The Impact of ABCC2 -24C>T Gene Polymorphism on Graft Survival in Kidney Transplant Recipients
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Subjects
2.2. Data Collection
2.3. DNA Extraction and SNP Genotyping
2.4. Clinical Outcome
2.5. Statistical Analysis
3. Results
3.1. Patient Characteristics
3.2. Clinical Outcomes
3.3. Pharmacogenetic Analysis
3.4. Factors Associated with Graft Survival in the Presence of Acute Graft Rejection and/or ATN
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bowman, L.J.; Brennan, D.C. The role of tacrolimus in renal transplantation. Expert Opin. Pharmacother. 2008, 9, 635–643. [Google Scholar] [CrossRef]
- Hariharan, S.; Johnson, C.P.; Bresnahan, B.A.; Taranto, S.E.; McIntosh, M.J.; Stablein, D. Improved graft survival after renal transplantation in the United States, 1988 to 1996. N. Engl. J. Med. 2000, 342, 605–612. [Google Scholar] [CrossRef]
- Herrero, M.; Sánchez-Plumed, J.; Galiana, M.; Bea, S.; Marqués, M.; Aliño, S. Influence of pharmacogenetic polymorphisms in routine immunosuppression therapy after renal transplantation. In Transplantation Proceedings; Elsevier: Amsterdam, The Netherlands, 2010. [Google Scholar]
- Sattler, M.; Guengerich, F.P.; Yun, C.-H.; Christians, U.; Sewing, K.-F. Cytochrome P-450 3A enzymes are responsible for biotransformation of FK506 and rapamycin in man and rat. Drug Metab. 1992, 20, 753–761. [Google Scholar]
- Saeki, T.; Ueda, K.; Tanigawara, Y.; Hori, R.; Komano, T. Human P-glycoprotein transports cyclosporin A and FK506. J. Biol. Chem. 1993, 268, 6077–6080. [Google Scholar] [CrossRef] [PubMed]
- Bullingham, R.E.; Nicholls, A.J.; Kamm, B.R. Clinical pharmacokinetics of mycophenolate mofetil. Clin. Pharmacokinet. 1998, 34, 429–455. [Google Scholar] [CrossRef] [PubMed]
- Hesselink, D.A.; Van Hest, R.M.; Mathot, R.A.; Bonthuis, F.; Weimar, W.; De Bruin, R.W.; Van Gelder, T. Cyclosporine interacts with mycophenolic acid by inhibiting the multidrug resistance-associated protein 2. Am. J. Transplant. 2005, 5, 987–994. [Google Scholar] [CrossRef] [PubMed]
- Ogasawara, K.; Chitnis, S.D.; Gohh, R.Y.; Christians, U.; Akhlaghi, F. Multidrug resistance-associated protein 2 (MRP2/ABCC2) haplotypes significantly affect the pharmacokinetics of tacrolimus in kidney transplant recipients. Clin. Pharmacokinet. 2013, 52, 751–762. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Prasad, G.V.R. CYP3A5 polymorphisms in renal transplant recipients: Influence on tacrolimus treatment. Pharmgenom. Pers. Med. 2018, 11, 23–33. [Google Scholar] [CrossRef] [PubMed]
- Jacobson, P.A.; Oetting, W.S.; Brearley, A.M.; Leduc, R.; Guan, W.; Schladt, D.; Matas, A.J.; Lamba, V.; Julian, B.A.; Mannon, R.B. Novel polymorphisms associated with tacrolimus trough concentrations: Results from a multicenter kidney transplant consortium. Transplantation 2011, 91, 300–308. [Google Scholar] [CrossRef] [PubMed]
- Kamdem, L.K.; Streit, F.; Zanger, U.M.; Brockmoller, J.; Oellerich, M.; Armstrong, V.W.; Wojnowski, L. Contribution of CYP3A5 to the in vitro hepatic clearance of tacrolimus. Clin. Chem. 2005, 51, 1374–1381. [Google Scholar] [CrossRef] [PubMed]
- Picard, N.; Bergan, S.; Marquet, P.; Van Gelder, T.; Wallemacq, P.; Hesselink, D.A.; Haufroid, V. Pharmacogenetic biomarkers predictive of the pharmacokinetics and pharmacodynamics of immunosuppressive drugs. Ther. Drug Monit. 2016, 38, S57–S69. [Google Scholar] [CrossRef]
- Hamzah, S.; Teh, L.K.; Siew, J.S.K.; Ahmad, G.; Wong, H.S.; Zakaria, Z.A.; Salleh, M.Z. Pharmacogenotyping of CYP3A5 in predicting dose-adjusted trough levels of tacrolimus among Malaysian kidney-transplant patients. Can. J. Physiol. 2013, 92, 50–57. [Google Scholar] [CrossRef]
- Mac Guad, R.; Zaharan, N.; Chik, Z.; Mohamed, Z.; Peng, N.; Adnan, W. Effects of CYP3A5 genetic polymorphism on the pharmacokinetics of tacrolimus in renal transplant recipients. In Transplantation Proceedings; Elsevier: Amsterdam, The Netherlands, 2016. [Google Scholar]
- Bakar, N.S. Pharmacogenetics of common SNP affecting drug metabolizing enzymes: Comparison of allele frequencies between European and Malaysian/Singaporean. Drug Metab. Pers. Ther. 2021, 36, 173–181. [Google Scholar] [CrossRef] [PubMed]
- Naesens, M.; Kuypers, D.R.; Verbeke, K.; Vanrenterghem, Y.J.T. Multidrug resistance protein 2 genetic polymorphisms influence mycophenolic acid exposure in renal allograft recipients. Transplantation 2006, 82, 1074–1084. [Google Scholar] [CrossRef] [PubMed]
- Shuker, N.; Bouamar, R.; Weimar, W.; van Schaik, R.H.; van Gelder, T.; Hesselink, D.A. ATP-binding cassette transporters as pharmacogenetic biomarkers for kidney transplantation. Clin. Chim. Acta 2012, 413, 1326–1337. [Google Scholar] [CrossRef] [PubMed]
- Miura, M.; Satoh, S.; Inoue, K.; Kagaya, H.; Saito, M.; Inoue, T.; Suzuki, T.; Habuchi, T. Influence of SLCO1B1, 1B3, 2B1 and ABCC2 genetic polymorphisms on mycophenolic acid pharmacokinetics in Japanese renal transplant recipients. Eur. J. Clin. Pharmacol. 2007, 63, 1161–1169. [Google Scholar] [CrossRef]
- Chaplin, M.; Kirkham, J.J.; Dwan, K.; Sloan, D.J.; Davies, G.; Jorgensen, A.L. Strengthening the reporting of pharmacogenetic studies: Development of the STROPS guideline. PLoS Med. 2020, 17, e1003344. [Google Scholar] [CrossRef]
- Kidney Disease: Improving Global Outcomes (KDIGO) Transplant Work Group. KDIGO clinical practice guideline for the care of kidney transplant recipients. Am. J. Transpl. 2009, 9 (Suppl. S3), S1–S157. [Google Scholar] [CrossRef]
- Shuker, N.; Bouamar, R.; van Schaik, R.H.; Clahsen-van Groningen, M.C.; Damman, J.; Baan, C.C.; van de Wetering, J.; Rowshani, A.T.; Weimar, W.; van Gelder, T. A randomized controlled trial comparing the efficacy of Cyp3a5 genotype-based with body-weight-based tacrolimus dosing after living donor kidney transplantation. Am. J. Transpl. 2016, 16, 2085–2096. [Google Scholar] [CrossRef]
- Khare, P.; Raj, V.; Chandra, S.; Agarwal, S. Quantitative and qualitative assessment of DNA extracted from saliva for its use in forensic identification. J. Forensic Dent. Sci. 2014, 6, 81. [Google Scholar] [CrossRef]
- Mohd Tahir, N.A.; Mohd Saffian, S.; Islahudin, F.H.; Abdul Gafor, A.H.; Othman, H.; Abdul Manan, H.; Makmor-Bakry, M. Effects of CST3 Gene G73A Polymorphism on Cystatin C in a Prospective Multiethnic Cohort Study. Nephron 2020, 144, 204–212. [Google Scholar] [CrossRef]
- Ariffin, N.M.; Islahudin, F.; Kumolosasi, E.; Makmor-Bakry, M. Effects of MAO-A and CYP450 on primaquine metabolism in healthy volunteers. Parasitol. Res. 2019, 118, 1011–1018. [Google Scholar] [CrossRef] [PubMed]
- Fuggle, S.V.; Allen, J.E.; Johnson, R.J.; Collett, D.; Mason, P.D.; Dudley, C.; Rudge, C.J.; Bradley, J.A.; Watson, C.J. Factors affecting graft and patient survival after live donor kidney transplantation in the UK. Transplantation 2010, 89, 694–701. [Google Scholar]
- Wen, L.S. Renal Pharmacy Handbook. In Renal Pharmacy Handbook, 3rd ed.; Wen, L.S., Ed.; Malaysian Pharmaceutical Society: Puchong, Malaysia, 2018. [Google Scholar]
- Grželj, J.; Marovt, M.; Marko, P.B.; Mlinarič-Raščan, I.; Gmeiner, T.; Šmid, A. Polymorphism in gene for ABCC2 transporter predicts methotrexate drug survival in patients with psoriasis. Medicina 2021, 57, 1050. [Google Scholar] [CrossRef]
- Hariharan, S.; Mcbride, M.A.; Cherikh, W.S.; Tolleris, C.B.; Bresnahan, B.A.; Johnson, C.P. Post-transplant renal function in the first year predicts long-term kidney transplant survival. Kidney Int. 2002, 62, 311–318. [Google Scholar] [CrossRef]
- Cheung, C.Y.; Tang, S.C.W. Personalized immunosuppression after kidney transplantation. Nephrology 2022, 27, 475–483. [Google Scholar] [CrossRef]
- Wen, X.; Casey, M.J.; Santos, A.H.; Hartzema, A.; Womer, K.L. Comparison of utilization and clinical outcomes for belatacept-and tacrolimus-based immunosuppression in renal transplant recipients. Am. J. Transplant. 2016, 16, 3202–3211. [Google Scholar] [CrossRef]
- Meier-Kriesche, H.U.; Schold, J.D.; Srinivas, T.R.; Kaplan, B. Lack of improvement in renal allograft survival despite a marked decrease in acute rejection rates over the most recent era. Am. J. Transplant. 2004, 4, 378–383. [Google Scholar] [CrossRef] [PubMed]
- Poggio, E.D.; Augustine, J.J.; Arrigain, S.; Brennan, D.C.; Schold, J.D. Long-term kidney transplant graft survival—Making progress when most needed. Am. J. Transplant. 2021, 21, 2824–2832. [Google Scholar] [CrossRef]
- Tang, J.-T.; Andrews, L.; van Gelder, T.; Shi, Y.; Van Schaik, R.; Wang, L.L.; Hesselink, D. Pharmacogenetic aspects of the use of tacrolimus in renal transplantation: Recent developments and ethnic considerations. Expert. Opin. Drug Metab. Toxicol. 2016, 12, 555–565. [Google Scholar] [CrossRef]
- Lloberas, N.; Torras, J.; Cruzado, J.M.; Andreu, F.; Oppenheimer, F.; Sánchez-Plumed, J.; Gentil, M.A.; Brunet, M.; Ekberg, H.; Grinyó, J.M. Influence of MRP2 on MPA pharmacokinetics in renal transplant recipients–results of the Pharmacogenomic Substudy within the Symphony Study. Nephrol. Dial. Transplant. 2011, 26, 3784–3793. [Google Scholar] [CrossRef]
- Severova-Andreevska, G.; Danilovska, I.; Sikole, A.; Popov, Z.; Ivanovski, N. Hypertension after kidney transplantation: Clinical significance and therapeutical aspects. Open Access Maced. J. Med. Sci. 2019, 7, 1241. [Google Scholar] [CrossRef]
- Neale, J.; Smith, A.C. Cardiovascular risk factors following renal transplant. World J. Transplant. 2015, 5, 183. [Google Scholar] [CrossRef]
- Malik, O.; Saleh, S.; Suleiman, B.; Ashqar, B.; Maibam, A.; Yaseen, M.; Elrefaei, A.; Hines, A.; Cornea, V.; El-Husseini, A. Prevalence, risk factors, treatment, and overall impact of BK viremia on kidney transplantation. In Transplantation Proceedings; Elsevier: Amsterdam, The Netherlands, 2019. [Google Scholar]
- Charfeddine, K.; Zaghden, S.; Kharrat, M.; Kamoun, K.; Jarraya, F.; Hachicha, J. Infectious complications in kidney transplant recipients: A single-center experience. In Transplantation Proceedings; Elsevier: Amsterdam, The Netherlands, 2005. [Google Scholar]
- Ness, D.; Olsburgh, J. UTI in kidney transplant. World J. Urol. 2020, 38, 81–88. [Google Scholar] [CrossRef]
- Fiorentino, M.; Pesce, F.; Schena, A.; Simone, S.; Castellano, G.; Gesualdo, L. Updates on urinary tract infections in kidney transplantation. J. Nephrol. 2019, 32, 751–761. [Google Scholar] [CrossRef]
- Vanichanan, J.; Udomkarnjananun, S.; Avihingsanon, Y.; Jutivorakool, K. Common viral infections in kidney transplant recipients. Kidney Res. Clin. Pract. 2018, 37, 323. [Google Scholar] [CrossRef] [PubMed]
- Thishya, K.; Sreenu, B.; Raju, S.B.; Kutala, V.K. Impact of Pharmacogenetic Determinants of Tacrolimus and Mycophenolate on Adverse Events in Renal Transplant Patients. Curr. Drug Metab. 2021, 22, 342–352. [Google Scholar] [CrossRef] [PubMed]
- Notenboom, S.; Wouterse, A.C.; Peters, B.; Kuik, L.H.; Heemskerk, S.; Russel, F.G.; Masereeuw, R. Increased apical insertion of the multidrug resistance protein 2 (MRP2/ABCC2) in renal proximal tubules following gentamicin exposure. J. Pharmacol. Exp. Ther. 2006, 318, 1194–1202. [Google Scholar] [CrossRef] [PubMed]
- Tapiawala, S.N.; Tinckam, K.J.; Cardella, C.J.; Schiff, J.; Cattran, D.C.; Cole, E.H.; Kim, S.J. Delayed graft function and the risk for death with a functioning graft. J. Am. Soc. Nephrol. JASN 2010, 21, 153. [Google Scholar] [CrossRef] [PubMed]
- Ponticelli, C.; Reggiani, F.; Moroni, G. Delayed Graft Function in Kidney Transplant: Risk Factors, Consequences and Prevention Strategies. J. Pers. Med. 2022, 12, 1557. [Google Scholar] [CrossRef] [PubMed]
- Damodaran, S.; Bullock, B.; Ekwenna, O.; Nayebpour, M.; Koizumi, N.; Sindhwani, P.; Ortiz, J. Risk factors for delayed graft function and their impact on graft outcomes in live donor kidney transplantation. Int. Urol. Nephrol. 2021, 53, 439–446. [Google Scholar] [CrossRef] [PubMed]
- Wu, W.K.; Famure, O.; Li, Y.; Kim, S.J. Delayed graft function and the risk of acute rejection in the modern era of kidney transplantation. J. Kidney Int. 2015, 88, 851–858. [Google Scholar] [CrossRef]
- Lu, C.Y.; Penfield, J.G.; Kielar, M.L.; Vazquez, M.A.; Jeyarajah, D.R. Hypothesis: Is renal allograft rejection initiated by the response to injury sustained during the transplant process? Kidney Int. 1999, 55, 2157–2168. [Google Scholar] [CrossRef]
- Chen, T.-H.; Ou, S.-M.; Tarng, D.-C. Associations of high anti-CMV IgG titer with renal function decline and allograft rejection in kidney transplant patients. J. Chin. Med. Assoc. 2022, 85, 183–189. [Google Scholar] [CrossRef]
- Nett, P.C.; Heisey, D.M.; Fernandez, L.A.; Sollinger, H.W.; Pirsch, J.D. Association of cytomegalovirus disease and acute rejection with graft loss in kidney transplantation. Transplantation 2004, 78, 1036–1041. [Google Scholar] [CrossRef]
- Kumar, D.; Mian, M.; Singer, L.; Humar, A. An interventional study using cell-mediated immunity to personalize therapy for cytomegalovirus infection after transplantation. Am. J. Transplant. 2017, 17, 2468–2473. [Google Scholar] [CrossRef] [PubMed]
- Joyce, E.; Glasner, P.; Ranganathan, S.; Swiatecka-Urban, A. Tubulointerstitial nephritis: Diagnosis, treatment, and monitoring. Pediatr. Nephrol. 2017, 32, 577–587. [Google Scholar] [CrossRef] [PubMed]
- Renaghan, A.D.; Rosner, M.H. Acute Tubular Necrosis. Evid. Based Nephrol. 2022, 1, 123–144. [Google Scholar] [CrossRef]
Parameter | Values |
---|---|
Demographics | |
Age at transplant, years, mean ± SD | 32.2 ± 7.0 |
Gender, n (%) | |
Male | 21 (53.8) |
Female | 8 (20.5) |
Ethnicities, n (%) | |
Malay | 25 (64.1) |
Chinese | 5 (12.8) |
Indian | 9 (23.1) |
Others | 0 (0.0) |
Clinical | |
Total body weight, kg, mean ± SD | 60.7 ± 17.4 |
BMI, kg/m2, mean ± SD | 22.7 ± 4.2 |
SBP pre-transplant, mmHg, mean ± SD | 142.9 ± 19.7 |
DBP pre-transplant, mmHg, mean ± SD | 90.8 ± 12.2 |
Primary renal disease, n (%) | |
Autosomal dominant polycystic kidney disease | 1 (2.6) |
GN | 18 (46.2) |
Diabetic nephropathy | 1 (2.6) |
Hypertensive | 1 (2.6) |
Lupus nephritis | 1 (2.6) |
Unknown | 17 (43.6) |
Comorbidities, n (%) | |
Hypertension | 30 (76.9) |
Both hypertension and diabetes | 3 (7.7) |
Others | 15 (38.5) |
Dialysis | 38 (97.4) |
Preemptive | 1 (2.6) |
Dialysis modality, n (%) | |
PD | 6 (15.4) |
HD | 25 (64.1) |
Mix mode | |
PD to HD | 5 (12.8) |
HD to PD | 2 (5.1) |
Duration of dialysis, months, mean ± SD | 62.1 ± 60.3 |
Type of donor, n (%) | |
Living-related | 30 (76.9) |
Cadaveric | 9 (23.1) |
Induction treatment, n (%) | |
Basiliximab | 35 (89.7) |
ATG | 4 (10.3) |
Average number of medications taken prior to transplant, mean ± SD | 6.5 ± 2.2 |
Average number of medications other than ISA following transplant, mean ± SD | 4.0 ± 2.0 |
Variables | n (%) |
---|---|
Primary clinical outcomes | |
Patient survival, n (%) | 39 (100) |
Graft survival, n (%) | 39 (100) |
with incidence of rejection and ATN, n (%) | 9 (23.1) |
without incidence of rejection and ATN, n (%) | 30 (76.9) |
Secondary clinical outcomes | |
Serum creatinine, µmol/L, median (IQR) | |
Day-7 (baseline) | 224.0 (130.3–407.8) |
12-Month | 128.5 (93.5–143.8) |
eGFR, mL/min/1.73 m2, mean ± SD | |
Day-7 (baseline) | 37.3 ± 26.8 |
12-Month | 60.3 ± 16.8 |
C0 of tacrolimus, ng/mL, mean ± SD | |
Day-7 (baseline) | 7.2 ± 2.6 |
12-Month | 6.7 ± 1.5 |
Body weight, kg, mean ± SD | 64.8 ± 14.5 |
BMI, kg/m2, mean ± SD | 23.7 ± 4.5 |
SBP | 125 ± 13.9 |
DBP | 78.9 ± 9.9 |
DGF, n (%) | |
Yes | 6 (15.4) |
No | 33 (84.6) |
ADR presence, n (%) | |
Acute graft rejection | 2 (5.1) |
CNI toxicity | 1 (2.6) |
CAN | 0 (0.0) |
PTDM | 1 (2.6) |
Post-transplant hypertension | 16 (41.0) |
History of hospital admission for infection | 9 (23.1) |
Transaminitis | 7 (17.9) |
Diarrhea | 8 (20.5) |
Malignancy | 0 (0.0) |
CMV infection | 7 (17.9) |
BKV infection | 2 (5.1) |
UTI | 8 (20.5) |
ATN | 7 (17.9) |
Leukopenia | 2 (5.1) |
Simple Model | |||||
Variables (Ref) | B | OR | 95% CI | p-Value | |
Genetic polymorphisms | |||||
CYP3A5*1 allele (*3 variant) | 0.147 | 1.158 | 0.381 | 3.520 | 0.796 |
ABCC2 -24C>T C allele (T variant) | 0.089 | 2.435 | 0.498 | 11.904 | 0.272 |
ABCC2 3972C>T C allele (T variant) | 0.028 | 1.028 | 0.318 | 3.326 | 0.963 |
Demographics | |||||
Age (years) | 0.044 | 1.045 | 0.941 | 1.160 | 0.410 |
Male (female) | 2.348 | 10.462 | 1.158 | 94.482 | 0.037 |
Ethnicity (Malay) | |||||
Chinese | 0.981 | 2.667 | 0.347 | 20.508 | 0.346 |
Indian | −0.693 | 0.500 | 0.050 | 4.978 | 0.554 |
Clinical pre-transplant | |||||
BMI, kg/m2 | −0.005 | 0.995 | 0.815 | 1.215 | 0.962 |
SBP, mmHg (<130) | −0.118 | 0.889 | 0.081 | 9.767 | 0.923 |
DBP, mmHg (<80) | −0.134 | 0.875 | 0.143 | 5.337 | 0.885 |
Primary renal disease (GN) | |||||
Others a | 0.223 | 0.125 | 0.101 | 15.499 | 0.862 |
Unknown | 0.223 | 0.125 | 0.257 | 6.07 | 0.782 |
Comorbidities (No) | |||||
Hypertension | −0.223 | 0.800 | 0.121 | 5.269 | 0.817 |
Both hypertension and diabetes | 0.693 | 2.000 | 0.115 | 34.822 | 0.634 |
Others | 1.386 | 4.000 | 0.167 | 95.756 | 0.392 |
Dialysis (Preemptive) | 20.033 | 0.000 | 0.000 | 1.000 | |
Dialysis modality (HD) | |||||
PD | −0.665 | 0.514 | 0.051 | 5.221 | 0.574 |
Mixed mode | −0.847 | 0.429 | 0.043 | 4.232 | 0.468 |
Duration of dialysis, months | 0.007 | 1.007 | 0.995 | 1.019 | 0.008 |
Type of donor, Living-related (Cadaveric) | −1.386 | 0.250 | 0.049 | 1.274 | 0.095 |
Inductive treatment, basiliximab (ATG) | −1.386 | 0.250 | 0.030 | 2.099 | 0.202 |
Average number of medications taken prior to transplant | −0.129 | 0.879 | 0.618 | 1.249 | 0.472 |
Average number of medications other than ISA following transplant | 0.430 | 1.538 | 1.006 | 2.351 | 0.047 |
Clinical post-transplant | |||||
eGFR at 12-month, mL/min/1.73 m2 (>40) | 1.386 | 4.000 | 0.476 | 33.585 | 0.202 |
Tacrolimus trough level up, ng/mL (within range 4-8) | 0.134 | 1.143 | 0.187 | 6.971 | 0.885 |
BMI at 12-month, kg/m2 (<24.9) | −0.147 | 0.864 | 0.179 | 4.161 | 0.855 |
SBP at 12-month, mmHg (<130) | −0.147 | 0.864 | 0.179 | 4.161 | 0.855 |
DBP at 12-month, mmHg (<80) | −0.045 | 0.956 | 0.213 | 4.284 | 0.953 |
DGF (No) | 2.416 | 11.200 | 1.600 | 78.400 | 0.015 |
ADR (No) | |||||
Post-transplant hypertension | 0.984 | 2.676 | 0.475 | 15.089 | 0.265 |
History of hospital admission for infection | −0.063 | 0.939 | 0.158 | 5.593 | 0.945 |
Transaminitis | 0.357 | 1.429 | 0.227 | 9.009 | 0.704 |
Diarrhea | 0.916 | 2.500 | 0.463 | 13.495 | 0.287 |
CMV infection | 1.179 | 3.250 | 0.570 | 18.523 | 0.184 |
UTI | 0.134 | 1.143 | 0.187 | 6.971 | 0.885 |
Others b | 0.619 | 1.857 | 0.28 | 12.311 | 0.521 |
Multiple Logistic Model | |||||
Factors (Ref) | B | Adjusted OR | 95% CI | p-Value | |
Genetic polymorphisms | |||||
CYP3A5*1 allele (*3 variant) | 0.820 | 2.270 | 0.314 | 16.399 | 0.416 |
ABCC2 -24C>T C allele (T variant) | 3.321 | 27.675 | 1.204 | 636.151 | 0.038 |
ABCC2 3972C>T C allele (T variant) | −2.523 | 0.080 | 0.005 | 1.284 | 0.075 |
Demographics | |||||
Male (female) | 2.105 | 8.207 | 0.811 | 83.086 | 0.075 |
Clinical pre-transplant | |||||
Duration of dialysis, months | 0.011 | 1.008 | 0.983 | 1.033 | 0.548 |
Type of donor, Living-related (Cadaveric) | 0.571 | 1.770 | 0.031 | 100.193 | 0.782 |
Inductive treatment, basiliximab (ATG) | 0.472 | 1.604 | 0.091 | 28.322 | 0.747 |
DGF (No) | 3.896 | 49.214 | 2.366 | 1023.731 | 0.012 |
Average number of medications other than ISA following transplant | 0.094 | 1.098 | 0.685 | 1.760 | 0.698 |
Clinical post-transplant | |||||
eGFR at 12-month, mL/min/1.73 m2 (>40) | −0.908 | 0.403 | 0.029 | 5.615 | 0.499 |
CMV infection (No) | 2.896 | 18.097 | 2.036 | 160.867 | 0.009 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Choong, C.L.; Islahudin, F.; Wong, H.-S.; Yahya, R.; Mohd Tahir, N.A.; Makmor-Bakry, M. The Impact of ABCC2 -24C>T Gene Polymorphism on Graft Survival in Kidney Transplant Recipients. J. Pers. Med. 2024, 14, 440. https://doi.org/10.3390/jpm14040440
Choong CL, Islahudin F, Wong H-S, Yahya R, Mohd Tahir NA, Makmor-Bakry M. The Impact of ABCC2 -24C>T Gene Polymorphism on Graft Survival in Kidney Transplant Recipients. Journal of Personalized Medicine. 2024; 14(4):440. https://doi.org/10.3390/jpm14040440
Chicago/Turabian StyleChoong, Chiau Ling, Farida Islahudin, Hin-Seng Wong, Rosnawati Yahya, Nor Asyikin Mohd Tahir, and Mohd Makmor-Bakry. 2024. "The Impact of ABCC2 -24C>T Gene Polymorphism on Graft Survival in Kidney Transplant Recipients" Journal of Personalized Medicine 14, no. 4: 440. https://doi.org/10.3390/jpm14040440
APA StyleChoong, C. L., Islahudin, F., Wong, H. -S., Yahya, R., Mohd Tahir, N. A., & Makmor-Bakry, M. (2024). The Impact of ABCC2 -24C>T Gene Polymorphism on Graft Survival in Kidney Transplant Recipients. Journal of Personalized Medicine, 14(4), 440. https://doi.org/10.3390/jpm14040440