104 | 30% | 7.6 × 10−6 | 0.345–0.670 | 0.48 |
C | 461 | 83% | 248 | 70% | |||||
ACE | rs4646994 INDEL | I | 221 | 40% | 196 | 56% | 4.4 × 10−6 | 0.399–0.698 | 0.529 |
D | 333 | 60% | 156 | 44% |
a | |||||||||
Gene | SNP ID | Allele | Mixed Ancestry | ||||||
Hypertensive (N = 378) | Hypertensive (%) | Normotensive (N =232) | Normotensive (%) | p-Value | 95% CI | OR | |||
CYP11B2 | rs1799998 -344C>T | C | 257 | 68% | 76 | 33% | <2.2 × 10−16 | 3.030–6.280 | 4.35 |
T | 121 | 32% | 156 | 67% | |||||
AGTR1 | rs5186 A1166C | A | 134 | 35% | 192 | 83% | <2.2 × 10−16 | 0.0747–0.173 | 0.114 |
C | 244 | 65% | 40 | 17% | |||||
b | |||||||||
Gene | SNP ID | Allele | Xhosa | ||||||
Hypertensive (N = 176) | Hypertensive (%) | Normotensive (N = 120) | Normotensive (%) | p-Value | 95% CI | OR | |||
CYP11B2 | rs1799998 -344C>T | C | 140 | 80% | 36 | 30.00% | <2.2 × 10−16 | 5.140–16.071 | 8.99 |
T | 36 | 20% | 84 | 70.00% | |||||
AGTR1 | rs5186 A1166C | A | 78 | 44% | 100 | 83% | 6.41 × 10−12 | 0.0859–0.288 | 0.16 |
C | 98 | 56% | 20 | 17% | |||||
ACE | rs4646994 INDEL | I | 57 | 32% | 68 | 57% | 4.306 × 10−5 | 0.220 0 0.608 | 0.367 |
D | 119 | 68% | 52 | 43% |
Gene | Coefficients | Estimate Std. | Error | z Value | Pr(>\z\) | OR | 95% CI | |
---|---|---|---|---|---|---|---|---|
(Intercept) | −0.9927 | 0.9831 | −1.010 | 0.31265 | 0.3706 | 0.04867–2.3612 | ||
Gender Male | 0.3958 | 0.3094 | 1.279 | 0.20081 | 1.4856 | 0.8133–2.7447 | ||
CYP11B2 | rs1799998 CT | −1.6009 | 0.3730 | −4.292 | 1.77 × 10−5 | *** | 0.2017 | 0.0950–0.4119 |
rs1799998 TT | −2.9223 | 0.4229 | −6.910 | 4.83 × 10−12 | *** | 0.0538 | 0.0226–0.1195 | |
AGT | rs5051 GT | 1.0184 | 0.4276 | 2.382 | 0.01722 | * | 2.7688 | 1.2181–6.5618 |
rs5051 TT | −1.0739 | 0.7834 | −1.371 | 0.17044 | 0.3417 | 0.0741–1.6306 | ||
AGTR1 | rs5186 AC | 1.0816 | 0.3541 | 3.055 | 0.00225 | ** | 2.9494 | 1.4899–5.9991 |
rs5186 CC | 4.2242 | 0.5868 | 7.198 | 6.11 × 10−13 | *** | 68.3178 | 23.7907–244.2167 | |
AGT | rs699 TC | 0.7752 | 0.8298 | 0.934 | 0.35015 | 2.1711 | 0.4545–12.1796 | |
rs699 CC | 2.3656 | 0.9166 | 2.581 | 0.00985 | ** | 10.6507 | 1.9382–72.7814 | |
ACE | rs4646994 ID | −0.8372 | 0.3554 | −2.355 | 0.01850 | * | 0.4329 | 0.2131–0.8627 |
rs4646994 DD | 0.4453 | 0.4546 | 0.980 | 0.32723 | 1.5610 | 0.6440–3.8519 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kalideen, K.; Rayner, B.; Ramesar, R. Genetic Factors Contributing to the Pathogenesis of Essential Hypertension in Two African Populations. J. Pers. Med. 2024, 14, 323. https://doi.org/10.3390/jpm14030323
Kalideen K, Rayner B, Ramesar R. Genetic Factors Contributing to the Pathogenesis of Essential Hypertension in Two African Populations. Journal of Personalized Medicine. 2024; 14(3):323. https://doi.org/10.3390/jpm14030323
Chicago/Turabian StyleKalideen, Kusha, Brian Rayner, and Raj Ramesar. 2024. "Genetic Factors Contributing to the Pathogenesis of Essential Hypertension in Two African Populations" Journal of Personalized Medicine 14, no. 3: 323. https://doi.org/10.3390/jpm14030323
APA StyleKalideen, K., Rayner, B., & Ramesar, R. (2024). Genetic Factors Contributing to the Pathogenesis of Essential Hypertension in Two African Populations. Journal of Personalized Medicine, 14(3), 323. https://doi.org/10.3390/jpm14030323